RESUMO
The U2AF Homology Motif Kinase 1 (UHMK1) is the only kinase that contains the U2AF homology motif, a common protein interaction domain among splicing factors. Through this motif, UHMK1 interacts with the splicing factors SF1 and SF3B1, known to participate in the 3' splice site recognition during the early steps of spliceosome assembly. Although UHMK1 phosphorylates these splicing factors in vitro, the involvement of UHMK1 in RNA processing has not previously been demonstrated. Here, we identify novel putative substrates of this kinase and evaluate UHMK1 contribution to overall gene expression and splicing, by integrating global phosphoproteomics, RNA-seq, and bioinformatics approaches. Upon UHMK1 modulation, 163 unique phosphosites were differentially phosphorylated in 117 proteins, of which 106 are novel potential substrates of this kinase. Gene Ontology analysis showed enrichment of terms previously associated with UHMK1 function, such as mRNA splicing, cell cycle, cell division, and microtubule organization. The majority of the annotated RNA-related proteins are components of the spliceosome but are also involved in several steps of gene expression. Comprehensive analysis of splicing showed that UHMK1 affected over 270 alternative splicing events. Moreover, splicing reporter assay further supported UHMK1 function on splicing. Overall, RNA-seq data demonstrated that UHMK1 knockdown had a minor impact on transcript expression and pointed to UHMK1 function in epithelial-mesenchymal transition. Functional assays demonstrated that UHMK1 modulation affects proliferation, colony formation, and migration. Taken together, our data implicate UHMK1 as a splicing regulatory kinase, connecting protein regulation through phosphorylation and gene expression in key cellular processes.
Assuntos
Proteínas Serina-Treonina Quinases , Splicing de RNA , Processamento Alternativo , Fatores de Processamento de RNA/metabolismo , Spliceossomos/genética , Spliceossomos/metabolismo , Fator de Processamento U2AF/química , Fatores de Transcrição/metabolismo , Transição Epitelial-Mesenquimal , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismoRESUMO
INTRODUCTION: NR5A1 is an essential transcription factor that regulates several target genes involved in reproduction and endocrine function. Pathogenic variants in this gene are responsible for a wide spectrum of disorders/differences of sex development (DSD). METHODS: The molecular study involved Sanger sequencing, in vitro assays, and whole exome sequencing (WES). RESULTS: Four variants were identified within the NR5A1 non-coding region in 3 patients with 46,XY DSD. In vitro analyses showed that promoter activity was affected in all cases. WES revealed variants in SRA1, WWOX, and WDR11 genes. DISCUSSION/CONCLUSION: Evaluation of clinical and phenotypic significance of variants located in a non-coding region of a gene can be complex, and little is known regarding their association with DSD. Nevertheless, based on the important region for interaction with cofactors essential to promote appropriated sex development and on our in vitro results, it is feasible to say that an impact on gene expression can be expected and that this may be correlated with the DSD pathophysiology presented in our patients. Considering the number of cases that remain elusive after screening for the well-known DSD related genes, we emphasize the importance of a careful molecular analysis of NR5A1 non-coding region which is commonly neglected and might explain some idiopathic DSD cases.
Assuntos
Transtorno 46,XY do Desenvolvimento Sexual , Transtornos do Desenvolvimento Sexual , Humanos , Mutação , Transtorno 46,XY do Desenvolvimento Sexual/genética , Fenótipo , Fator Esteroidogênico 1/genética , Fator Esteroidogênico 1/metabolismo , Desenvolvimento Sexual/genética , Transtornos do Desenvolvimento Sexual/genéticaRESUMO
OBJECTIVE: During the prenatal period, steroidogenic factor 1 is required for the development of the adrenal glands and for gonadal determination and differentiation, and after birth, it regulates gonadal progenitor cell formation and their survival. Here, we describe the clinical phenotype of three 46,XY patients (2 brothers and an unrelated subject) with disorder of sex development due to the same genetic variant. METHODS: All patients underwent hormonal and pelvic ultrasound studies. Sequence analysis and deletion/duplication testing of a panel encompassing 8 genes (AR, DHH, MAP3K1, NROB1, SRD5A2, SRY, WT1, and nuclear receptor subfamily 5, group A, member 1 [NR5A1]) were performed in the index cases. All family members were tested for the presence of the NR5A1 variant. RESULTS: A variant previously described as likely pathogenic in NR5A1 (c.251G>A, p.Arg84His) that segregated in 1 family with different degrees of under-virilization was found. The family 1 index case (IV2) and his brother (IV3) had an external masculinization scale score of 5/12, but only the index case had Müllerian remnants; however, the family 2 patient had a milder score of 9/12. The older female relatives of family 1 who harbor this variant experienced premature menopause. CONCLUSION: To our knowledge, this is the first report where the c.251G>A (p.Arg84His) variant is associated with the presence of Müllerian remnants in 46,XY subjects and primary ovarian insufficiency in 46,XX individuals. The segregation of this variant with clinical manifestations provides further evidence for considering it as pathogenic.
RESUMO
Nuclear receptor subfamily 5 group A member 1 (NR5A1), also named steroidogenic factor 1, is an essential transcription factor that regulates a number of target genes crucial for normal reproductive physiology and endocrine function. It is encoded by NR5A1 gene and is expressed in high doses mainly in steroidogenic tissues, where it controls several steps of adrenal and gonadal development. NR5A1 mutations are associated with a wide phenotypic spectrum of disorders/differences of sex development (DSD), a group of conditions in which development of chromosomal, gonadal, or anatomic sex is atypical. Here, we reviewed 188 NR5A1 mutations from 238 cases reported in literature so far. Additionally, we report the variations p.Ser4*, p.(Cys55Ser), p.(Met78Leu), and p.Met98Glyfs*45, which have not been annotated for NR5A1 before and were identified in some of the 205 46,XY patients of our own cohort. This is the first NR5A1 mutation review which includes both 46,XX and 46,XY karyotype, with the purpose of discussing the complexity of genotype-phenotype correlations among DSD and infertile male patients and also females with primary ovarian failure.
Assuntos
Transtornos do Desenvolvimento Sexual/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Infertilidade/genética , Mutação , Fator Esteroidogênico 1/genética , Adolescente , Alelos , Criança , Pré-Escolar , Bases de Dados Genéticas , Transtorno 46,XY do Desenvolvimento Sexual/diagnóstico , Transtorno 46,XY do Desenvolvimento Sexual/genética , Transtornos do Desenvolvimento Sexual/diagnóstico , Feminino , Estudos de Associação Genética/métodos , Genótipo , Humanos , Lactente , Recém-Nascido , Infertilidade/diagnóstico , Cariótipo , Masculino , FenótipoRESUMO
UHMK1 (KIS) is a nuclear serine/threonine kinase that possesses a U2AF homology motif and phosphorylates and regulates the activity of the splicing factors SF1 and SF3b155. Mutations in these components of the spliceosome machinery have been recently implicated in leukemogenesis. The fact that UHMK1 regulates these factors suggests that UHMK1 might be involved in RNA processing and perhaps leukemogenesis. Here we analyzed UHMK1 expression in normal hematopoietic and leukemic cells as well as its function in leukemia cell line. In the normal hematopoietic compartment, markedly higher levels of transcripts were observed in differentiated lymphocytes (CD4+, CD8+ and CD19+) compared to the progenitor enriched subpopulation (CD34+) or leukemia cell lines. UHMK1 expression was upregulated in megakaryocytic-, monocytic- and granulocytic-induced differentiation of established leukemia cell lines and in erythrocytic-induced differentiation of CD34+ cells. No aberrant expression was observed in patient samples of myelodysplastic syndrome (MDS), acute myeloid (AML) or lymphoblastic (ALL) leukemia. Nonetheless, in MDS patients, increased levels of UHMK1 expression positively impacted event free and overall survival. Lentivirus mediated UHMK1 knockdown did not affect proliferation, cell cycle progression, apoptosis or migration of U937 leukemia cells, although UHMK1 silencing strikingly increased clonogenicity of these cells. Thus, our results suggest that UHMK1 plays a role in hematopoietic cell differentiation and suppression of autonomous clonal growth of leukemia cells.
Assuntos
Diferenciação Celular/genética , Hematopoese/genética , Células-Tronco Hematopoéticas/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Serina-Treonina Quinases/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Células K562 , Leucemia/genética , Leucemia/patologia , Masculino , Pessoa de Meia-Idade , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/patologia , Células U937 , Regulação para Cima/genética , Adulto JovemRESUMO
Steroidogenic factor-1 (SF1), encoded by the NR5A1 gene, is a key regulator of steroidogenesis and reproductive development. NR5A1 mutations described in 46,XY patients with disorders of sex development (DSD) can be associated with a range of conditions of phenotypes; however, the genotype-phenotype correlation remains elusive in many cases. In the present study, we describe the impact of five NR5A1 variants (three novel: p.Arg39Cys, p.Ser32Asn, and p.Lys396Argfs*34; and two previously described: p.Cys65Tyr and p.Cys247*) on protein function, identified in seven patients with 46,XY DSD. In vitro functional analyses demonstrate that NR5A1 mutations impair protein functions and result in the DSD phenotype observed in our patients. Missense mutations in the DNA binding domain and the frameshift mutation p.Lys396Argfs*34 lead to both, markedly affected transactivation assays, and loss of DNA binding, whereas the mutation p.Cys247* retained partial transactivation capacity and the ability to bind a consensus SF1 responsive element. SF1 acts in a dose-dependent manner and regulates a cascade of genes involved in the sex determination and steroidogenesis, but in most cases reported so far, still lead to a sufficient adrenal steroidogenesis and function, just like in our cases, in which heterozygous mutations are associated to 46,XY DSD with intact adrenal steroid biosynthesis.
Assuntos
Transtorno 46,XY do Desenvolvimento Sexual/diagnóstico , Transtorno 46,XY do Desenvolvimento Sexual/genética , Mutação , Fenótipo , Fator Esteroidogênico 1/genética , Adolescente , Alelos , Substituição de Aminoácidos , Criança , Pré-Escolar , Feminino , Estudos de Associação Genética , Genótipo , Humanos , Lactente , Recém-Nascido , Masculino , Modelos Moleculares , Conformação Proteica , Análise de Sequência de DNA , Fator Esteroidogênico 1/química , Relação Estrutura-Atividade , Adulto JovemRESUMO
OBJECTIVES: Transcription Factor 21 represses steroidogenic factor 1, a nuclear receptor required for gonadal development, sex determination and the regulation of adrenogonadal steroidogenesis. The aim of this study was to investigate whether silencing or overexpression of the gene Transcription Factor 21 could modulate the gene and protein expression of steroidogenic factor 1 in adrenocortical tumors. METHODS: We analyzed the gene expression of steroidogenic factor 1 using qPCR after silencing endogenous Transcription Factor 21 in pediatric adrenal adenoma-T7 cells through small interfering RNA. In addition, using overexpression of Transcription Factor 21 in human adrenocortical carcinoma cells, we analyzed the protein expression of steroidogenic factor 1 using Western blotting. RESULTS: Transcription Factor 21 knockdown increased the mRNA expression of steroidogenic factor 1 by 5.97-fold in pediatric adrenal adenoma-T7 cells. Additionally, Transcription Factor 21 overexpression inhibited the protein expression of steroidogenic factor 1 by 0.41-fold and 0.64-fold in two different adult adrenocortical carcinoma cell cultures, H295R and T36, respectively. CONCLUSIONS: Transcription Factor 21 is downregulated in adrenocortical carcinoma cells. Taken together, these findings support the hypothesis that Transcription Factor 21 is a regulator of steroidogenic factor 1 and is a tumor suppressor gene in pediatric and adult adrenocortical tumors.
Assuntos
Humanos , Neoplasias do Córtex Suprarrenal/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Fator Esteroidogênico 1/metabolismo , Neoplasias do Córtex Suprarrenal/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Western Blotting , Linhagem Celular Tumoral , Regulação para Baixo , Immunoblotting , Reação em Cadeia da Polimerase em Tempo Real , Fator Esteroidogênico 1/genéticaRESUMO
During gonad and adrenal development, the POD-1/capsulin/TCF21transcription factor negatively regulates SF-1/NR5A1expression, with higher SF-1 levels being associated with increased adrenal cell proliferation and tumorigenesis. In adrenocortical tumor cells, POD-1 binds to the SF-1 E-box promoter region, decreasing SF-1 expression. However, the modulation of SF-1 expression by POD-1 has not previously been described in normal adrenal cells. Here, we analyzed the basal expression of Pod-1 and Sf-1 in primary cultures of glomerulosa (G) and fasciculata/reticularis (F/R) cells isolated from male Sprague-Dawley rats, and investigated whether POD-1 overexpression modulates the expression of endogenous Sf-1 and its target genes in these cells. POD-1 overexpression, following the transfection of pCMVMycPod-1, significantly decreased the endogenous levels of Sf-1 mRNA and protein in F/R cells, but not in G cells, and also decreased the expression of the SF-1 target StAR in F/R cells. In G cells overexpressing POD-1, no modulation of the expression of SF-1 targets, StAR and CYP11B2, was observed. Our data showing that G and F/R cells respond differently to ectopic POD-1 expression emphasize the functional differences between the outer and inner zones of the adrenal cortex, and support the hypothesis that SF-1 is regulated by POD-1/Tcf21 in normal adrenocortical cells lacking the alterations in cellular physiology found in tumor cells.
Assuntos
Animais , Masculino , Córtex Suprarrenal/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fosfoproteínas/metabolismo , Fator Esteroidogênico 1/metabolismo , Córtex Suprarrenal/citologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Eletroforese em Gel de Poliacrilamida , Expressão Gênica , Immunoblotting , Cultura Primária de Células , Fosfoproteínas/análise , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , RNA Mensageiro/análise , Fator Esteroidogênico 1/análise , Zona Fasciculada/citologia , Zona Fasciculada/metabolismo , Zona Glomerulosa/citologia , Zona Glomerulosa/metabolismo , Zona Reticular/citologia , Zona Reticular/metabolismoRESUMO
BACKGROUND: Endometriosis, pro-inflammatory and invasive benign disease estrogen dependent, abnormally express in endometria the enzyme P450Arom, positively regulated by steroid factor-1 (SF-1). Our objective was to study the nuclear protein contents of upstream stimulating factor 2 (USF2a and USF2b), a positive regulator of SF-1, throughout the menstrual cycle in eutopic endometria from women with and without (control) endometriosis and the involvement of nuclear estrogen receptors (ER) and G-coupled protein estrogen receptor (GPER)-1. RESULTS: Upstream stimulating factor 2 protein contents were higher in mid (USF2b) and late (USF2a and USF2b) secretory phase in eutopic endometria from endometriosis than control (p < 0.05). In isolated control epithelial cells incubated with E2 and PGE2, to resemble the endometriosis condition, the data showed: (a) significant increase of USF2a and USF2b nuclear protein contents when treated with E2, PPT (specific agonist for ERa) or G1 (specific agonist for GPER1); (b) no increase in USF2 binding to SF-1 E-Box/DNA consensus sequence in E2-treated cells; (c) USF2 variants protein contents were not modified by PGE2; (d) SF-1 nuclear protein content was significantly higher than basal when treated with PGE2, E2 or G1, stimulation unaffected by ICI (nuclear ER antagonist); and (e) increased (p < 0.05) cytosolic protein contents of P450Arom when treated with PGE2, E2, PPT or G1 compared to basal, effect that was additive with E2 + PGE2 together. Nevertheless, in endometriosis cells, the high USF2, SF-1 and P450Arom protein contents in basal condition were unmodified. CONCLUSION: These data strongly suggest that USF2 variants and P450Arom are regulated by E2 through ERa and GPER1, whereas SF-1 through GPER1, visualized by the response of the cells obtained from control endometria, being unaffected the endogenously stimulated cells from endometriosis origin. The lack of E2 stimulation on USF2/SF-1 E-Box/DNA-sequence binding and the absence of PGE2 effect on USF2 variants opposite to the strong induction that they exert on SF1 and P450 proteins suggest different mechanisms and indirect regulations. The sustained USF2 variants protein expression during the secretory phase in eutopic endometria from women with endometriosis may participate in the pathophysiology of this disease strongly associated with infertility and its characteristic endometrial invasion to ectopic sites in the pelvic cavity.
Assuntos
Humanos , Feminino , Adulto , Aromatase/metabolismo , Expressão Gênica/genética , Endometriose/metabolismo , Endométrio/metabolismo , Estradiol/metabolismo , Biópsia , Immunoblotting , Estatísticas não Paramétricas , Endometriose/fisiopatologia , Endometriose/patologia , Endométrio/citologia , Células Epiteliais/metabolismo , Cultura Primária de Células , Ciclo Menstrual/metabolismoRESUMO
Caiman latirostris is a reptilian species that exhibits temperature-dependent sex determination (TSD). Male-to-female sex reversal can be achieved after in ovo estrogen/xenoestrogen exposure. This is known as hormone-dependent sex determination (HSD). The amh, sox9 and sf-1 genes are involved in sex determination, sex differentiation, and steroidogenesis. The aims of this study were: (a) to establish the expression patterns of amh, sox9 and sf-1 mRNA in the gonad-adrenal-mesonephros (GAM) complexes of neonatal TSD-male and TSD-female caimans, (b) to compare the expression of these genes between TSD-females and HSD-females (born from E2-exposed eggs incubated at the male-producing temperature) and (c) to evaluate whether in ovo exposure to a low dose of E2 or bisphenol A (BPA) or to a high dose of endosulfan (END) modifies amh, sox9 or sf-1 mRNA expressions in neonatal males. The mRNA expressions of amh, sox9 and sf-1 in GAM complexes from TSD-males and TSD-females and from HSD-females were quantitatively compared by RT-PCR. A sexually dimorphic pattern of amh and sox9 mRNA expression was found, with a higher expression in TSD-males than in TSD-females. sf-1 mRNA did not differ between TSD-males and TSD-females. HSD-females exhibited a higher expression of sox9 than TSD-females. In males, increased mRNA expression of sex-determining genes was observed after in ovo exposure to END. E2 decreased sox9 but increased sf-1 mRNA expression. Changes induced by BPA were evident although not significant. These results provide new insights into the potential mechanisms that lead to the gonadal histo-functional alterations observed in caimans exposed to contaminated environments.