Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ecol Appl ; 34(4): e2968, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38562000

RESUMO

Understanding how habitat attributes (e.g., patch area and sizes, connectivity) control recruitment and how this is modified by processes operating at larger spatial scales is fundamental to understanding population sustainability and developing successful long-term restoration strategies for marine foundation species-including for globally threatened reef-forming oysters. In two experiments, we assessed the recruitment and energy reserves of oyster recruits onto remnant reefs of the oyster Saccostrea glomerata in estuaries spanning 550 km of coastline in southeastern Australia. In the first experiment, we determined whether recruitment of oysters to settlement plates in three estuaries was correlated with reef attributes within patches (distances to patch edges and surface elevation), whole-patch attributes (shape and size of patches), and landscape attributes (connectivity). We also determined whether environmental factors (e.g., sedimentation and water temperature) explained the differences among recruitment plates. We also tested whether differences in energy reserves of recruits could explain the differences between two of the estuaries (one high- and one low-sedimentation estuary). In the second experiment, across six estuaries (three with nominally high and three with nominally low sedimentation rates), we tested the hypothesis that, at the estuary scale, recruitment and survival were negatively correlated to sedimentation. Overall, total oyster recruitment varied mostly at the scale of estuaries rather than with reef attributes and was negatively correlated with sedimentation. Percentage recruit survival was, however, similar among estuaries, although energy reserves and condition of recruits were lower at a high- compared to a low-sediment estuary. Within each estuary, total oyster recruitment increased with patch area and decreased with increasing tidal height. Our results showed that differences among estuaries have the largest influence on oyster recruitment and recruit health and this may be explained by environmental processes operating at the same scale. While survival was high across all estuaries, growth and reproduction of oysters on remnant reefs may be affected by sublethal effects on the health of recruits in high-sediment estuaries. Thus, restoration programs should consider lethal and sublethal effects of whole-estuary environmental processes when selecting sites and include environmental mitigation actions to maximize recruitment success.


Assuntos
Ostreidae , Animais , Ostreidae/fisiologia , Espécies em Perigo de Extinção , Estuários , Dinâmica Populacional , Austrália
2.
Mar Pollut Bull ; 184: 114140, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36152497

RESUMO

Oysters and clams are abundant and popularly consumed seafood in Viet Nam. These bivalves were proved to be suitable bioindicators to assess the heavy metal accumulation in the aquatic environment. The study is to investigate heavy metals such as As, Cd, Hg and Pb in the cultured oysters Saccostrea glomerata and clams Meretrix lyrata collected in VanDon - Quang Ninh, and CatBa - Hai Phong. The results showed that the metal heavy concentrations in the oysters Saccostrea glomerata and clams Meretrix lyrata presented in the order of As > Cd > Pb > Hg. The most polluted concentration with As among four heavy metals studied in six sampling sites was 2.81 ± 1.07 and 1.6 ± 0.62 mg/kg wet weight for clams and oysters, respectively. Investigated heavy metals in cultured oysters and clams indicated potential risks for human health in future by assessment of the heavy metals.


Assuntos
Bivalves , Mercúrio , Metais Pesados , Ostreidae , Poluentes Químicos da Água , Humanos , Animais , Vietnã , Cádmio , Biomarcadores Ambientais , Chumbo , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Metais Pesados/análise
3.
Chemosphere ; 291(Pt 2): 132997, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34822861

RESUMO

This study aimed to reveal possible alterations to lipidomic profiles in Sydney rock oysters, Saccostrea glomerata, exposed to estrogenic mixtures (i.e., estrone, E1; 17ß-estradiol, E2; estriol, E3; 17α-ethinylestradiol, EE2; bisphenol A, BPA; 4-t-octylphenol, 4-t-OP; and 4-nonylphenol, 4-NP) at "low" and "high" concentrations, typical of those detected in Australian and global receiving waters. A seven-day acute exposure window exhibited significantly lower abundances of many non-polar metabolites in digestive gland, gills, and gonads. Overall, there was a strong effect of the carrier solvent ethanol (despite a low exposure of 0.0002%), with all solvent containing treatments exhibiting lower abundances of lipidic metabolites, especially in the gill and digestive gland. No significant changes of the lipidome were exhibited in the male gonad by estrogenic exposure. However, in the female gonad, significant reductions of phospholipids and phosphatidylcholine were associated with exposure to high estrogenic mixtures. We hypothesise that the decreases in these phospholipids in the female gonad may be attributable to 1) lower algal consumption and thus lower uptake of lipidic building blocks; 2) a reduction of available substrates for phospholipid and phosphatidylcholine synthesis; and/or 3) induction of reactive oxygen species via estrogen metabolism, which may cause lipid peroxidation and lower abundance of phospholipids.


Assuntos
Ostreidae , Poluentes Químicos da Água , Animais , Austrália , Estrogênios , Estrona/análise , Feminino , Gônadas , Lipidômica , Masculino , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
4.
Biofouling ; 37(9-10): 949-963, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34628999

RESUMO

Ostreid herpesvirus 1 (OsHV-1) has caused mass mortalities in Pacific oysters (Crassostrea gigas) in Europe, Australia, and New Zealand. While aquaculture-associated movements of infected Pacific oysters are a well-known cause of OsHV-1 spread once established in a region, translocation via biofouling of aquaculture equipment or vessels needs further investigation to explain the more distant spread of OsHV-1. Laboratory experiments were designed to test for transmission of OsHV-1 between infected and naïve Pacific oysters via a simulated biofouling translocation scenario. Three common biofouling species [Sydney rock oysters (Saccostrea glomerata), Mediterranean mussels (Mytilus galloprovincialis) and Pacific oysters] were tested as intermediaries using a cohabitation challenge with Pacific oysters infected by injection. Transmission occurred, albeit for one of eight replicates when Pacific oysters were the intermediary species. This demonstrated a possible pathway for pathogen spread via biofouling containing Pacific oysters while highlighting the complexity of OsHV-1 transmission. Such complexities require further investigation to inform future risk assessments and management of fouled aquaculture equipment and vessels.


Assuntos
Incrustação Biológica , Crassostrea , Herpesviridae , Animais , Biofilmes , Incrustação Biológica/prevenção & controle , Vírus de DNA , Projetos Piloto
5.
Aquat Toxicol ; 231: 105722, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33360311

RESUMO

The current study investigated the effect of environmentally relevant mixtures of estrogens at levels representative of receiving waters on the metabolome of the Sydney rock oyster, Saccostrea glomerata. Oysters were exposed to a "low" and a "high" mixture of (xeno) estrogens (representative of Australian and global receiving waters respectively) for 7 days and digestive gland, gill, and gonad tissue were sampled for quantification of polar metabolites by 1H NMR spectroscopy. Exposure to both mixtures lowered body mass and altered the metabolite profile in the digestive glands. Comparatively, gills, and ovaries demonstrated lesser sensitivity to the mixtures, with significant metabolomic alterations observed only for the high mixture. The male gonad did not respond to either estrogenic exposure. In the responsive tissues, major metabolites including amino acids, carbohydrates, intermediates of the tricarboxylic acid cycle and ATP were all down-regulated and exhibited tissue-specific patterns of down-regulation with the greatest proportion of metabolites down-regulated due to estrogenic exposure in the digestive gland. Exposure to (xeno) estrogen mixtures representative of concentrations reported in receiving waters in Australia and globally can impact the metabolome and associated energy metabolism, especially in the digestive gland, translating to lower pools of available ATP energy for potential cellular homeostasis, somatic maintenance and growth, reproduction and fitness.


Assuntos
Exposição Ambiental , Estrogênios/toxicidade , Metaboloma/efeitos dos fármacos , Especificidade de Órgãos , Ostreidae/metabolismo , Animais , Austrália , Peso Corporal/efeitos dos fármacos , Ciclo do Ácido Cítrico/efeitos dos fármacos , Feminino , Glicólise/efeitos dos fármacos , Masculino , Metabolômica , Ostreidae/efeitos dos fármacos , Ovário/efeitos dos fármacos , Ovário/metabolismo , Razão de Masculinidade , Testículo/efeitos dos fármacos , Testículo/metabolismo , Poluentes Químicos da Água/toxicidade
6.
Sci Total Environ ; 742: 140497, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-32721717

RESUMO

Increasing our understanding of the bioavailable fractions of polycyclic aromatic compounds (PACs) in an aquatic environment is important for the assessment of the environmental and human health risks posed by PACs. More importantly, the behaviour of polar polycyclic aromatic hydrocarbons (polar PAHs), which are metabolites of legacy PAHs, are yet to be understood. We, therefore, carried out a study involving Sydney rock oysters (Saccostrea glomerata) sourced from two locations, that had been exposed to PAH contamination, within an Australian south-east estuary. Biomonitoring of these oysters, following relocation from the estuary to a relatively isolated waterway, was done at 24 and 72 h after deployment and subsequently at 7, 14, 28, 52 and 86 days. Control samples from Camden Haven River were sampled for PAC analyses just before deployment, after 28 days and at the end of the study (day 86). Lipid-normalised concentrations in oyster tissues across the 86-day sampling duration, elimination rate constants (k2), biological half-lives (t1/2) and time required to reach 95% of steady-state (t95) were reported for parent PAHs and the less-monitored polar PAHs including nitrated/oxygenated/heterocyclic PAHs (NPAHs, oxyPAHs and HPAHs) for the three differently sourced oyster types. Most of the depurating PAHs and NPAHs, as well as 9-FLO (oxyPAH), had k2 values significantly different from zero (p < 0.05). All other oxyPAHs and HPAHs showed no clear depuration, with their concentrations remaining similar. The non-depuration of polar PAHs from oyster tissues could imply greater human health risk compared to their parent analogues.


Assuntos
Ostreidae , Hidrocarbonetos Policíclicos Aromáticos/análise , Compostos Policíclicos/análise , Poluentes Químicos da Água/análise , Animais , Austrália , Monitoramento Biológico , Monitoramento Ambiental , Humanos
7.
Glob Chang Biol ; 25(12): 4105-4115, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31554025

RESUMO

Commercial shellfish aquaculture is vulnerable to the impacts of ocean acidification driven by increasing carbon dioxide (CO2 ) absorption by the ocean as well as to coastal acidification driven by land run off and rising sea level. These drivers of environmental acidification have deleterious effects on biomineralization. We investigated shell biomineralization of selectively bred and wild-type families of the Sydney rock oyster Saccostrea glomerata in a study of oysters being farmed in estuaries at aquaculture leases differing in environmental acidification. The contrasting estuarine pH regimes enabled us to determine the mechanisms of shell growth and the vulnerability of this species to contemporary environmental acidification. Determination of the source of carbon, the mechanism of carbon uptake and use of carbon in biomineral formation are key to understanding the vulnerability of shellfish aquaculture to contemporary and future environmental acidification. We, therefore, characterized the crystallography and carbon uptake in the shells of S. glomerata, resident in habitats subjected to coastal acidification, using high-resolution electron backscatter diffraction and carbon isotope analyses (as δ13 C). We show that oyster families selectively bred for fast growth and families selected for disease resistance can alter their mechanisms of calcite crystal biomineralization, promoting resilience to acidification. The responses of S. glomerata to acidification in their estuarine habitat provide key insights into mechanisms of mollusc shell growth under future climate change conditions. Importantly, we show that selective breeding in oysters is likely to be an important global mitigation strategy for sustainable shellfish aquaculture to withstand future climate-driven change to habitat acidification.


Assuntos
Biomineralização , Ostreidae , Animais , Calcificação Fisiológica , Concentração de Íons de Hidrogênio , Água do Mar
8.
Mar Pollut Bull ; 149: 110537, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31466014

RESUMO

Plastic waste is ubiquitous in marine environments. Despite the sheer volume of plastic waste, it remains relatively unknown how marine invertebrates will interact with microplastics (plastic <1 mm). Microplastics (<2 µm) were ingested by the economically and ecologically significant Sydney rock oyster Saccostrea glomerata and translocated to the haemolymph, perhaps via phagocytosis. The presence of microplastics in the haemolymph indicates that filter feeding S. glomerata can ingest and accumulate microplastics which are prevalent in the environment. This research shows microplastics can enter marine molluscs and highlights the need to monitor microplastics in the marine environment and aquaculture to safeguard the seafood industry.


Assuntos
Hemolinfa/química , Microplásticos/farmacocinética , Ostreidae/química , Poluentes Químicos da Água/farmacocinética , Animais , Exposição Dietética , Ecotoxicologia , Microplásticos/análise , Frutos do Mar , Poluentes Químicos da Água/análise
9.
Ecotoxicol Environ Saf ; 179: 127-134, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31030055

RESUMO

The increasing production of Ag nanoparticle (AgNP) containing products has inevitably led to a growing concern about their release into the aquatic environment, along with their potential behaviour, toxicity, and bioaccumulation in marine organisms exposed to NPs released from these products. Hence, this study is focused on the effects of AgNPs in Saccostrea glomerata (rock oyster) in artificial seawater (ASW); evaluating the NP's stability, dissolution, and bioaccumulation rate. AgNPs NM300K (20 ±â€¯5 nm) in concentrations of 12.5 µgL-1 and 125 µgL-1 were used to conduct the experiments, and were compared to a blank and a positive control of 12.5 µgL-1 AgNO3. Dissolution in ASW was measured by ICP-OES and stability was assessed by TEM after 1 h and 3, 5, and 7 days of exposure. Bioaccumulation in gills and digestive glands was measured after 7 days of exposure. The higher concentration of AgNPs induced more aggregation, underwent less dissolution, and showed less bioaccumulation, while the lower concentration showed less aggregation, more dissolution and higher bioaccumulation. Five biomarkers (EROD: ethoxyresorufin-o-deethylase, DNA strand breaks, LPO: lipid peroxidation, GST: glutathione S-transferase and GR: glutathione reductase) were analysed at 0, 3, 5 and 7 days. Significant differences compared to the initial day of exposure (day 0) were reported in DNA strand breaks after 5 and 7 days of exposure, GST, from the third day of exposure, in all the Ag samples, and in some samples for LPO and GR biomarkers, while no significant induction of EROD was observed. A combined effect for each type of treatment and time of exposure was also reported for DNA strand breaks and GST biomarkers measured at the digestive glands. In general, the significant inductions measured showed the following trend: 125 µgL-1 AgNPs >12.5 µgL-1 AgNPs ∼12.5 µgL-1 AgNO3 even though bioaccumulation followed the opposite trend.


Assuntos
Nanopartículas Metálicas/toxicidade , Ostreidae/efeitos dos fármacos , Ostreidae/metabolismo , Prata/metabolismo , Prata/toxicidade , Animais , Biomarcadores/metabolismo , Sistema Digestório/efeitos dos fármacos , Sistema Digestório/metabolismo , Brânquias/efeitos dos fármacos , Brânquias/metabolismo , Glutationa Redutase/metabolismo , Glutationa Transferase/metabolismo , Íons/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Água do Mar/química
10.
Toxins (Basel) ; 10(11)2018 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-30380778

RESUMO

An end-product market survey on biotoxins in commercial wild harvest shellfish (Plebidonax deltoides, Katelysia spp., Anadara granosa, Notocallista kingii) during three harvest seasons (2015⁻2017) from the coast of New South Wales, Australia found 99.38% of samples were within regulatory limits. Diarrhetic shellfish toxins (DSTs) were present in 34.27% of 321 samples but only in pipis (P. deltoides), with two samples above the regulatory limit. Comparison of these market survey data to samples (phytoplankton in water and biotoxins in shellfish tissue) collected during the same period at wild harvest beaches demonstrated that, while elevated concentrations of Dinophysis were detected, a lag in detecting bloom events on two occasions meant that wild harvest shellfish with DSTs above the regulatory limit entered the marketplace. Concurrently, data (phytoplankton and biotoxin) from Sydney rock oyster (Saccostrea glomerata) harvest areas in estuaries adjacent to wild harvest beaches impacted by DSTs frequently showed elevated Dinophysis concentrations, but DSTs were not detected in oyster samples. These results highlighted a need for distinct management strategies for different shellfish species, particularly during Dinophysis bloom events. DSTs above the regulatory limit in pipis sampled from the marketplace suggested there is merit in looking at options to strengthen the current wild harvest biotoxin management strategies.


Assuntos
Bivalves/química , Diarreia/induzido quimicamente , Monitoramento Ambiental/métodos , Contaminação de Alimentos/análise , Toxinas Marinhas/toxicidade , Intoxicação por Frutos do Mar/etiologia , Animais , Limite de Detecção , Toxinas Marinhas/análise , New South Wales
11.
Mar Environ Res ; 135: 103-113, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29428529

RESUMO

Understanding mechanisms of intraspecific variation in resilience to environmental drivers is key to predict species' adaptive potential. Recent studies show a higher CO2 resilience of Sydney rock oysters selectively bred for increased growth and disease resistance ('selected oysters') compared to the wild population. We tested whether the higher resilience of selected oysters correlates with an increased ability to compensate for CO2-induced acid-base disturbances. After 7 weeks of exposure to elevated seawater PCO2 (1100 µatm), wild oysters had a lower extracellular pH (pHe = 7.54 ±â€¯0.02 (control) vs. 7.40 ±â€¯0.03 (elevated PCO2)) and increased hemolymph PCO2 whereas extracellular acid-base status of selected oysters remained unaffected. However, differing pHe values between oyster types were not linked to altered metabolic costs of major ion regulators (Na+/K+-ATPase, H+-ATPase and Na+/H+-exchanger) in gill and mantle tissues. Our findings suggest that selected oysters possess an increased systemic capacity to eliminate metabolic CO2, possibly through higher and energetically more efficient filtration rates and associated gas exchange. Thus, effective filtration and CO2 resilience might be positively correlated traits in oysters.


Assuntos
Dióxido de Carbono/toxicidade , Monitoramento Ambiental , Ostreidae/fisiologia , Água do Mar/química , Poluentes Químicos da Água/toxicidade , Animais , Brânquias , Concentração de Íons de Hidrogênio , Oceanos e Mares
12.
Mar Pollut Bull ; 127: 207-210, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29475655

RESUMO

Following the discovery of potential chronic perfluoroalkyl substances (PFAS) contamination of Tilligerry Creek, Port Stephens (New South Wales Australia), sampling was undertaken to confirm the presence, extent and levels of contamination in commercial oyster crops of Sydney Rock Oyster (Saccostrea glomerata) and Pacific Oyster (Crassostrea gigas) grown within the estuary. Among a range of PFAS tested, only perfluorooctane sulfonate (PFOS) was detected. Concentrations of PFOS in oyster tissues for S. glomerata ranged from 1.6µgkg-1 ww (wet weight) to below the limit of reporting of 0.3µgkg-1 ww, with concentrations generally decreasing toward the lower reaches of the estuary. The sample of C. gigas tested had a PFOS concentration of 0.71µgkg-1 ww that was consistent with concentrations observed in nearby S. glomerata. For harvest size (50-60g) S. glomerata, both holding contaminated oysters in a depuration system, and relocation to a non-contaminated area, saw significant reductions in the tissue PFOS concentrations. For oysters held in a depuration system, PFOS depurated at a rate of 0.008h-1 (0.004-0.019h-1; 90% CI), which corresponded with a depuration half-life of 87h (35-155h; 90%). A more conservative model (fitted to data that assumed concentrations

Assuntos
Ácidos Alcanossulfônicos/análise , Fluorocarbonos/análise , Contaminação de Alimentos/análise , Ostreidae/química , Animais , Monitoramento Ambiental , Estuários , New South Wales
13.
Food Microbiol ; 69: 196-203, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28941902

RESUMO

Internationally human enteric viruses, such as norovirus (NoV) and hepatitis A virus (HAV), are frequently associated with shellfish related foodborne disease outbreaks, and it has been suggested that acceptable NoV limits based on end-point testing be established for this high risk food group. Currently, shellfish safety is generally managed through the use of indicators of faecal contamination. Between July 2014 and August 2015, a national prevalence survey for NoV and HAV was done in Australian oysters suitable for harvest. Two sampling rounds were undertaken to determine baseline levels of these viruses. Commercial Australian growing areas, represented by 33 oyster production regions in New South Wales, South Australia, Tasmania and Queensland, were included in the survey. A total of 149 and 148 samples were collected during round one and two of sampling, respectively, and tested for NoV and HAV by quantitative RT-PCR. NoV and HAV were not detected in oysters collected in either sampling round, indicating an estimated prevalence for these viruses in Australian oysters of <2% with a 95% confidence interval based on the survey design. The low estimated prevalence of foodborne viruses in Australian oysters was consistent with epidemiological evidence, with no oyster-related foodborne viral illness reported during the survey period.


Assuntos
Contaminação de Alimentos/análise , Ostreidae/virologia , Frutos do Mar/virologia , Vírus/isolamento & purificação , Animais , Austrália/epidemiologia , Contaminação de Alimentos/estatística & dados numéricos , Doenças Transmitidas por Alimentos/epidemiologia , Doenças Transmitidas por Alimentos/virologia , Vírus/classificação , Vírus/genética , Vírus/crescimento & desenvolvimento
14.
BMC Genomics ; 18(1): 431, 2017 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-28578697

RESUMO

BACKGROUND: This study characterises the molecular processes altered by both elevated CO2 and increasing temperature in oysters. Differences in resilience of marine organisms against the environmental stressors associated with climate change will have significant implications for the sustainability of coastal ecosystems worldwide. Some evidence suggests that climate change resilience can differ between populations within a species. B2 oysters represent a unique genetic resource because of their capacity to better withstand the impacts of elevated CO2 at the physiological level, compared to non-selected oysters from the same species (Saccostrea glomerata). Here, we used proteomic and transcriptomic analysis of gill tissue to evaluate whether the differential response of B2 oysters to elevated CO2 also extends to increased temperature. RESULTS: Substantial and distinctive effects on protein concentrations and gene expression were evident among B2 oysters responding to elevated CO2 or elevated temperature. The combination of both stressors also altered oyster gill proteomes and gene expression. However, the impacts of elevated CO2 and temperature were not additive or synergistic, and may be antagonistic. CONCLUSIONS: The data suggest that the simultaneous exposure of CO2-resilient oysters to near-future projected ocean pH and temperature results in complex changes in molecular processes in order to prevent stress-induced cellular damage. The differential response of B2 oysters to the combined stressors also indicates that the addition of thermal stress may impair the resilience of these oysters to decreased pH. Overall, this study reveals the intracellular mechanisms that might enable marine calcifiers to endure the emergent, adverse seawater conditions resulting from climate change.


Assuntos
Dióxido de Carbono/química , Dióxido de Carbono/farmacologia , Ostreidae/efeitos dos fármacos , Ostreidae/fisiologia , Água do Mar/química , Animais , Cruzamento , Mudança Climática , Perfilação da Expressão Gênica , Marcadores Genéticos/genética , Ostreidae/genética , Proteômica , Temperatura
15.
Mol Ecol ; 25(19): 4836-49, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27543886

RESUMO

Marine organisms need to adapt in order to cope with the adverse effects of ocean acidification and warming. Transgenerational exposure to CO2 stress has been shown to enhance resilience to ocean acidification in offspring from a number of species. However, the molecular basis underlying such adaptive responses is currently unknown. Here, we compared the transcriptional profiles of two genetically distinct oyster breeding lines following transgenerational exposure to elevated CO2 in order to explore the molecular basis of acclimation or adaptation to ocean acidification in these organisms. The expression of key target genes associated with antioxidant defence, metabolism and the cytoskeleton was assessed in oysters exposed to elevated CO2 over three consecutive generations. This set of target genes was chosen specifically to test whether altered responsiveness of intracellular stress mechanisms contributes to the differential acclimation of oyster populations to climate stressors. Transgenerational exposure to elevated CO2 resulted in changes to both basal and inducible expression of those key target genes (e.g. ecSOD, catalase and peroxiredoxin 6), particularly in oysters derived from the disease-resistant, fast-growing B2 line. Exposure to CO2 stress over consecutive generations produced opposite and less evident effects on transcription in a second population that was derived from wild-type (nonselected) oysters. The analysis of key target genes revealed that the acute responses of oysters to CO2 stress appear to be affected by population-specific genetic and/or phenotypic traits and by the CO2 conditions to which their parents had been exposed. This supports the contention that the capacity for heritable change in response to ocean acidification varies between oyster breeding lines and is mediated by parental conditioning.


Assuntos
Aclimatação/genética , Ácidos/química , Mudança Climática , Ostreidae/genética , Água do Mar/química , Animais , Concentração de Íons de Hidrogênio , New South Wales , Transcriptoma
16.
Aquat Toxicol ; 177: 136-45, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27286571

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitously detected in the water column, associated with particulate matter or in the tissue of marine organisms such as molluscs. PAH exposure and their resultant bioaccumulation in molluscs can cause a range of serious physiological effects in the affected animals. To examine the molecular response of these xenobiotics in bivalves, Sydney rock oysters (Saccostrea glomerata) were exposed to pyrene and fluoranthene for seven days. Chemical analysis of the soft-tissue of PAH stressed S. glomerata confirmed that pyrene and fluoranthene could be bioaccumulated by these oysters. RNA-Seq analysis of PAH-exposed S. glomerata showed a total of 765 transcripts differentially expressed between control and PAH-stressed oysters. Closer examination of the transcripts revealed a range genes encoding enzymes involved in PAH detoxification (e.g. cytochrome P450), innate immune responses (e.g. pathogen recognition, phagocytosis) and protein synthesis. Overall, pyrene and fluoranthene exposure appears to have resulted in a suppression of pathogen recognition and some protein synthesis processes, whereas transcripts of genes encoding proteins involved in clearance of cell debris and some transcripts of genes involved in PAH detoxification were induced in response to the stressors. Pyrene and fluoranthene exposure thus invoked a complex molecular response in S. glomerata, with results suggesting that oysters focus on removing the stressors from their system and dealing with the downstream effects of PAH exposure, potentially at the exclusion of other, less immediate concerns (e.g. protection from infection).


Assuntos
Fluorenos/toxicidade , Ostreidae/efeitos dos fármacos , Pirenos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Biomarcadores/metabolismo , Fluorenos/metabolismo , Inativação Metabólica , Ostreidae/metabolismo , Pirenos/metabolismo , Testes de Toxicidade , Poluentes Químicos da Água/metabolismo
17.
Peptides ; 82: 109-119, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27328253

RESUMO

The Sydney Rock Oyster, Saccostrea glomerata, is a socioeconomically important species in Australia, yet little is known about the molecular mechanism that regulates its reproduction. To address this gap, we have performed a combination of high throughput transcriptomic and peptidomic analysis, to identify genes and neuropeptides that are expressed in the key regulatory tissues of S. glomerata; the visceral ganglia and gonads. Neuropeptides are known to encompass a diverse class of peptide messengers that play functional roles in many aspects of an animal's life, including reproduction. Approximately 28 neuropeptide genes were identified, primarily within the visceral ganglia transcriptome, that encode precursor proteins containing numerous neuropeptides; some were confirmed through mass spectral peptidomics analysis of the visceral ganglia. Of those, 28 bioactive neuropeptides were synthesized, and then tested for their capacity to induce gonad development and spawning in S. glomerata. Egg laying hormone, gonadotropin-releasing hormone, APGWamide, buccalin, CCAP and LFRFamide were neuropeptides found to trigger spawning in ripe animals. Additional testing of APGWa and buccalin demonstrated their capacity to advance conditioning and gonadal maturation. In summary, our analysis of S. glomerata has identified neuropeptides that can influence the reproductive cycle of this species, specifically by accelerating gonadal maturation and triggering spawning. Other molluscan neuropeptides identified in this study will enable further research into understanding the neuroendocrinology of oysters, which may benefit their cultivation.


Assuntos
Neuropeptídeos/genética , Ostreidae/crescimento & desenvolvimento , Reprodução/genética , Transcriptoma/genética , Animais , Regulação da Expressão Gênica no Desenvolvimento , Gônadas/efeitos dos fármacos , Gônadas/crescimento & desenvolvimento , Neuropeptídeos/biossíntese , Neuropeptídeos/isolamento & purificação , Neuropeptídeos/farmacologia , Ostreidae/genética , Proteômica , Reprodução/efeitos dos fármacos
18.
J Proteome Res ; 15(6): 1735-46, 2016 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-27072892

RESUMO

Viral diseases are a significant cause of mortality and morbidity in oysters, resulting in significant economic losses. We investigated the proteomic responses of these two species of oysters to generic double-stranded RNAs (poly I:C and poly A:U). Analysis of proteomic data using isobaric tags for relative and absolute quantitaion (iTRAQ) indicated that there were significant differences in the proteomic responses of the two oyster species resulting from this treatment. Gene ontology analysis showed that several biological processes, cellular components, and molecular function were unique to the different data sets. For example, a number of proteins implicated in the TLR signaling pathway were associated with the Saccostrea glomerata data set but were absent in the Crassostra gigas data set. These results suggest that the differences in the proteomic responses to dsRNA may underpin the biological differences in viral susceptibility. Molecular targets previously shown to be expressed in C. gigas in response to OsHV1 infections were not present in our proteomic data sets, although they were present in the RNA extracted from the very same tissues. Taken together, our data indicate that there are substantial disparities between transcriptomic and proteomic responses to dsRNA challenge, and a comprehensive account of the oysters' biological responses to these treatments must take into account that disparity.


Assuntos
Ostreidae/virologia , Proteoma/efeitos dos fármacos , RNA de Cadeia Dupla/farmacologia , Viroses/patologia , Animais , Suscetibilidade a Doenças , Ontologia Genética , Poli A-U/farmacologia , Poli I-C/farmacologia , Proteômica/métodos , Transcriptoma
19.
Int J Parasitol ; 45(6): 419-26, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25765622

RESUMO

Marteilia sydneyi (Phylum Paramyxea, Class Marteiliidea, Order Marteiliida) (the causative agent of QX disease) is recognised as the most severe parasite to infect Saccostrea glomerata, the Sydney rock oyster, on the east coast of Australia. Despite its potential impact on industry (>95% mortality), research towards lessening these effects has been hindered by the lack of an experimental laboratory model of infection as a consequence of our incomplete understanding of the life cycle of this parasite. Here, we explored the presence of this parasite in hosts other than a bivalve mollusc from two study sites on the Hawkesbury River, New South Wales, Australia. We employed PCR-based in situ hybridisation and sequence analysis of a portion of the first internal transcribed spacer of rDNA in an attempt to detect M. sydneyi DNA in 21 species of polychaete worm. Marteilia DNA was detected in 6% of 1247 samples examined by PCR; the analysis of all amplicons defined one distinct sequence type for first internal transcribed spacer, representing M. sydneyi. Of the polychaete operational taxonomic units test-positive in PCR, we examined 116 samples via in situ hybridisation DNA probe staining and identified M. sydneyi DNA in the epithelium of the intestine of two specimens of Nephtys australiensis. Two differing morphological forms were identified: a 'primordial' cell that contained a well-defined nucleus but had little differentiation in the cytoplasm, and a 'plasmodial' cell that showed an apparent syncytial structure. This finding represents the first known record of the identification of M. sydneyi being parasitic in an organism other than an oyster, and only the third record of any species of Marteilia identified from non-molluscan hosts. Future work aims at determining if N. australiensis and S. glomerata are the only hosts in the life cycle of this paramyxean, and the development of experimental models to aid the production of QX disease-resistant oysters.


Assuntos
Eucariotos/fisiologia , Estágios do Ciclo de Vida/fisiologia , Ostreidae/parasitologia , Animais , Eucariotos/genética , Interações Hospedeiro-Parasita , Hibridização In Situ , Poliquetos/parasitologia , Reação em Cadeia da Polimerase , Rios
20.
Mol Ecol ; 24(6): 1248-62, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25689603

RESUMO

Previous work suggests that larvae from Sydney rock oysters that have been selectively bred for fast growth and disease resistance are more resilient to the impacts of ocean acidification than nonselected, wild-type oysters. In this study, we used proteomics to investigate the molecular differences between oyster populations in adult Sydney rock oysters and to identify whether these form the basis for observations seen in larvae. Adult oysters from a selective breeding line (B2) and nonselected wild types (WT) were exposed for 4 weeks to elevated pCO2 (856 µatm) before their proteomes were compared to those of oysters held under ambient conditions (375 µatm pCO2 ). Exposure to elevated pCO2 resulted in substantial changes in the proteomes of oysters from both the selectively bred and wild-type populations. When biological functions were assigned, these differential proteins fell into five broad, potentially interrelated categories of subcellular functions, in both oyster populations. These functional categories were energy production, cellular stress responses, the cytoskeleton, protein synthesis and cell signalling. In the wild-type population, proteins were predominantly upregulated. However, unexpectedly, these cellular systems were downregulated in the selectively bred oyster population, indicating cellular dysfunction. We argue that this reflects a trade-off, whereby an adaptive capacity for enhanced mitochondrial energy production in the selectively bred population may help to protect larvae from the effects of elevated CO2 , whilst being deleterious to adult oysters.


Assuntos
Dióxido de Carbono/análise , Ostreidae/genética , Proteoma/genética , Poluentes Químicos da Água/análise , Animais , Aquicultura , Cruzamento , Monitoramento Ambiental/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA