Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant Cell Environ ; 46(11): 3501-3517, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37427826

RESUMO

Plants deposit lignin in the secondary cell wall as a common response to drought and pathogen attacks. Cell wall localised multicopper oxidase family enzymes LACCASES (LACs) catalyse the formation of monolignol radicals and facilitate lignin formation. We show an upregulation of the expression of several LAC genes and a downregulation of microRNA397 (CamiR397) in response to natural drought in chickpea roots. CamiR397 was found to target LAC4 and LAC17L out of twenty annotated LACs in chickpea. CamiR397 and its target genes are expressed in the root. Overexpression of CamiR397 reduced expression of LAC4 and LAC17L and lignin deposition in chickpea root xylem causing reduction in xylem wall thickness. Downregulation of CamiR397 activity by expressing a short tandem target mimic (STTM397) construct increased root lignin deposition in chickpea. CamiR397-overexpressing and STTM397 chickpea lines showed sensitivity and tolerance, respectively, towards natural drought. Infection with a fungal pathogen Macrophomina phaseolina, responsible for dry root rot (DRR) disease in chickpea, induced local lignin deposition and LAC gene expression. CamiR397-overexpressing and STTM397 chickpea lines showed more sensitivity and tolerance, respectively, to DRR. Our results demonstrated the regulatory role of CamiR397 in root lignification during drought and DRR in an agriculturally important crop chickpea.

2.
BMC Plant Biol ; 22(1): 563, 2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36460977

RESUMO

BACKGROUND: Rice is a salt-sensitive crop. Complex gene regulatory cascades are likely involved in salinity stress in rice roots. microRNA168 (miR168) is a conserved miRNA among different plant species. It in-directly regulates the expression of all miRNAs by targeting gene ARGONAUTE1(AGO1). Short Tandem Target Mimic (STTM) technology is an ideal approach to study miRNA functions by in-activating mature miRNA in plants. RESULTS: In this study, rice miR168 was inactivated by STTM. The T3 generation seedlings of STTM168 exhibited significantly enhanced salt resistance. Direct target genes of rice miR168 were obtained by in silico prediction and further confirmed by degradome-sequencing. PINHEAD (OsAGO1), which was previously suggested to be a plant abiotic stress response regulator. RNA-Seq was performed in root samples of 150mM salt-treated STTM168 and control seedlings. Among these screened 481 differentially expressed genes within STTM168 and the control, 44 abiotic stress response related genes showed significant difference, including four known salt-responsive genes. CONCLUSION: Based on sequencing and qRT-PCR, a "miR168-AGO1-downstream" gene regulation model was proposed to be responsible for rice salt stress response. The present study proved miR168-AGO1 cascade to play important role in rice salinity stress responding, as well as to be applied in agronomic improvement in further.


Assuntos
MicroRNAs , Oryza , Tolerância ao Sal/genética , Oryza/genética , Estresse Salino/genética , Plântula/genética , MicroRNAs/genética
3.
Front Plant Sci ; 13: 1037604, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36420017

RESUMO

Rice miR398 targets two stress-tolerant genes, CSD1-2 (Cu/Zn Superoxide Dismutases1-2) and CCS (copper chaperone of CSD), which usually boost plants' tolerance by inhibiting growth. So, how to accurately regulate the activities of miR398 targets and thus make rice better able to adapt to different conditions has great significances in producing rice yields under the current circumstances of shrinking arable lands resulting from global urbanization and increasing salty soil caused by irrigation. Through controlling the expressions of miR398 in different levels, we found down-regulated expression of miR398 targets can promote growth under good growth conditions while up-regulated expressions of the targets can help rice tolerate salt. In this study, we over-expressed miR398 highly, moderately, and lowly, then three concomitantly inverse levels of its targets' expression were obtained. Under normal growth conditions, the transgenic lines with low and moderate levels of over-expressions of miR398 could increase grain yields 14.5% and 7.3%, respectively, although no transgenic lines could survive well under salty conditions simulating real saline-alkali soil. Using short tandem target mimic (STTM) technology to silence miR398 highly, moderately, and lowly respectively, also three inverse levels of its targets' expression were obtained. All three transgenic lines exhibited good agronomic performances under salt stress in inverse to their degrees of STTM, but their growth was inhibited differently under normal conditions. Altogether, we suggest that flexibly manipulating the expression of miR398 is an ideal strategy to help rice survive better and achieve optimized yields under specific conditions.

4.
Front Plant Sci ; 12: 714907, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335671

RESUMO

Short tandem target mimic (STTM), which is composed of two short sequences mimicking small RNA target sites, separated by a linker of optimal size, can block the functions of all members in a miRNA family. microRNA393 (miR393), which is one of the conserved miRNA families in plants, can regulate plant root growth, leaf development, plant architecture, and stress resistance. In order to verify the role of miR393 in the secondary growth of trees, we created its STTM transgenic poplar lines (STTM393). The expression of miR393 in STTM393 lines was reduced by over 10 times compared with the control plants. STTM393 lines showed promoted growth with about 20% higher, 15% thicker, and 2-4 more internodes than the control plants after 3 months of growth. The cross-section of the stems showed that STTM393 lines had wider phloem, xylem, and more cambium cell layers than control plants, and the lignin content in STTM393 lines was also higher as revealed by staining and chemical determination. Based on the transcriptome analysis, the genes related to the auxin signaling pathway, cell cyclin, cell expansion, and lignin synthesis had higher expression in STTM393 lines than that in control plants. The higher expression levels of FBL family members suggested that the auxin signaling pathway was strengthened in STTM393 lines to promote plant growth. Therefore, the knockdown of miR393 using the STTM approach provides a way to improve poplar growth and biomass production.

5.
Plant Physiol Biochem ; 166: 939-949, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34247108

RESUMO

The root phenotype is an important aspect of plant architecture and plays a critical role in plant facilitation of the extraction of water and nutrition from the soil. MicroRNAs (miRNAs) are classes of small RNAs with important roles in regulating endogenous gene expression at the post-transcriptional level that function in a range of plant development processes and in the response to abiotic stresses. However, little is known concerning the molecular mechanism of miRNAs in regulating the generation and development of plant root architecture. Herein, we demonstrated that potato miR160a/b acted as a critical regulator and affected plant root architecture by targeting the mRNA of StARF10 and StARF16 for cleavage. The miR160a/b precursor was cloned from potato. Quantitative PCR assays showed that the expression levels of miR160 and its targets were down- or up-regulated with the development of potato roots, respectively. Moreover, transgenic lines with suppressed stu-miR160 expression were established with the short tandem targets mimic (STTM), and the results showed that the ectopic expression of miR160a/b altered the levels of auxin and the expression of auxin signaling-related genes and caused drastic change in root architecture compared with that in control plants. Suppressing the expression of miR160 led to a severe reduction in root length, an increase in the number of lateral roots, and a decrease in fresh root weight in potato. Collectively, our data established a key role of miR160 in modulating plant root architecture in potato.


Assuntos
MicroRNAs , Solanum tuberosum , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos , MicroRNAs/genética , Raízes de Plantas/genética , Transdução de Sinais , Solanum tuberosum/genética
6.
Int J Mol Sci ; 21(24)2020 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-33327508

RESUMO

MicroRNAs are important regulators in plant developmental processes and stress responses. In this study, we generated a series of maize STTM166 transgenic plants. Knock-down of miR166 resulted in various morphological changes, including rolled leaves, enhanced abiotic stress resistance, inferior yield-related traits, vascular pattern and epidermis structures, tassel architecture, as well as abscisic acid (ABA) level elevation and indole acetic acid (IAA) level reduction in maize. To profile miR166 regulated genes, we performed RNA-seq and qRT-PCR analysis. A total of 178 differentially expressed genes (DEGs) were identified, including 118 up-regulated and 60 down-regulated genes. These DEGs were strongly enriched in cell and intercellular components, cell membrane system components, oxidoreductase activity, single organism metabolic process, carbohydrate metabolic process, and oxidation reduction process. These results indicated that miR166 plays important roles in auxin and ABA interaction in monocots, yet the specific mechanism may differ from dicots. The enhanced abiotic stress resistance is partly caused via rolling leaves, high ABA content, modulated vascular structure, and the potential changes of cell membrane structure. The inferior yield-related traits and late flowering are partly controlled by the decreased IAA content, the interplay of miR166 with other miRNAs and AGOs. Taken together, the present study uncovered novel functions of miR166 in maize, and provide insights on applying short tandem target mimics (STTM) technology in plant breeding.


Assuntos
MicroRNAs/fisiologia , Zea mays/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , MicroRNAs/genética , Folhas de Planta/genética , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Estresse Fisiológico/fisiologia , Zea mays/fisiologia
7.
Int J Mol Sci ; 21(14)2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32674459

RESUMO

During early plant embryogenesis, some of the most fundamental decisions on fate and identity are taken making it a fascinating process to study. It is no surprise that higher plant embryogenesis was intensively analysed during the last century, while somatic embryogenesis is probably the most studied regeneration model. Encoded by the MIRNA, short, single-stranded, non-coding miRNAs, are commonly present in all Eukaryotic genomes and are involved in the regulation of the gene expression during the essential developmental processes such as plant morphogenesis, hormone signaling, and developmental phase transition. During the last few years dedicated to miRNAs, analytical methods and tools have been developed, which have afforded new opportunities in functional analyses of plant miRNAs, including (i) databases for in silico analysis; (ii) miRNAs detection and expression approaches; (iii) reporter and sensor lines for a spatio-temporal analysis of the miRNA-target interactions; (iv) in situ hybridisation protocols; (v) artificial miRNAs; (vi) MIM and STTM lines to inhibit miRNA activity, and (vii) the target genes resistant to miRNA. Here, we attempted to summarise the toolbox for functional analysis of miRNAs during plant embryogenesis. In addition to characterising the described tools/methods, examples of the applications have been presented.


Assuntos
Desenvolvimento Embrionário/genética , MicroRNAs/genética , Técnicas de Embriogênese Somática de Plantas/métodos , RNA de Plantas/genética , Sementes/genética , Zigoto/fisiologia , Desenvolvimento Embrionário/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Genômica/métodos , Sementes/embriologia
8.
Plant Sci ; 291: 110334, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31928661

RESUMO

MicroRNA1917 (miR1917) is a newly identified miRNAs that regulate ethylene responses in tomato. However, evidence is still limited about its functions in fruit development and ripening. Here, we investigated the possible roles of miR1917-SlCTR4 module in tomato fruit development. We generated miR1917 knock-down mutants by expressing Short Tandem Target Mimic (STTM1917). qRT-PCR and northern-blot analyses suggested that the expression of miR1917 are down-regulated in STTM1917. Concomitantly, miR1917-targeted SlCTR4 gene was up-regulated. STTM1917 plants showed a series of developmental phenotypes, including larger biomass, longer terminal leaflet, bigger floral organ and enhanced fruit and seed size. RNA-seq and qRT-PCR analyses suggested that the expression levels of numerous miRNAs and genes in the transgenic line were significantly altered compared to the wild type. These miRNAs and genes include fruit development-related miRNAs, fruit ripening-related transcription factors and ethylene metabolism genes. Altogether, our results demonstrated that working in concert with ripening regulators, miR1917 might regulate multiple genes in ethylene pathway, thereby modulating fruit development. Our results further indicated that fine-tuning miRNAs expression via STTM can be deployed for agronomic improvement of tomato.


Assuntos
Frutas/crescimento & desenvolvimento , MicroRNAs/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , RNA de Plantas/genética , Solanum lycopersicum/genética , Etilenos/biossíntese , Frutas/genética , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/crescimento & desenvolvimento , MicroRNAs/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , RNA de Plantas/metabolismo
9.
Plants (Basel) ; 8(1)2019 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-30621201

RESUMO

Deeply conserved plant microRNAs (miRNAs) function as pivotal regulators of development. Nevertheless, in the model crop Solanum lycopersicum (tomato) several conserved miRNAs are still poorly annotated and knowledge about their functions is lacking. Here, the tomato miR171 family was functionally analyzed. We found that the tomato genome contains at least 11 SlMIR171 genes that are differentially expressed along tomato development. Downregulation of sly-miR171 in tomato was successfully achieved by transgenic expression of a short tandem target mimic construct (STTM171). Consequently, sly-miR171-targeted mRNAs were upregulated in the silenced plants. Target upregulation was associated with irregular compound leaf development and an increase in the number of axillary branches. A prominent phenotype of STTM171 expressing plants was their male sterility due to a production of a low number of malformed and nonviable pollen. We showed that sly-miR171 was expressed in anthers along microsporogenesis and significantly silenced upon STTM171 expression. Sly-miR171-silenced anthers showed delayed tapetum ontogenesis and reduced callose deposition around the tetrads, both of which together or separately can impair pollen development. Collectively, our results show that sly-miR171 is involved in the regulation of anther development as well as shoot branching and compound leaf morphogenesis.

10.
Mol Plant ; 11(11): 1400-1417, 2018 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-30243763

RESUMO

microRNAs (miRNAs) are endogenous small non-coding RNAs that bind to mRNAs and target them for cleavage and/or translational repression, leading to gene silencing. We previously developed short tandem target mimic (STTM) technology to deactivate endogenous miRNAs in Arabidopsis. Here, we created hundreds of STTMs that target both conserved and species-specific miRNAs in Arabidopsis, tomato, rice, and maize, providing a resource for the functional interrogation of miRNAs. We not only revealed the functions of several miRNAs in plant development, but also demonstrated that tissue-specific inactivation of a few miRNAs in rice leads to an increase in grain size without adversely affecting overall plant growth and development. RNA-seq and small RNA-seq analyses of STTM156/157 and STTM165/166 transgenic plants revealed the roles of these miRNAs in plant hormone biosynthesis and activation, secondary metabolism, and ion-channel activity-associated electrophysiology, demonstrating that STTM technology is an effective approach for studying miRNA functions. To facilitate the study and application of STTM transgenic plants and to provide a useful platform for storing and sharing of information about miRNA-regulated gene networks, we have established an online Genome Browser (https://blossom.ffr.mtu.edu/designindex2.php) to display the transcriptomic and miRNAomic changes in STTM-induced miRNA knockdown plants.


Assuntos
Arabidopsis/genética , MicroRNAs/genética , Regulação da Expressão Gênica de Plantas/genética , Inativação Gênica/fisiologia , Solanum lycopersicum/genética , Oryza/genética , Plantas Geneticamente Modificadas/genética , RNA de Plantas/genética , Zea mays/genética
11.
Gene ; 678: 343-348, 2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30098430

RESUMO

It has been demonstrated that microRNAs (miRNAs) play important roles in the regulation of melanogenesis and hair color in mammals. Short tandem target mimic (STTM) has been used to effectively block small RNA functions in plants and animals. We previously showed that miR508-3p plays a functional role in regulating melanogenesis in alpaca melanocytes by directly targeting microphthalmia (MITF). To verify the effect of miR-508-3p function on melanogenesis in alpaca melanocytes, miR-508-3p was blocked using STTM technology in the present research. miR508-3p was predicted to target the gene encoding SRY-box6 (SOX6) by bioinformatics. The luciferase reporter assay indicated that miR508-3p regulates SRY-box6 (SOX6) expression by targeting its 3'UTR. Here, STTM-miR508-3p overexpression in alpaca melanocytes blocked the expression of miR-508-3p and up-regulated SOX6 expression at both the mRNA and protein levels, resulting in increasing the expression of key melanogenic genes, including cAMP responsive element (CRE) binding protein (CREB), MITF, tyrosinase (TYR) and tyrosinase-related protein 1 and 2 (TYRP1 and TYRP2). STTM-miR508-3p overexpression in melanocytes also resulted in increased melanin production, including total alkali soluble melanogenesis (ASM), eumelanogenesis (EM) and pheomelanogenesis (PM). Additionally, we identified melanin granules in alpaca melanocytes transfected with STTM-miR508-3p under Fontana-Masson staining. These results suggest that STTM-miR508-3p could up-regulate melanogenesis by effectively blocking miR508-3p.


Assuntos
Camelídeos Americanos/genética , Inativação Gênica , Melaninas/biossíntese , MicroRNAs/genética , Regiões 3' não Traduzidas , Animais , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Melanócitos/metabolismo , Fatores de Transcrição SOXD/genética
12.
Methods Mol Biol ; 1822: 123-132, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30043301

RESUMO

MicroRNAs are key regulators in the development processes or stress responses in plants. In the last decade, several conserved or non-conserved microRNAs have been identified in Medicago truncatula. Different strategies leading to the inactivation of microRNAs in plants have been described. Here, we propose a protocol for an effective inactivation of microRNAs using a STTM strategy in M. truncatula transgenic roots.


Assuntos
Regulação da Expressão Gênica de Plantas , Inativação Gênica , Medicago truncatula/genética , MicroRNAs/genética , Raízes de Plantas/genética , Agrobacterium , Perfilação da Expressão Gênica , Medicago truncatula/microbiologia , Interferência de RNA , Transformação Genética
13.
Mol Plant Pathol ; 19(4): 948-960, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28695996

RESUMO

Plants protect themselves from virus infections by several different defence mechanisms. RNA interference (RNAi) is one prominent antiviral mechanism, which requires the participation of AGO (Argonaute) and Dicer/DCL (Dicer-like) proteins. Effector-triggered immunity (ETI) is an antiviral mechanism mediated by resistance (R) genes, most of which encode nucleotide-binding site-leucine-rich repeat (NBS-LRR) family proteins. MicroRNAs (miRNAs) play important regulatory roles in plants, including the regulation of host defences. Soybean mosaic virus (SMV) is the most common virus in soybean and, in this work, we identified dozens of SMV-responsive miRNAs by microarray analysis in an SMV-susceptible soybean line. Amongst the up-regulated miRNAs, miR168a, miR403a, miR162b and miR1515a predictively regulate the expression of AGO1, AGO2, DCL1 and DCL2, respectively, and miR1507a, miR1507c and miR482a putatively regulate the expression of several NBS-LRR family disease resistance genes. The regulation of target gene expression by these seven miRNAs was validated by both transient expression assays and RNA ligase-mediated rapid amplification of cDNA ends (RLM-RACE) experiments. Transcript levels for AGO1, DCL1, DCL2 and five NBS-LRR family genes were repressed at different time points after SMV infection, whereas the corresponding miRNA levels were up-regulated at these same time points. Furthermore, inhibition of miR1507a, miR1507c, miR482a, miR168a and miR1515a by short tandem target mimic (STTM) technology compromised SMV infection efficiency in soybean. Our results imply that SMV can counteract soybean defence responses by the down-regulation of several RNAi pathway genes and NBS-LRR family resistance genes via the induction of the accumulation of their corresponding miRNA levels.


Assuntos
Resistência à Doença/genética , Glycine max/virologia , MicroRNAs/genética , Potyvirus/genética , Potyvirus/patogenicidade , Resistência à Doença/fisiologia , Doenças das Plantas/virologia , Interferência de RNA/fisiologia
14.
Methods Mol Biol ; 1654: 337-349, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28986803

RESUMO

Small RNAs, including microRNAs (miRNAs), are abundant in plants and play key roles in controlling plant development and physiology. miRNAs regulate the expression of the target genes involved in key plant processes. Due to functional redundancy among miRNA family members in plants, an ideal approach to silence the expression of all members simultaneously, for their functional characterization, is desirable. Target mimic (TM) was the first approach to achieve this goal. Short tandem target mimic (STTM) is a potent approach complementing TM for silencing miRNAs in plants. STTMs have been successfully used in dicots to block miRNA functions. Here, we describe in detail the protocol for designing STTM construct to block miRNA functions in rice. Such approach can be applied to silence miRNAs in other monocots as well.


Assuntos
MicroRNAs/genética , Oryza/genética , RNA de Plantas/genética , Regulação da Expressão Gênica de Plantas/genética , Repetições de Microssatélites/genética
15.
Methods Mol Biol ; 1631: 337-348, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28735409

RESUMO

In plants, microRNAs (miRNAs) regulate more than hundred target genes comprising largely transcription factors that control growth and development as well as stress responses. However, the exact functions of miRNA families could not be deciphered because each miRNA family has multiple loci in the genome, thus are functionally redundant. Therefore, an ideal approach to study the function of a miRNA family is to silence the expression of all members simultaneously, which is a daunting task. However, this can be partly overcome by Target Mimic (TM) approach that can knockdown an entire miRNA family. STTM is a modification of TM approach and complements it. STTMs have been successfully used in monocots and dicots to block miRNA functions. miR159 has been shown to be differentially regulated by various abiotic stresses including ABA in various plant species. Here, we describe in detail the protocol for designing STTM construct to block miR159 functions in Arabidopsis, with the potential to apply this technique on a number of other stress-regulated miRNAs in plants.


Assuntos
Técnicas de Silenciamento de Genes/métodos , Inativação Gênica , MicroRNAs/genética , RNA de Plantas/genética , Estresse Fisiológico/genética , MicroRNAs/biossíntese , RNA de Plantas/biossíntese
16.
Trends Biotechnol ; 34(2): 106-123, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26774589

RESUMO

Genome sequencing has not only extended our understanding of the blueprints of many plant species but has also revealed the secrets of coding and non-coding genes. We present here a brief introduction to and personal account of key RNA-based technologies, as well as their development and applications for functional genomics of plant coding and non-coding genes, with a focus on short tandem target mimics (STTMs), artificial microRNAs (amiRNAs), and CRISPR/Cas9. In addition, their use in multiplex technologies for the functional dissection of gene networks is discussed.


Assuntos
Genes de Plantas , Genômica/métodos , Fenômenos Fisiológicos Vegetais , Plantas/genética , RNA de Plantas/genética , Redes Reguladoras de Genes , Inativação Gênica , Marcação de Genes
17.
Plant Sci ; 233: 11-21, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25711809

RESUMO

MicroRNA 165 and 166 (miR165/166) is composed of nine members and targets five members (PHB, PHV, REV, ATHB8 and ATHB15) of the HD-ZIP III transcription factor family. Mutants generated by traditional methods could hardly reveal the overall functions of miR165/166 in plant development. In this study, the expressions of all miR165/166 members were simultaneously blocked by over-expressing STTM165/166-31 in Arabidopsis and tomato for functional dissection of miR165/166 family. Following a down-regulation of over 90% endogenous miR165/166, the target HD-ZIP III genes were correspondingly up-regulated in the STTM transgenic Arabidopsis and tomato plants. Notably, the STTM165/166-31 over-expressed Arabidopsis and tomato displayed pleiotropic effects on development which were not frequently observed in previously identified genetic mutants of either individual miR165/166 gene or any of the five target genes. Furthermore, the transgenic Arabidopsis showed increased IAA content and decreased IAA sensitivity accompanied by enhanced expressions of genes responsible for auxin biosynthesis and signaling, suggesting possible roles of auxin in mediation of miR165/166-regulated processes. Importantly, the transgenic Arabidopsis exhibited the improved behavior under salt stress. Overall, such diverse variations in plant development and physiological process revealed by STTM165/166 demonstrate a key role of miR165/166-mediated network in regulating plant development and responses to abiotic stresses.


Assuntos
Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , Proteínas de Plantas/genética , RNA de Plantas/genética , Solanum lycopersicum/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , MicroRNAs/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , RNA de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA