Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.163
Filtrar
1.
Int J Biol Macromol ; 269(Pt 2): 131964, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38692525

RESUMO

This study aims to identify FDA-approved drugs that can target the kappa-opioid receptor (KOR) for the treatment of demyelinating diseases. Demyelinating diseases are characterized by myelin sheath destruction or formation that results in severe neurological dysfunction. Remission of this disease is largely dependent on the differentiation of oligodendrocyte precursor cells (OPCs) into mature oligodendrocytes (OLGs) in demyelinating lesions. KOR is an important regulatory protein and drug target for the treatment of demyelinating diseases. However, no drug targeting KOR has been developed due to the long clinical trials for drug discovery. Here, a structure-based virtual screening was applied to identify drugs targeting KOR among 1843 drugs of FDA-approved drug libraries, and famotidine was screen out by its high affinity cooperation with KOR as well as the clinical safety. We discovered that famotidine directly promoted OPC maturation and remyelination using the complementary in vitro and in vivo models. Administration of famotidine was not only effectively enhanced CNS myelinogenesis, but also promoted remyelination. Mechanically speaking, famotidine promoted myelinogenesis or remyelination through KOR/STAT3 signaling pathway. In general, our study provided evidence of new clinical applicability of famotidine for the treatment of demyelinating diseases for which there is currently no effective therapy.

2.
Int J Biol Sci ; 20(7): 2440-2453, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725860

RESUMO

Glioblastoma is the prevailing and highly malignant form of primary brain neoplasm with poor prognosis. Exosomes derived from glioblastoma cells act a vital role in malignant progression via regulating tumor microenvironment (TME), exosomal tetraspanin protein family members (TSPANs) are important actors of cell communication in TME. Among all the TSPANs, TSPAN6 exhibited predominantly higher expression levels in comparison to normal tissues. Meanwhile, glioblastoma patients with high level of TSPAN6 had shorter overall survival compared with low level of TSPAN6. Furthermore, TSPAN6 promoted the malignant progression of glioblastoma via promoting the proliferation and metastatic potential of glioblastoma cells. More interestingly, TSPAN6 overexpression in glioblastoma cells promoted the migration of vascular endothelial cell, and exosome secretion inhibitor reversed the migrative ability of vascular endothelial cells enhanced by TSPAN6 overexpressing glioblastoma cells, indicating that TSPAN6 might reinforce angiogenesis via exosomes in TME. Mechanistically, TSPAN6 enhanced the malignant progression of glioblastoma by interacting with CDK5RAP3 and regulating STAT3 signaling pathway. In addition, TSPAN6 overexpression in glioblastoma cells enhanced angiogenesis via regulating TME and STAT3 signaling pathway. Collectively, TSPAN6 has the potential to serve as both a therapeutic target and a prognostic biomarker for the treatment of glioblastoma.


Assuntos
Glioblastoma , Fator de Transcrição STAT3 , Transdução de Sinais , Tetraspaninas , Glioblastoma/metabolismo , Glioblastoma/patologia , Glioblastoma/genética , Humanos , Fator de Transcrição STAT3/metabolismo , Tetraspaninas/metabolismo , Tetraspaninas/genética , Linhagem Celular Tumoral , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/genética , Animais , Proliferação de Células/genética , Exossomos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Movimento Celular/genética , Progressão da Doença , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos
3.
Am J Cancer Res ; 14(4): 1850-1865, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38726266

RESUMO

Chronic inflammation associated with lung cancers contributes to immunosuppressive tumor microenvironments, reducing CD8+ T-cell function and leading to poor patient outcomes. A disintegrin and metalloprotease domain 9 (ADAM9) promotes cancer progression. Here, we aim to elucidate the role of ADAM9 in the immunosuppressive tumor microenvironment. A bioinformatic analysis of TIMER2.0 was used to investigate the correlation of ADAM9 and to infiltrate immune cells in the human lung cancer database and mouse lung tumor samples. Flow cytometry, immunohistochemistry, and RNA sequencing (RNA-seq) were performed to investigate the ADAM9-mediated immunosuppressive microenvironment. The coculture system of lung cancer cells with immune cells, cytokine array assays, and proteomic approach was used to investigate the mechanism. By analyzing the human LUAD database and the mouse lung cancer models, we showed that ADAM9 was associated with the immunosuppressive microenvironment. Additionally, ADAM9 released IL6 protein from cancer cells to inhibit IL12p40 secretion from dendritic cells, therefore leading to dendritic cell dysfunction and further affecting T-cell functions. Proteomic analysis indicated that ADAM9 promoted cholesterol biosynthesis and increased IL6-STAT3 signaling. Mechanistically, ADAM9 reduced the protein stability of LDLR, resulting in reduced cholesterol uptake and induced cholesterol biosynthesis. Moreover, LDLR reduction enhanced IL6-STAT3 activation. We reveal that ADAM9 has a novel biological function that drives the immunosuppressive tumor microenvironment by linking lung cancer's metabolic and signaling axes. Thus, by targeting ADAM9 an innovative and promising therapeutic opportunity was indicated for regulating the immunosuppression of lung cancer.

4.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731828

RESUMO

HLA-DR-positive NK cells, found in both healthy individuals and patients with different inflammatory diseases, are characterized as activated cells. However, data on their capacity for IFNγ production or cytotoxic response vary between studies. Thus, more precise investigation is needed of the mechanisms related to the induction of HLA-DR expression in NK cells, their associations with NK cell differentiation stage, and functional or metabolic state. In this work, HLA-DR-expressing NK cell subsets were investigated using transcriptomic analysis, metabolic activity assays, and analysis of intercellular signaling cascades. We demonstrated that HLA-DR+CD56bright NK cells were characterized by a proliferative phenotype, while HLA-DR+CD56dim NK cells exhibited features of adaptive cells and loss of inhibitory receptors with increased expression of MHC class II trans-activator CIITA. The activated state of HLA-DR-expressing NK cells was confirmed by higher levels of ATP and mitochondrial mass observed in this subset compared to HLA-DR- cells, both ex vivo and after stimulation in culture. We showed that HLA-DR expression in NK cells in vitro can be induced both through stimulation by exogenous IL-2 and IL-21, as well as through auto-stimulation by NK-cell-produced IFNγ. At the intracellular level, HLA-DR expression depended on the activation of STAT3- and ERK1/2-mediated pathways, with subsequent activation of isoform 3 of the transcription factor CIITA. The obtained results broaden the knowledge about HLA-DR-positive NK cell appearance, diversity, and functions, which might be useful in terms of understanding the role of this subset in innate immunity and assessing their possible implications in NK cell-based therapy.


Assuntos
Diferenciação Celular , Antígenos HLA-DR , Interferon gama , Células Matadoras Naturais , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/imunologia , Humanos , Antígenos HLA-DR/metabolismo , Antígenos HLA-DR/genética , Interferon gama/metabolismo , Antígeno CD56/metabolismo , Ativação Linfocitária/imunologia , Interleucina-2/metabolismo , Interleucina-2/farmacologia , Células Cultivadas , Proteínas Nucleares , Transativadores
5.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38731894

RESUMO

Triptolide is a natural compound in herbal remedies with anti-inflammatory and anti-proliferative properties. We studied its effects on critical signaling processes within the cell, including Notch1 and STAT3 signaling. Our research showed that triptolide reduces cancer cell proliferation by decreasing the expression of downstream targets of these signals. The levels of each signal-related protein and mRNA were analyzed using Western blot and qPCR methods. Interestingly, inhibiting one signal with a single inhibitor alone did not significantly reduce cancer cell proliferation. Instead, MTT assays showed that the simultaneous inhibition of Notch1 and STAT3 signaling reduced cell proliferation. The effect of triptolide was similar to a combination treatment with inhibitors for both signals. When we conducted a study on the impact of triptolide on zebrafish larvae, we found that it inhibited muscle development and interfered with muscle cell proliferation, as evidenced by differences in the staining of myosin heavy chain and F-actin proteins in confocal fluorescence microscopy. Additionally, we noticed that inhibiting a single type of signaling did not lead to any significant muscle defects. This implies that triptolide obstructs multiple signals simultaneously, including Notch1 and STAT3, during muscle development. Chemotherapy is commonly used to treat cancer, but it may cause muscle loss due to drug-related adverse reactions or other complex mechanisms. Our study suggests that anticancer agents like triptolide, inhibiting essential signaling pathways including Notch1 and STAT3 signaling, may cause muscle atrophy through anti-proliferative activity.


Assuntos
Proliferação de Células , Diterpenos , Compostos de Epóxi , Fenantrenos , Receptor Notch1 , Fator de Transcrição STAT3 , Transdução de Sinais , Peixe-Zebra , Animais , Compostos de Epóxi/farmacologia , Fenantrenos/farmacologia , Diterpenos/farmacologia , Fator de Transcrição STAT3/metabolismo , Proliferação de Células/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Humanos , Receptor Notch1/metabolismo , Receptor Notch1/genética , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Linhagem Celular Tumoral , Receptores Notch/metabolismo
6.
Br J Pharmacol ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745399

RESUMO

BACKGROUND AND PURPOSE: Chitinase-3-like 1 (CHI3L1) causes skin inflammation in the progression of atopic dermatitis. We investigated if anti-CHI3L1 antibody could prevent the development of atopic dermatitis and its mechanisms of action. EXPERIMENTAL APPROACH: The effect of CHI3L1 antibody on phthalic anhydride-induced atopic dermatitis animal model and in vitro reconstructed human skin (RHS) model were investigated. Expression and release of atopic dermatitis-related cytokines were determined using an enzyme-linked immunosorbent assay, and RT-qPCR, STAT3 and CXCL8 signalling were measured by western blotting. KEY RESULTS: Anti-CHI3L1 antibody suppressed phthalic anhydride-induced epidermal thickening, clinical score, IgE level and infiltration of inflammatory cells, and reduced phthalic anhydride-induced inflammatory cytokines concentration. In addition, CHI3L1 antibody treatment inhibited the expression of STAT3 activity in phthalic anhydride-treated skin. It was also confirmed that CHI3L1 antibody treatment alleviated atopic dermatitis-related inflammation in the RHS model. The inhibitory effects of CHI3L1 antibody was similar or more effective compared with that of the IL-4 antibody. We further found that CHI3L1 is associated with CXCL8 by protein-association network analysis. siRNA of CHI3L1 blocked the mRNA levels of CHI3L1, IL-1ß, IL-4, CXCL8, TSLP, and the expression of CHI3L1 and p-STAT, and the level of CXCL8, whereas recombinant level of CXCL8 was elevated. Moreover, siRNA of STAT3 reduced the mRNA level of these cytokines. CHI3L1 and p-STAT3 expression correlated with the reduced CXCL8 level in the RHS in vitro model. CONCLUSION AND IMPLICATIONS: Our data demonstrated that CHI3L1 antibody could be a promising effective therapeutic drug for atopic dermatitis.

7.
Genes Genomics ; 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38733520

RESUMO

BACKGROUND: The apoptosis-resistant pulmonary arterial endothelial cells (PAECs) are known to be major players in the pulmonary remodeling of pulmonary arterial hypertension (PAH) and exhibit an abnormal metabolic profile with mitochondrial dysfunction. Mitochondrial fission has been shown to regulate the apoptosis of several cell types, but this is largely unexplored in the PAECs. OBJECTIVE: The roles of mitochondrial fission control by Dynamin related protein-1 (DRP1) in the development of PAECs apoptosis suppression were investigated in present study and the potential mechanisms behind this were furtherly explored. METHODS: The mitochondrial morphology was investigated in PAECs from PAH rats with the pulmonary plexiform lesions, and the relations of it with DRP1 expression and apoptosis were furtherly identified in apoptosis-resistant PAECs induced by hypoxia. PAECs were isolated from rats with severe PAH and from normal subjects, the apoptotic-resistant PAECs were induced by hypoxia. DRP1 gene knockdown was achieved via DRP1-siRNA, DRP1 and STAT3 phosphorylation were blocked using its inhibitors, respectively. Apoptosis was analyzed by flow cytometry, and mitochondrial morphology was investigated by transmission electron microscope and confocal microscopy. RESULTS: The PAECs isolated from PAH rats with the pulmonary plexiform-like lesions and displayed lower apoptotic rate with increased DRP1 expression and mitochondrial fragmentation. In addition, similar observations were achieved in apoptosis-resistant PAECs induced by hypoxia. Targeting DRP1 using siRNA and pharmacologic blockade prevented the mitochondrial fission and subsequent apoptotic resistance in PAECs under hypoxia. Mechanistically, STAT3 phosphorylation at Tyr705 was shown to be activated in both PAH and hypoxia-treated PAECs, leading to the regulation of DRP1 expression. Of importance, targeting STAT3Tyr705 phosphorylation prevented DRP1 disruption on apoptosis in PAECs under hypoxia. CONCLUSIONS: These data indicated that STAT3 phosphorylation at Tyr705 impacted DRP1-controlled mitochondrial fission during the development of apoptosis-resistance in PAECs, suggesting mitochondrial dynamics may represent a therapeutic target for PAH.

8.
Cell Rep ; 43(5): 114206, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38733584

RESUMO

The interleukin (IL)-22 cytokine can be protective or inflammatory in the intestine. It is unclear if IL-22 receptor (IL-22Ra1)-mediated protection involves a specific type of intestinal epithelial cell (IEC). By using a range of IEC type-specific Il22Ra1 conditional knockout mice and a dextran sulfate sodium (DSS) colitis model, we demonstrate that IL-22Ra1 signaling in MATH1+ cells (goblet and progenitor cells) is essential for maintaining the mucosal barrier and intestinal tissue regeneration. The IL-22Ra1 signaling in IECs promotes mucin core-2 O-glycan extension and induces beta-1,3-galactosyltransferase 5 (B3GALT5) expression in the colon. Adenovirus-mediated expression of B3galt5 is sufficient to rescue Il22Ra1IEC mice from DSS colitis. Additionally, we observe a reduction in the expression of B3GALT5 and the Tn antigen, which indicates defective mucin O-glycan, in the colon tissue of patients with ulcerative colitis. Lastly, IL-22Ra1 signaling in MATH1+ progenitor cells promotes organoid regeneration after DSS injury. Our findings suggest that IL-22-dependent protective responses involve O-glycan modification, proliferation, and differentiation in MATH1+ progenitor cells.

9.
Int Immunopharmacol ; 134: 112219, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38733823

RESUMO

BACKGROUNDS & AIMS: Given its ability to inhibit HBV replication, Interferon alpha (IFN-α) treatment has been confirmed to be effective in managing Chronic Hepatitis B (CHB). However, its underlying mechanisms are incompletely understood. METHODS: Herein, we investigated the antiviral properties of IFN-α by introducing IFN-α expression plasmids into a well-established HBV Hydrodynamic Injection (HDI) mouse model and examined the impact of IFN-α or hepcidin treatment on macrophages derived from THP-1 cells. The cytokine profiles were analyzed using the cytometry microsphere microarray technology, and flow cytometry was used to analyze the polarization of macrophages. Additionally, the IL-6/JAK2/STAT3 signaling pathway and the hepcidin-ferroportin axis were analyzed to better understand the macrophage polarization mechanism. RESULTS: As evidenced by the suppression of HBV replication, injection of an IFN-α expression plasmid and supernatants of IFN-α-treated macrophages exerted anti-HBV effects. The IFN-α treatment up-regulated IL-6 in mice with HBV replication, as well as in IFN-α-treated HepG2 cells and macrophages. Furthermore, JAK2/STAT3 signaling and hepcidin expression was promoted, inducing iron accumulation via the hepcidin-ferroportin axis, which caused the polarization of M1 macrophages. Furthermore, under the effect of IFN-α, IL-6 silencing or blockade downregulated the JAK2/STAT3 signaling pathway and hepcidin, implying that increased hepcidin expression under IFN-α treatment was dependent on the IL-6/JAK2/STAT3 pathway. CONCLUSION: The IL-6/JAK2/STAT3 signaling pathway is activated by IFN-α which induces hepcidin expression. The resulting iron accumulation then induces the polarization of M1 macrophages via the hepcidin-ferroportin axis, yielding an immune response which exerts antiviral effects against HBV replication.

10.
Phytomedicine ; 129: 155698, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38728919

RESUMO

BACKGROUND: Gestational diabetes could elevate the risk of congenital heart defects (CHD) in infants, and effective preventive and therapeutic medications are currently lacking. Atractylenolide-I (AT-I) is the active ingredient of Atractylodes Macrocephala Koidz (known as Baizhu in China), which is a traditional pregnancy-supporting Chinese herb. PURPOSE: In this study, we investigated the protective effect of AT-I on the development of CHD in embryos exposed to high glucose (HG). STUDY DESIGN AND METHODS: First, systematic review search results revealed associations between gestational diabetes mellitus (GDM) and cardiovascular malformations. Subsequently, a second systematic review indicated that heart malformations were consistently associated with oxidative stress and cell apoptosis. We assessed the cytotoxic impacts of Atractylenolide compounds (AT-I, AT-II, and AT-III) on H9c2 cells and chick embryos, determining an optimal concentration of AT-I for further investigation. Second, immunofluorescence, western blot, Polymerase Chain Reaction (PCR), and flow cytometry were utilized to delve into the mechanisms through which AT-I mitigates oxidative stress and apoptosis in cardiac cells. Molecular docking was employed to investigate whether AT-I exerts cardioprotective effects via the STAT3 pathway. Then, we developed a streptozotocin-induced diabetes mellitus (PGDM) mouse model to evaluate AT-I's protective efficacy in mammals. Finally, we explored how AT-I protects hyperglycemia-induced abnormal fetal heart development through microbiota analysis and untargeted metabolomics analysis. RESULTS: The study showed the protective effect of AT-I on embryonic development using a chick embryo model which rescued the increase in the reactive oxygen species (ROS) and decrease in cell survival induced by HG. We also provided evidence suggesting that AT-I might directly interact with STAT3, inhibiting its phosphorylation. Further, in the PGDM mouse model, we observed that AT-I not only partially alleviated PGDM-related blood glucose issues and complications but also mitigated hyperglycemia-induced abnormal fetal heart development in pregnant mice. This effect is hypothesized to be mediated through alterations in gut microbiota composition. We proposed that dysregulation in microbiota metabolism could influence the downstream STAT3 signaling pathway via EGFR, consequently impacting cardiac development and formation. CONCLUSIONS: This study marks the first documented instance of AT-I's effectiveness in reducing the risk of early cardiac developmental anomalies in fetuses affected by gestational diabetes. AT-I achieves this by inhibiting the STAT3 pathway activated by ROS during gestational diabetes, significantly reducing the risk of fetal cardiac abnormalities. Notably, AT-I also indirectly safeguards normal fetal cardiac development by influencing the maternal gut microbiota and suppressing the EGFR/STAT3 pathway.

11.
Microbes Infect ; : 105352, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38729294

RESUMO

The blockade of programmed death-ligand 1 (PD-L1) pathway has been clinically used in cancer immunotherapy, while its effects on infectious diseases remain elusive. Roles of PD-L1 signaling in the macrophage-mediated innate immune defense against M.tb is unclear. In this study, the outcomes of tuberculosis (TB) in wild-type (WT) mice treated with anti-PD-1/PD-L1 therapy and macrophage-specific Pdl1-knockout (Pdl1ΔΜΦ) mice were compared. Treatment with anti-PD-L1 or anti-PD-1 benefited protection against M.tb infection in WT mice, while Pdl1ΔΜΦ mice exhibited the increased susceptibility to M.tb infection. Mechanistically, the absence of PD-L1 signaling impaired M.tb killing by macrophages. Furthermore, elevated STAT3 activation was found in PD-L1-deficient macrophages, leading to increased interleukin (IL)-6 production and reduced inducible nitric oxide synthase (iNOS) expression. Inhibiting STAT3 phosphorylation partially impeded the increase in IL-6 production and restored iNOS expression in these PD-L1-deficient cells. These findings provide valuable insights into the complexity and mechanisms underlying anti-PD-L1 therapy in the context of tuberculosis.

12.
Eur J Med Chem ; 272: 116448, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38704936

RESUMO

Colorectal cancer (CRC) is trending to be a major health problem throughout the world. Therapeutics with dual modes of action have shown latent capacity to create ideal anti-tumor activity. Signal transducer and activator of transcription 3 (STAT3) has been proved to be a potential target for the development of anti-colon cancer drug. In addition, modulation of tumor redox homeostasis through deploying exogenous reactive oxygen species (ROS)-enhancing agents has been widely applied as anti-tumor strategy. Thus, simultaneously targeting STAT3 and modulation ROS balance would offer a fresh avenue to combat CRC. In this work, we designed and synthesized a novel series of isoxazole-fused quinones, which were evaluated for their preliminary anti-proliferative activity against HCT116 cells. Among these quinones, compound 41 exerted excellent in vitro anti-tumor effect against HCT116 cell line with an IC50 value of 10.18 ± 0.4 nM. Compound 41 was proved to bind to STAT3 by using Bio-Layer Interferometry (BLI) assay, and can significantly inhibit phosphorylation of STAT3. It also elevated ROS of HCT116 cells by acting as a substrate of NQO1. Mitochondrial dysfunction, apoptosis, and cell cycle arrest, which was caused by compound 41, might be partially due to the inhibition of STAT3 phosphorylation and ROS production induced by 41. Moreover, it exhibited ideal anti-tumor activity in human colorectal cancer xenograft model and good safety profiles in vivo. Overall, this study provided a novel quinone derivative 41 with excellent anti-tumor activity by inhibiting STAT3 and elevating ROS level, and gave insights into designing novel anti-tumor therapeutics by simultaneously modulation of STAT3 and ROS.

13.
J Mammary Gland Biol Neoplasia ; 29(1): 10, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722417

RESUMO

Signal transducers and activators of transcription (STAT) proteins regulate mammary development. Here we investigate the expression of phosphorylated STAT3 (pSTAT3) in the mouse and cow around the day of birth. We present localised colocation analysis, applicable to other mammary studies requiring identification of spatially congregated events. We demonstrate that pSTAT3-positive events are multifocally clustered in a non-random and statistically significant fashion. Arginase-1 expressing cells, consistent with macrophages, exhibit distinct clustering within the periparturient mammary gland. These findings represent a new facet of mammary STAT3 biology, and point to the presence of mammary sub-microenvironments.


Assuntos
Células Epiteliais , Glândulas Mamárias Animais , Fator de Transcrição STAT3 , Animais , Feminino , Bovinos , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/crescimento & desenvolvimento , Camundongos , Células Epiteliais/metabolismo , Fator de Transcrição STAT3/metabolismo , Fosforilação , Gravidez , Parto/fisiologia , Parto/metabolismo , Transdução de Sinais
14.
Aging (Albany NY) ; 162024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38747738

RESUMO

OBJECTIVE: This study examines SHP2's influence on the STAT3/STAT6 pathway in tumor-associated macrophages (TAMs) and its impact on lung adenocarcinoma proliferation and metastasis. METHODS: Lung cancer A549 and NCI-H1688 cell lines were subcutaneously injected into nude mice. Macrophages were isolated using flow cytometry and analyzed for CD163, CD206, and Arginase-1 levels via western blot. Similarly, the effect on THP1 cell-associated proteins was assessed. The impact on A549 and NCI-H1688 cell migration, invasion, and proliferation was evaluated through wound healing, Transwell assays, and CCK8. RESULTS: Compared to controls, the sh-RNA SHP2 group showed increased tumor volume and higher expression levels of CD163, CD206, Arginase-1, p-STAT3, p-STAT6, IL-4, IL-10, and various cathepsins in macrophages and THP1 cells. However, p-STAT1 and p-STAT5 levels remained unchanged. The sh-RNA SHP2 group also demonstrated enhanced migration, invasion, and proliferation in both cell lines. CONCLUSIONS: SHP2 negatively affects the STAT3/STAT6 pathway in TAMs, promoting M2 polarization and cathepsin secretion, which enhances lung adenocarcinoma cell proliferation and metastasis.

15.
FASEB J ; 38(10): e23667, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38742812

RESUMO

Immunity imbalance of T helper 17 (Th17)/regulatory T (Treg) cells is involved in the pathogenesis of Crohn's disease (CD). Complanatuside A (CA), a flavonol glycoside, exerts anti-inflammatory activities and our study aimed to identify its effect on TNBS-induced colitis and the possible mechanisms. We found that CA alleviated the symptoms of colitis in TNBS mice, as demonstrated by prevented weight loss and colon length shortening, as well as decreased disease activity index scores, inflammatory scores, and levels of proinflammatory factors. Flow cytometry analysis showed that CA markedly reduced the percentage of Th17 cells while increasing the percentage of Treg cells in TNBS mice. Under Th17 cell polarizing conditions, CA inhibited the differentiation of Th17 cells while the Treg cell differentiation was elevated under Treg cell polarizing conditions. Furthermore, it was observed that JAK2 interacted with CA through six hydrogen bonds via molecular docking. The phosphorylation of JAK2/STAT3 was reduced by CA, which might be correlated with the protective effect of CA on colitis. In conclusion, CA reduced the imbalance of Th17/Treg cells by inhibiting the JAK2/STAT3 signaling pathway in TNBS-induced colitis, which may provide novel strategies for CD treatment.


Assuntos
Colite , Janus Quinase 2 , Fator de Transcrição STAT3 , Transdução de Sinais , Linfócitos T Reguladores , Células Th17 , Ácido Trinitrobenzenossulfônico , Animais , Células Th17/efeitos dos fármacos , Células Th17/imunologia , Células Th17/metabolismo , Janus Quinase 2/metabolismo , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Fator de Transcrição STAT3/metabolismo , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Camundongos , Transdução de Sinais/efeitos dos fármacos , Ácido Trinitrobenzenossulfônico/toxicidade , Masculino , Camundongos Endogâmicos BALB C , Diferenciação Celular/efeitos dos fármacos
16.
Biomed Pharmacother ; 175: 116741, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38744218

RESUMO

Cadmium (Cd) is a widespread environmental toxicant that poses significant threat to public health. After intake, Cd is distributed throughout the body via blood and lymphatic circulation. However, the effect of Cd on lymphatic vessels has not been revealed. In this study, mice were exposed to 10 µM cadmium chloride through drinking water immediately after corneal alkali burn. In vivo analyses showed that Cd treatment enhances the alkali burn-induced corneal lymphangiogenesis, which is characterized by increased expression of lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1), prospero-related homeobox 1 (PROX-1) and vascular endothelial growth factor receptor 3 (VEGFR3). In vitro, the proliferation and migration of human dermal lymphatic endothelial cells (HDLECs) are increased by 1 µM Cd treatment, while inhibited by 10 µM Cd treatment. At a concentration of 1 µM, Cd specifically induces phosphorylation of signal transducer and activator of transcription 3 (STAT3), but has no effect on the MAPK, AKT, or NF-κB signaling pathway. In the presence of the STAT3 inhibitor STATTIC, Cd fails to induce HDLECs proliferation and migration. In addition, Cd upregulates VEGFR3 expression and its gene promoter activity in a STAT3-dependent manner. Our study suggests that low-dose Cd promotes lymphangiogenesis through activation of the STAT3 signaling pathway.

17.
Med Oncol ; 41(6): 155, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744773

RESUMO

Interleukin-6 (IL-6) and hypoxia-inducible factor-1α (HIF-1α) play important roles in epithelial-mesenchymal transformation (EMT) and tumor development. Previous studies have demonstrated that IL-6 promotes EMT, invasion, and metastasis in epithelial ovarian cancer (EOC) cells by activating the STAT3/HIF-1α pathway. MicroRNA (miRNA) is non-coding small RNAs that also play an important role in tumor development. Notably, Let-7 and miR-200 families are prominently altered in EOC. However, whether IL-6 regulates the expression of Let-7 and miR-200 families through the STAT3/HIF-1α signaling to induce EMT in EOC remains poorly understood. In this study, we conducted in vitro and in vivo investigations using two EOC cell lines, SKOV3, and OVCAR3 cells. Our findings demonstrate that IL-6 down-regulates the mRNA levels of Let-7c and miR-200c while up-regulating their target genes HMGA2 and ZEB1 through the STAT3/HIF-1α signaling in EOC cells and in vivo. Additionally, to explore the regulatory role of HIF-1α on miRNAs, both exogenous HIF blockers YC-1 and endogenous high expression or inhibition of HIF-1α can be utilized. Both approaches can confirm that the downstream molecule HIF-1α inhibits the expression and function of Let-7c and miR-200c. Further mechanistic research revealed that the overexpression of Let-7c or miR-200c can reverse the malignant evolution of EOC cells induced by IL-6, including EMT, invasion, and metastasis. Consequently, our results suggest that IL-6 regulates the expression of Let-7c and miR-200c through the STAT3/HIF-1α pathway, thereby promoting EMT, invasion, and metastasis in EOC cells.


Assuntos
Carcinoma Epitelial do Ovário , Transição Epitelial-Mesenquimal , Subunidade alfa do Fator 1 Induzível por Hipóxia , Interleucina-6 , MicroRNAs , Invasividade Neoplásica , Neoplasias Ovarianas , Fator de Transcrição STAT3 , Transdução de Sinais , MicroRNAs/genética , Humanos , Transição Epitelial-Mesenquimal/genética , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Feminino , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Interleucina-6/metabolismo , Interleucina-6/genética , Carcinoma Epitelial do Ovário/patologia , Carcinoma Epitelial do Ovário/genética , Carcinoma Epitelial do Ovário/metabolismo , Linhagem Celular Tumoral , Animais , Invasividade Neoplásica/genética , Neoplasias Epiteliais e Glandulares/patologia , Neoplasias Epiteliais e Glandulares/genética , Neoplasias Epiteliais e Glandulares/metabolismo , Regulação Neoplásica da Expressão Gênica , Camundongos Nus , Camundongos , Metástase Neoplásica , Camundongos Endogâmicos BALB C
18.
Biochim Biophys Acta Mol Basis Dis ; : 167216, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38718843

RESUMO

Studies have highlighted an upregulation of PD-1 expression in CD4+ T cells, which accelerates lung fibrosis by activating the IL-17/STAT3 pathway, leading to IL-17A and TGF-ß1 secretion. However, the relation with traumatic tracheal stenosis (TS) remains unexplored. Our analysis found significant increases in PD-1+CD4+ T cells, IL-17A, and TGF-ß1 in the TS patients (n = 10). The cellular model used CD4+ T cells co-cultured with bronchial fibroblasts while the animal model used a nylon brush to scrape the damaged tracheal mucosa. Interventions with PD-1 and STAT3 inhibitors both in vivo (n = 5) and in vitro (n = 6) showed decreased expression of TGF-ß1 and IL-17A in CD4+ T cells, decreased collagen I synthesis in vivo, and reduced tractal fibrosis in vitro. Furthermore, PD-1's modulation of the STAT3 was evident. This research unveils PD-1+CD4+ T cells' role in TS, thus suggesting a novel immunotherapeutic strategy to counteract tracheal fibrosis.

19.
J Biol Chem ; : 107351, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38718868

RESUMO

SCAP plays a central role in controlling lipid homeostasis by activating SREBP-1, a master transcription factor in controlling fatty acid (FA) synthesis. However, how SCAP expression is regulated in human cancer cells remains unknown. Here, we revealed that STAT3 binds to the promoter of SCAP to activate its expression across multiple cancer cell types. Moreover, we identified that STAT3 also concurrently interacts with the promoter of SREBF1 gene (encoding SREBP-1), amplifying its expression. This dual action by STAT3 collaboratively heightens FA synthesis. Pharmacological inhibition of STAT3 significantly reduces the levels of unsaturated FAs and phospholipids bearing unsaturated FA chains by reducing the SCAP-SREBP-1 signaling axis and its downstream effector SCD1. Examination of clinical samples from patients with glioblastoma, the most lethal brain tumor, demonstrates a substantial co-expression of STAT3, SCAP, SREBP-1, and SCD1. These findings unveil STAT3 directly regulates the expression of SCAP and SREBP-1 to promote FA synthesis, ultimately fueling tumor progression.

20.
J Steroid Biochem Mol Biol ; : 106540, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38719162

RESUMO

Inflammatory bowel disease (IBD) describes a group of clinically common autoimmune diseases characterized by chronic intestinal inflammation, with gender differences in prevalence. Estrogen has been previously shown to exert anti-inflammatory action in IBD development, however, the mechanisms remain obscure. Recent research has revealed that myeloid-derived suppressor cells (MDSCs) play a protective role in IBD pathogenesis. To investigate the molecular mechanisms of estrogen steroid 17ß-estradiol (E2) in IBD progression, we established IBD mouse models (DNB-induced) with or without prior ovariectomy (OVX) and E2 implantation. We found that OVX led to worse IBD symptoms and reduced MDSCs frequency, whereas E2 significantly alleviated these effects in vivo. Moreover, in vitro experiments showed that E2 promoted the proliferation and immunosuppressive function of MDSCs through phosphorylation of Stat3 and p65. Mechanistically, E2-mediated Stat3/p65 phosphorylation depends on the interaction between HOTAIR, a long non-coding RNA that are well-known in MDSCs proliferation, and Stat3/p65 respectively. In conclusion, our study revealed that E2 promotes the expansion and immunosuppressive function of MDSCs, and thus diminished the occurrence and development of IBD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...