Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 294
Filtrar
1.
Eur J Med Chem ; 278: 116821, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39232359

RESUMO

Currently, as the largest family of E3 ubiquitin ligases, Skp1-Cullin 1-F-box (SCF) E3 ligase complexes have attracted extensive attention. Among SCF complexes, Skp2, ß-TrCP, and FBXW7 have undergone extensive research on their structures and functions. Previous studies suggest Skp2, ß-TrCP, and FBXW7 are overexpressed in numerous cancers. Thus, the SCF E3 ligase complex has become a significant target for the development of anti-cancer drugs. Over the past few decades, a variety of anti-tumor inhibitors targeting the SCF E3 ligase complex have been attempted. However, since almost none of the SCF E3 ligase inhibitors passed clinical trials, the design and synthesis of the new inhibitors are needed. Here, we will introduce the structure and function of Skp2, ß-TrCP, and FBXW7, their connections with cancer development, the relevant in vitro and in vivo activities, selectivity, structure-activity relationships, and the therapeutic or preventive application of small molecule inhibitors targeting these three F-box proteins reported in the patent (2010-present). This information will help develop drugs targeting the SCF E3 ubiquitin ligase, providing new strategies for future cancer treatments.


Assuntos
Antineoplásicos , Desenho de Fármacos , Neoplasias , Humanos , Relação Estrutura-Atividade , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Patentes como Assunto , Animais , Proteínas Ligases SKP Culina F-Box/metabolismo , Proteínas Ligases SKP Culina F-Box/antagonistas & inibidores , Estrutura Molecular , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Quinases Associadas a Fase S/antagonistas & inibidores , Proteínas Quinases Associadas a Fase S/metabolismo , Proteína 7 com Repetições F-Box-WD/metabolismo
2.
Eur J Pharmacol ; 982: 176947, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-39209097

RESUMO

The proliferative and migratory abilities of vascular smooth muscle cells (VSMCs) play a crucial role in neointima formation following vascular injury. Skp2 facilitates proliferation and migration in cells through cell cycle regulation, presenting an important therapeutic target for atherosclerosis, pulmonary hypertension, and vascular restenosis. This study aimed to identify a natural product capable of inhibiting neointima formation post vascular injury. Here, we demonstrate that troxerutin, a flavonoid, significantly reduced viability and downregulated Skp2 in VSMCs. Moreover, troxerutin exhibited anti-proliferative effects on VSMCs and mitigated neointima formation. These findings collectively elucidate the intrinsic mechanism of troxerutin in treating atherosclerosis, pulmonary hypertension, and vascular restenosis by targeting the E3-linked enzyme Skp2.


Assuntos
Proliferação de Células , Hidroxietilrutosídeo , Músculo Liso Vascular , Neointima , Proteínas Quinases Associadas a Fase S , Hidroxietilrutosídeo/análogos & derivados , Hidroxietilrutosídeo/farmacologia , Proteínas Quinases Associadas a Fase S/metabolismo , Proteínas Quinases Associadas a Fase S/antagonistas & inibidores , Neointima/tratamento farmacológico , Neointima/patologia , Neointima/metabolismo , Animais , Proliferação de Células/efeitos dos fármacos , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/citologia , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Proteólise/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Movimento Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Ratos
3.
Expert Opin Ther Targets ; 28(8): 689-700, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39086205

RESUMO

INTRODUCTION: Psoriasis is a chronic immune-mediated disorder affecting over 2-3% of the population worldwide, significantly impacting quality of life. Despite the availability of various therapeutic interventions, concerns persist regarding lesion recurrence and potential alterations in immune surveillance promoting cancer progression. Recent advancements in understanding cellular and molecular pathways have unveiled key factors in psoriasis etiology, including IL-17, 22, 23, TNF-α, PDE-4, JAK-STAT inhibitors, and AhR agonists. This work explores the potential of S-phase kinase-associated protein 2 (Skp2) as a therapeutic target in psoriasis. AREA COVERED: This review covers the current understanding of psoriasis pathophysiology, including immune dysregulation, and the role of keratinocytes and ubiquitin. It also delves into Skp2 role in cell cycle regulation, and its correlation with angiogenesis and ubiquitin in psoriasis. The evolving therapeutic approaches targeting Skp2, including small molecule inhibitors, are also discussed. EXPERT OPINION: Targeting Skp2 holds promise for developing novel therapeutic approaches for psoriasis. By modulating Skp2 activity or expression, it may be possible to intervene in inflammatory and proliferative processes underlying the disease. Further research into Skp2 inhibitors and their efficacy in preclinical and clinical settings is warranted to harness the full potential of Skp2 as a therapeutic target in psoriasis management.


Assuntos
Terapia de Alvo Molecular , Psoríase , Proteínas Quinases Associadas a Fase S , Humanos , Proteínas Quinases Associadas a Fase S/antagonistas & inibidores , Proteínas Quinases Associadas a Fase S/metabolismo , Psoríase/tratamento farmacológico , Psoríase/patologia , Animais , Qualidade de Vida , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Ubiquitina/metabolismo , Desenvolvimento de Medicamentos
4.
Respir Investig ; 62(5): 901-909, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39116798

RESUMO

BACKGROUND: Small cell lung cancer (SCLC) is the most aggressive type of lung cancer. The overall survival has not improved significantly over the last decades because no major therapeutic breakthroughs have been achieved for over 15 years. METHODS: We analyzed a genome-wide loss-of-function screening database to identify vulnerabilities in SCLC for the development of urgently needed novel therapies. RESULTS: We identified SKP2 (encoding S-phase kinase-associated protein 2) and CKS1B (encoding CDC28 protein kinase regulatory subunit 1B) as the two most essential genes in that order in SCLC. Notably, SKP2 and CKS1B comprise the p27 binding pocket of the E3 ubiquitin ligase SCFSKP2 complex. Immunohistochemistry on tissue microarrays revealed that SKP2 was expressed in >95% of samples at substantially higher levels than that observed for commonly used neuroendocrine markers. As expected, SCLC cell lines were sensitive to SKP2 inhibition. Furthermore, SKP2 or CKS1B knockdown induced apoptosis in RB1 mutant cells, whereas it induced senescence in RB1 wild-type cells. CONCLUSION: Although the mechanism underlying SKP2 knockdown-induced growth inhibition differs between RB1-wild-type and -mutant SCLC, SKP2 can be considered a novel therapeutic target for patients with SCLC regardless of the RB1 mutation status. Our findings indicate that SKP2 is a potential novel clinical diagnostic marker and therapeutic target in SCLC.


Assuntos
Biomarcadores Tumorais , Quinases relacionadas a CDC2 e CDC28 , Neoplasias Pulmonares , Proteínas Quinases Associadas a Fase S , Carcinoma de Pequenas Células do Pulmão , Proteínas Quinases Associadas a Fase S/genética , Proteínas Quinases Associadas a Fase S/metabolismo , Humanos , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/diagnóstico , Carcinoma de Pequenas Células do Pulmão/patologia , Carcinoma de Pequenas Células do Pulmão/terapia , Carcinoma de Pequenas Células do Pulmão/metabolismo , Quinases relacionadas a CDC2 e CDC28/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/terapia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Mutação , Terapia de Alvo Molecular , Apoptose/genética , Linhagem Celular Tumoral , Proteínas de Ligação a Retinoblastoma/genética , Proteínas de Ligação a Retinoblastoma/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
5.
Medicina (Kaunas) ; 60(7)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39064589

RESUMO

Background and Objectives: Aberrant upregulation of fatty acid synthase (FASN), catalyzing de novo synthesis of fatty acids, occurs in various tumor types, including human hepatocellular carcinoma (HCC). Although FASN oncogenic activity seems to reside in its pro-lipogenic function, cumulating evidence suggests that FASN's tumor-supporting role might also be metabolic-independent. Materials and Methods: In the present study, we show that FASN inactivation by specific small interfering RNA (siRNA) promoted the downregulation of the S-phase kinase associated-protein kinase 2 (SKP2) and the consequent induction of p27KIP1 in HCC cell lines. Results: Expression levels of FASN and SKP2 directly correlated in human HCC specimens and predicted a dismal outcome. In addition, forced overexpression of SKP2 rendered HCC cells resistant to the treatment with the FASN inhibitor C75. Furthermore, FASN deletion was paralleled by SKP2 downregulation and p27KIP1 induction in the AKT-driven HCC preclinical mouse model. Moreover, forced overexpression of an SKP2 dominant negative form or a p27KIP1 non-phosphorylatable (p27KIP1-T187A) construct completely abolished AKT-dependent hepatocarcinogenesis in vitro and in vivo. Conclusions: In conclusion, the present data indicate that SKP2 is a critical downstream effector of FASN and AKT-dependent hepatocarcinogenesis in liver cancer, envisaging the possibility of effectively targeting FASN-positive liver tumors with SKP2 inhibitors or p27KIP1 activators.


Assuntos
Carcinoma Hepatocelular , Inibidor de Quinase Dependente de Ciclina p27 , Neoplasias Hepáticas , Proteínas Quinases Associadas a Fase S , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Proteínas Quinases Associadas a Fase S/metabolismo , Proteínas Quinases Associadas a Fase S/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Humanos , Animais , Camundongos , Linhagem Celular Tumoral , Ácido Graxo Sintases/metabolismo , Ácido Graxo Sintase Tipo I/metabolismo , Ácido Graxo Sintase Tipo I/genética , Regulação para Baixo , Masculino
6.
Cell Mol Life Sci ; 81(1): 325, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39079969

RESUMO

Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection. The inflammatory cytokine storm causes systemic organ damage, especially acute lung injury in sepsis. In this study, we found that the expression of S-phase kinase-associated protein 2 (Skp2) was significantly decreased in sepsis-induced acute lung injury (ALI). Sepsis activated the MEK/ERK pathway and inhibited Skp2 expression in the pulmonary epithelium, resulting in a reduction of K48 ubiquitination of solute carrier family 3 member 2 (SLC3A2), thereby impairing its membrane localization and cystine/glutamate exchange function. Consequently, the dysregulated intracellular redox reactions induced ferroptosis in pulmonary epithelial cells, leading to lung injury. Finally, we demonstrated that intravenous administration of Skp2 mRNA-encapsulating lipid nanoparticles (LNPs) inhibited ferroptosis in the pulmonary epithelium and alleviated lung injury in septic mice. Taken together, these data provide an innovative understanding of the underlying mechanisms of sepsis-induced ALI and a promising therapeutic strategy for sepsis.


Assuntos
Lesão Pulmonar Aguda , Ferroptose , Camundongos Endogâmicos C57BL , Proteínas Quinases Associadas a Fase S , Sepse , Ubiquitinação , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/etiologia , Sepse/metabolismo , Sepse/complicações , Sepse/patologia , Animais , Camundongos , Humanos , Masculino , Proteínas Quinases Associadas a Fase S/metabolismo , Proteínas Quinases Associadas a Fase S/genética , Pulmão/patologia , Pulmão/metabolismo , Sistema y+ de Transporte de Aminoácidos/metabolismo , Sistema y+ de Transporte de Aminoácidos/genética
7.
bioRxiv ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38895216

RESUMO

Osteosarcoma (OS) is the most common primary pediatric bone malignancy. One promising new therapeutic target is SKP2, encoding a substrate recognition factor of the SCF E3 ubiquitin ligase responsible for ubiquitination and proteasome degradation of substrate p27, thus driving cellular proliferation. We have shown previously that knockout of Skp2 in an immunocompetent transgenic mouse model of OS improved survival, drove apoptosis, and induced tumor inflammation. Here, we applied single-cell RNA-sequencing (scRNA-seq) to study primary OS tumors derived from Osx-Cre driven conditional knockout of Rb1 and Trp53. We showed that murine OS models recapitulate the tumor heterogeneity and microenvironment complexity observed in patient tumors. We further compared this model with OS models with functional disruption of Skp2: one with Skp2 knockout and the other with the Skp2-p27 interaction disrupted (resulting in p27 overexpression). We found reduction of T cell exhaustion and upregulation of interferon activation, along with evidence of replicative and endoplasmic reticulum-related stress in the Skp2 disruption models, and showed that interferon induction was correlated with improved survival in OS patients. Additionally, our scRNA-seq analysis uncovered decreased activities of metastasis-related gene signatures in the Skp2-disrupted OS, which we validated by observation of a strong reduction in lung metastasis in the Skp2 knockout mice. Finally, we report several potential mechanisms of escape from targeting Skp2 in OS, including upregulation of Myc targets, DNA copy number amplification and overexpression of alternative E3 ligase genes, and potential alternative lineage activation. These mechanistic insights into OS tumor biology and Skp2 function suggest novel targets for new, synergistic therapies, while the data and our comprehensive analysis may serve as a public resource for further big data-driven OS research.

8.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167291, 2024 10.
Artigo em Inglês | MEDLINE | ID: mdl-38857836

RESUMO

Glioblastoma is a malignant brain tumor with poor prognosis. Though several dysregulated pathways were found to mediate the tumor progression, hyperactivation of RAS-RAF-ERK pathway, enhanced glycolysis and SKP2 are associated with several glioblastomas. Recent findings on the role of USP10 in the transition from pro-neural to mesenchymal subtype of glioblastoma and, USP13 in the stabilization of RAF1 in mouse embryonic stem cells prompted us to examine their role in the mechanisms mediating the progression of glioblastoma. In the present study, we have examined the role of spautin-1, a pharmacological inhibitor of USP10 and USP13 in the mechanisms mediating glioblastoma. Our results indicate that spautin-1 as well as knockdown of its downstream targets, USP10 and USP13, reduced the proliferation and migration of glioblastoma cells. Also, spautin-1 mediated inhibition of RAF-ERK pathway or inhibition of RAF1 and MEK1 per se reduced the glycolytic function via PKM2/Glut-1 and inhibited the progression of glioblastoma. Further, the protooncogene, SKP2, which was shown to be a direct target of USP10 /USP13 was also reduced by spautin-1. While inhibition of SKP2 enhanced its downstream target p21, no apparent changes in the RAF-ERK levels or glycolytic function were evident. Also, inhibition of MEK1 did not affect SKP2 levels, indicating that these two pathways act independent of each other. Overall, our findings indicate that spautin-1 by virtue of its inhibitory effects on USP10/13 counteracts RAS-RAF-ERK mediated glycolysis and SKP2 that are critical in the progression of glioblastoma. Hence, further preclinical validation is warranted for taking the present observations forward.


Assuntos
Progressão da Doença , Glioblastoma , Glicólise , Proteínas Quinases Associadas a Fase S , Ubiquitina Tiolesterase , Glioblastoma/metabolismo , Glioblastoma/patologia , Glioblastoma/genética , Humanos , Linhagem Celular Tumoral , Proteínas Quinases Associadas a Fase S/metabolismo , Proteínas Quinases Associadas a Fase S/genética , Ubiquitina Tiolesterase/metabolismo , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/antagonistas & inibidores , Proliferação de Células , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/genética , Proteínas Proto-Oncogênicas c-raf/metabolismo , Proteínas Proto-Oncogênicas c-raf/genética , Sistema de Sinalização das MAP Quinases , Movimento Celular , Animais , Camundongos
9.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167286, 2024 10.
Artigo em Inglês | MEDLINE | ID: mdl-38866114

RESUMO

S-phase kinase-associated protein 2 (Skp2) is an F-box protein overexpressed in human cancers and linked with poor prognosis. It triggers cancer pathogenesis, including stemness and drug resistance. In this study, we have explored the potential role of Skp2 targeting in restoring the expression of tumor suppressors in human cutaneous squamous cell carcinoma (cSCC) cells. Our results showed that genetic and pharmacological Skp2 targeting markedly suppressed cSCC cell proliferation, colony growth, spheroid formation, and enhanced sensitization to chemotherapeutic drugs. Further, western blot results demonstrated restoration of tumor suppressor (KLF4) and CDKI (p21) and suppression of vimentin and survivin in Skp2-knocked-down cSCC cells. Importantly, we also explored that Skp2 targeting potentiates apoptosis of cSCC cells through MAPK signaling. Moreover, co-targeting of Skp2 and PI3K/AKT resulted in increased cancer cell death. Interestingly, curcumin, a well-known naturally derived anticancer agent, also inhibits Skp2 expression with concomitant CDKI upregulation. In line, curcumin suppressed cSCC cell growth through ROS-mediated apoptosis, while the use of N-acetyl cysteine (NAC) reversed curcumin-induced cell death. Curcumin treatment also sensitized cSCC cells to conventional anticancer drugs, such as cisplatin and doxorubicin. Altogether, these data suggest that Skp2 targeting restores the functioning of tumor suppressors, inhibits the expression of genes associated with cell proliferation and stemness, and sensitizes cancer cells to anticancer drugs. Thus, genetic, and pharmacological ablation of Skp2 can be an important strategy for attenuating cancer pathogenesis and associated complications in skin squamous cell carcinoma.


Assuntos
Apoptose , Carcinoma de Células Escamosas , Fator 4 Semelhante a Kruppel , Proteínas Quinases Associadas a Fase S , Neoplasias Cutâneas , Humanos , Proteínas Quinases Associadas a Fase S/metabolismo , Proteínas Quinases Associadas a Fase S/genética , Apoptose/efeitos dos fármacos , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/tratamento farmacológico , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/tratamento farmacológico , Linhagem Celular Tumoral , Fator 4 Semelhante a Kruppel/metabolismo , Proliferação de Células/efeitos dos fármacos , Curcumina/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos
10.
Cancer Cell Int ; 24(1): 161, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38725021

RESUMO

BACKGROUND: PD-L1 intrinsically promotes tumor progression through multiple mechanisms, which potentially leads to resistance to anti-PD-1/PD-L1 therapies. The intrinsic effect of PD-L1 on breast cancer (BC) cell proliferation has not been fully elucidated. METHODS: we used proteomics, gene expression knockdown (KD), quantitative immunofluorescence (qIF), western blots, functional assays including colony-forming assay (CFA) and real-time cell analyzer (RTCA), and in vivo data using immunohistochemistry in breast cancer patients. RESULTS: PD-L1 promoted BC cell proliferation by accelerating cell cycle entry at the G1-to-S phase transition. Global proteomic analysis of the differentially expressed nuclear proteins indicated the involvement of several proliferation-related molecules, including p21CIP1/WAF1. Western blotting and qIF demonstrated the higher expression of SKP2 and the lower expression of p21CIP1/WAF1 and p27Kip1 in PD-L1 expressing (PD-L1pos) cells as compared to PD-L1 KD (PD-L1KD) cells. Xenograft-derived cells and the TCGA BC dataset confirmed this relationship in vivo. Functionally, CFA and RTCA demonstrated the central role of SKP2 in promoting PD-L1-mediated proliferation. Finally, immunohistochemistry in 74 breast cancer patients confirmed PD-L1 and SKP-p21/p27 axis relationship, as it showed a highly statistically significant correlation between SKP2 and PD-L1 expression (p < 0.001), and both correlated significantly with the proliferation marker Ki-67 (p < 0.001). On the other hand, there was a statistically significant inverse relationship between PD-L1 and p21CIP1/WAF1 expression (p = 0.005). Importantly, double negativity for p21CIP1/WAF1 and p27Kip1 correlated significantly with PD-L1 (p < 0.001), SKP2 (p = 0.002), and Ki-67 (p = 0.002). CONCLUSIONS: we have demonstrated the role of the SKP2-p27/p21 axis in intrinsic PD-L1-enhanced cell cycle progression. Inhibitors of SKP2 expression can alleviate resistance to ICPIs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA