Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Toxicon ; 234: 107280, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37673344

RESUMO

To corroborate the ontogenetic shift in the venom composition of the Mexican Black-tailed Rattlesnake (Crotalus molossus nigrescens) previously reported through the census approach, we evaluated the shift in the protein profile, lethality, and proteolytic and phospholipase activities of four venom samples obtained in 2015, 2018, 2019, and 2021 from one C. m. nigrescens individual (CMN06) collected in Durango, Mexico. We demonstrated that the venom of C. m. nigrescens changed from a myotoxin-rich venom to a phospholipase A2 and snake venom metalloproteinase-rich venom. Additionally, the proteolytic and phospholipase activities increased with age, but the lethality decreased approximately three times.

2.
Toxicon ; 197: 12-23, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33872676

RESUMO

Snakebite envenoming is a neglected tropical disease affecting millions of people every year, especially in vulnerable rural populations in the developing world. Viperid snakes cause envenomings characterized by a complex pathophysiology which includes local and systemic hemorrhage due to the action of snake venom metalloproteinases (SVMPs). The pathogenesis of SVMP-induced systemic hemorrhage has not been investigated in detail. This study explored the pulmonary hemorrhage induced in a murine model by a P-III SVMP from the venom of Crotalus simus. Histological analysis revealed extravasation in the lungs as early as 15 min after intravenous injection of the toxin, and hemorrhage increased at 360 min. Western blot analysis demonstrated the cleavage of basement membrane (BM) proteins in lung homogenates and in bronchoalveolar lavage fluid, implying an enzymatic disruption of this extracellular matrix structure at the capillary-alveolar barrier. Likewise, alveolar edema was observed, with an increment in protein concentration in the bronchoalveolar lavage fluid, and a neutrophil-rich inflammatory infiltrate was present in the parenchyma of the lungs as part of the inflammatory reaction. Pretreatment of mice with indomethacin, pentoxifylline and an anti-neutrophil antibody resulted in a significant decrease in pulmonary hemorrhage at 360 min. These findings suggest that this P-III SVMP induces acute lung injury through the direct action of this enzyme in the capillary-alveolar barrier integrity, as revealed by BM degradation, and as a consequence of the inflammatory reaction that develops in lung tissue. Our findings provide novel clues to understand the mechanism of action of hemorrhagic SVMPs in the lungs.


Assuntos
Venenos de Crotalídeos , Metaloproteases , Animais , Membrana Basal , Venenos de Crotalídeos/toxicidade , Hemorragia/induzido quimicamente , Inflamação , Metaloproteases/toxicidade , Camundongos , Venenos de Serpentes
3.
Toxins (Basel) ; 12(2)2020 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-32024243

RESUMO

Snake venom metalloproteinases (SVMPs) play an important role in local tissue damage of snakebite patients, mostly by hydrolysis of basement membrane (BM) components. We evaluated the proinflammatory activity of SVMPs Atroxlysin-Ia (ATXL) and Batroxrhagin (BATXH) from Bothrops atrox venom and their hydrolysis products of Matrigel. BALB/c mice were injected with SVMPs (2 µg), for assessment of paw edema and peritoneal leukocyte accumulation. Both SVMPs induced edema, representing an increase of ~70% of the paw size. Leukocyte infiltrates reached levels of 6 × 106 with ATXL and 5 × 106 with BATXH. TNF-α was identified in the supernatant of BATXH-or venom-stimulated MPAC cells. Incubation of Matrigel with the SVMPs generated fragments, including peptides from Laminin, identified by LC-MS/MS. The Matrigel hydrolysis peptides caused edema that increased 30% the paw size and promoted leukocyte accumulation (4-5 × 106) to the peritoneal cavity, significantly higher than Matrigel control peptides 1 and 4 h after injection. Our findings suggest that ATXL and BATXH are involved in the inflammatory reaction observed in B. atrox envenomings by direct action on inflammatory cells or by releasing proinflammatory peptides from BM proteins that may amplify the direct action of SVMPs through activation of endogenous signaling pathways.


Assuntos
Bothrops , Venenos de Crotalídeos/enzimologia , Metaloproteases/toxicidade , Animais , Membrana Basal , Citocinas/imunologia , Edema/imunologia , Hidrólise , Contagem de Leucócitos , Masculino , Camundongos Endogâmicos BALB C , Cavidade Peritoneal
4.
Toxicol Lett, v. 333, p. 211-221, out. 2020
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3147

RESUMO

Bothrops (lance-head pit vipers) venoms are rich in weaponised metalloprotease enzymes (SVMP). These toxic enzymes are structurally diverse and functionally versatile. Potent coagulotoxicity is particularly important for prey capture (via stroke-induction) and relevant to human clinical cases (due to consumption of clotting factors including the critical depletion of fibrinogen). In this study, three distinct isoforms of P-III class SVMPs (IC, IIB and IIC), isolated from Bothrops neuwiedi venom, were evaluated for their differential capacities to affect hemostasis of prey and human plasma. Furthermore, we tested the relative antivenom neutralisation of effects upon human plasma. The toxic enzymes displayed differential procoagulant potency between plasma types, and clinically relevant antivenom efficacy variations were observed. Of particular importance was the confirmation the antivenom performed better against prothrombin activating toxins than Factor X activating toxins, which is likely due to the greater prevalence of the former in the immunising venoms used for antivenom production. This is clinically relevant as the enzymes displayed differential potency in this regard, with one (IC) in particular being extremely potent in activating Factor X and thus was correspondingly poorly neutralised. This study broadens the current understanding about the adaptive role of the SVMPs, as well as highlights how the functional diversity of SVMP isoforms can influence clinical outcomes.

5.
Toxins, v. 12, n. 2, p. 96, fev. 2020
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2930

RESUMO

Snake venom metalloproteinases (SVMPs) play an important role in local tissue damage of snakebite patients, mostly by hydrolysis of basement membrane (BM) components. We evaluated the proinflammatory activity of SVMPs Atroxlysin-Ia (ATXL) and Batroxrhagin (BATXH) from Bothrops atrox venom and their hydrolysis products of Matrigel. BALB/c mice were injected with SVMPs (2 µg), for assessment of paw edema and peritoneal leukocyte accumulation. Both SVMPs induced edema, representing an increase of ~70% of the paw size. Leukocyte infiltrates reached levels of 6 × 106 with ATXL and 5 × 106 with BATXH. TNF-a was identified in the supernatant of BATXH—or venom-stimulated MPAC cells. Incubation of Matrigel with the SVMPs generated fragments, including peptides from Laminin, identified by LC–MS/MS. The Matrigel hydrolysis peptides caused edema that increased 30% the paw size and promoted leukocyte accumulation (4–5 × 106) to the peritoneal cavity, significantly higher than Matrigel control peptides 1 and 4 h after injection. Our findings suggest that ATXL and BATXH are involved in the inflammatory reaction observed in B. atrox envenomings by direct action on inflammatory cells or by releasing proinflammatory peptides from BM proteins that may amplify the direct action of SVMPs through activation of endogenous signaling pathways

6.
Toxins (Basel) ; 10(1)2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29316683

RESUMO

Rattlesnake venoms may be classified according to the presence/absence and relative abundance of the neurotoxic phospholipases A 2 s (PLA 2 s), such as Mojave toxin, and snake venom metalloproteinases (SVMPs). In Mexico, studies to determine venom variation in Mojave Rattlesnakes (Crotalus scutulatus scutulatus) are limited and little is known about the biological and proteolytic activities in this species. Tissue (34) and venom (29) samples were obtained from C. s. scutulatus from different locations within their distribution in Mexico. Mojave toxin detection was carried out at the genomic (by PCR) and protein (by ELISA) levels for all tissue and venom samples. Biological activity was tested on representative venoms by measuring LD 50 and hemorrhagic activity. To determine the approximate amount of SVMPs, 15 venoms were separated by RP-HPLC and variation in protein profile and proteolytic activity was evaluated by SDS-PAGE (n = 28) and Hide Powder Azure proteolytic analysis (n = 27). Three types of venom were identified in Mexico which is comparable to the intraspecific venom diversity observed in the Sonoran Desert of Arizona, USA: Venom Type A (∼Type II), with Mojave toxin, highly toxic, lacking hemorrhagic activity, and with scarce proteolytic activity; Type B (∼Type I), without Mojave toxin, less toxic than Type A, highly hemorrhagic and proteolytic; and Type A + B, containing Mojave toxin, as toxic as venom Type A, variable in hemorrhagic activity and with intermediate proteolytic activity. We also detected a positive correlation between SVMP abundance and hemorrhagic and proteolytic activities. Although more sampling is necessary, our results suggest that venoms containing Mojave toxin and venom lacking this toxin are distributed in the northwest and southeast portions of the distribution in Mexico, respectively, while an intergradation in the middle of both zones is present.


Assuntos
Venenos de Crotalídeos , Animais , Venenos de Crotalídeos/análise , Venenos de Crotalídeos/genética , Venenos de Crotalídeos/toxicidade , Crotalus , Feminino , Hemorragia , Dose Letal Mediana , Masculino , Metaloproteases/análise , México , Camundongos Endogâmicos ICR , Proteólise , Proteínas de Répteis/análise
7.
Toxicon ; 132: 40-49, 2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28400263

RESUMO

The ability of two peptidomimetic hydroxamate metalloproteinase inhibitors, Batimastat and Marimastat, to abrogate toxic and proteinase activities of the venom of Echis ocellatus from Cameroon and Ghana was assessed. Since this venom largely relies for its toxicity on the action of zinc-dependent metalloproteinases (SVMPs), the hypothesis was raised that toxicity could be largely eliminated by using SVMP inhibitors. Both hydroxamate molecules inhibited local and pulmonary hemorrhagic, in vitro coagulant, defibrinogenating, and proteinase activities of the venoms in conditions in which venom and inhibitors were incubated prior to the test. In addition, the inhibitors prolonged the time of death of mice receiving 4 LD50s of venom by the intravenous route. Lower values of IC50 were observed for in vitro and local hemorrhagic activities than for systemic effects. When experiments were performed in conditions that simulated the actual circumstances of snakebite, i.e. by administering the inhibitor after envenoming, Batimastat completely abrogated local hemorrhage if injected immediately after venom. Moreover, it was also effective at inhibiting lethality and defibrinogenation when venom and inhibitor were injected by the intraperitoneal route. Results suggest that these, and possibly other, metalloproteinase inhibitors may become an effective adjunct therapy in envenomings by E. ocellatus when administered at the anatomic site of venom injection rapidly after the bite.


Assuntos
Ácidos Hidroxâmicos/farmacologia , Metaloproteases/antagonistas & inibidores , Peptidomiméticos/farmacologia , Fenilalanina/análogos & derivados , Tiofenos/farmacologia , Venenos de Víboras/antagonistas & inibidores , Viperidae , Animais , Camarões , Relação Dose-Resposta a Droga , Gana , Hemorragia/induzido quimicamente , Hemorragia/prevenção & controle , Pulmão/patologia , Camundongos , Fenilalanina/farmacologia , Mordeduras de Serpentes/fisiopatologia , Venenos de Víboras/toxicidade
8.
Toxins (Basel) ; 8(12)2016 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-27886127

RESUMO

Viperid snakebite envenomation is characterized by inflammatory events including increase in vascular permeability. A copious exudate is generated in tissue injected with venom, whose proteomics analysis has provided insights into the mechanisms of venom-induced tissue damage. Hereby it is reported that wound exudate itself has the ability to induce increase in vascular permeability in the skin of mice. Proteomics analysis of exudate revealed the presence of cytokines and chemokines, together with abundant damage associated molecular pattern molecules (DAMPs) resulting from both proteolysis of extracellular matrix and cellular lysis. Moreover, significant differences in the amounts of cytokines/chemokines and DAMPs were detected between exudates collected 1 h and 24 h after envenomation, thus highlighting a complex temporal dynamic in the composition of exudate. Pretreatment of mice with Eritoran, an antagonist of Toll-like receptor 4 (TLR4), significantly reduced the exudate-induced increase in vascular permeability, thus suggesting that DAMPs might be acting through this receptor. It is hypothesized that an "Envenomation-induced DAMPs cycle of tissue damage" may be operating in viperid snakebite envenomation through which venom-induced tissue damage generates a variety of DAMPs which may further expand tissue alterations.


Assuntos
Permeabilidade Capilar , Venenos de Crotalídeos/toxicidade , Exsudatos e Transudatos/metabolismo , Mordeduras de Serpentes/metabolismo , Alarminas/metabolismo , Animais , Bothrops , Citocinas/metabolismo , Camundongos , Proteômica , Receptor 4 Toll-Like/metabolismo
9.
J. Proteomics ; 74(4): 401-410, Dec 13, 2010.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP, SESSP-IBACERVO | ID: biblio-1063778

RESUMO

Both serine and metalloproteinases have been shown to play the role of toxins in the venoms of many snakes. Determination of the natural protein substrates of these toxins is an important feature in the toxinological characterization of these proteinases. Furthermore, characterization of their peptide bond specificity is of value for understanding active site preference of the proteinase associated with effective proteolysis as well as of use in the design of peptide substrates and inhibitor lead compounds. Typically the determination of peptide bond cleavage specificity of snake venom serine proteinases (SVSPs) and snake venom metalloproteinases (SVMPs) has been performed using limited sets of peptides or small oligopeptides as experimental substrates. Although this approach has yielded valuable data it is generally limited in scope due to the relatively small sets of substrates used to generate the consensus specificity sequences for these proteinases. In this study we use a large, plasma based, proteome-derived peptide library as substrates along with mass spectrometry to explore the peptide bond specificity of three PI SVMPs and one PIII SVMP to determine their individual peptide cleavage consensus sequences. All of the proteinases assayed displayed a clear preference for a leucine residue in the P1Œ site. Careful analysis of the specificity profiles of the SVMPs examined showed interesting differences in the preferences at the other P and PŒ sites suggesting functional differences between these proteinases.


Assuntos
Animais , Metaloproteases/análise , Metaloproteases/toxicidade , Venenos de Serpentes/análise , Venenos de Serpentes/intoxicação , Venenos de Serpentes/toxicidade , Biblioteca Genômica , Biblioteca de Peptídeos , Serina Proteases/análise , Serina Proteases/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA