Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.696
Filtrar
1.
Poult Sci ; 103(10): 104078, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-39096829

RESUMO

In the past, we demonstrated that oligodeoxynucleotides containing CpG motifs (CpG-ODN) mimicking bacterial DNA, stimulate the innate immune system of neonatal broiler chickens and protect them against Escherichia coli and Salmonella Typhimurium (S. Typhimurium) septicemia. The first line of innate immune defense mechanism is formed by heterophils and plays a critical protective role against bacterial septicemia in avian species. Therefore, the objectives of this study were 1) to explore the kinetics of CpG-ODN mediated antibacterial mechanisms of heterophils following single or twice administration of CpG-ODN in neonatal broiler chickens and 2) to investigate the kinetics of the immunoprotective efficacy of single versus twice administration of CpG-ODN against S. Typhimurium septicemia. In this study, we successfully developed and optimized flow cytometry-based assays to measure phagocytosis, oxidative burst, and degranulation activity of heterophils. Birds that received CpG-ODN had significantly increased (p < 0.05) phagocytosis, oxidative burst, and degranulation activity of heterophils as early as 24 h following CpG-ODN administration. Twice administration of CpG-ODN significantly increased the phagocytosis activity of heterophils. In addition, our newly developed CD107a based flow cytometry assay demonstrated a significantly higher degranulation activity of heterophils following twice than single administration of CpG-ODN. However, the oxidative burst activity of heterophils was not significantly different between birds that received CpG-ODN only once or twice. Furthermore, delivery of CpG-ODN twice increased immunoprotection against S. Typhimurium septicemia compared to once but the difference was not statistically significant. In conclusion, we demonstrated enhanced bactericidal activity of heterophils after administration of CpG-ODN to neonatal broiler chickens. Further investigations will be required to identify other activated innate immune cells and the specific molecular pathways associated with the CpG-ODN mediated activation of heterophils.

2.
Biomedica ; 44(2): 258-276, 2024 05 30.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-39088536

RESUMO

In Salmonella enterica serovar Typhimurium (Typhimurium), multidrug resistance is associated with integrons carrying resistance genes dispersed by mobile genetic elements. This exploratory systematic review sought to identify integron types and their resistance genes in multidrug resistance Typhimurium isolates. We used Medline, PubMed, SciELO, ScienceDirect, Redalyc, and Google Scholar as motor searchers for articles in Spanish or English published between 2012 and 2020, including the keywords "integrons", "antibiotic resistance", and "Salmonella Typhimurium". We included 38 articles reporting multidrug resistance up to five antibiotic families. Class 1 integrons with aadA2 and blaPSE-1 gene cassettes were predominant, some probably related to the Salmonella genomic island 1. We did not find studies detailing class 1 and 2 integrons in the same isolate, nor class 3 integrons reported. The presence of integrons largely explains the resistance profiles found in isolates from different sources in 15 countries.


La multirresistencia a los antibióticos en Salmonella enterica serovar Typhimurium (Typhimurium) se asocia con integrones que portan genes de resistencia y que son dispersados por elementos genéticos móviles. En esta revisión sistemática exploratoria, se buscó identificar los tipos de integrones y sus genes de resistencia en aislamientos de Typhimurium multirresistentes a antibióticos. Se realizó una búsqueda de artículos en Medline, PubMed, SciELO, ScienceDirect, Redalyc y Google Académico, publicados entre el 2012 y el 2020, en español o inglés, con las palabras claves: "integrons", "antibiotic resistance" y "Salmonella Typhimurium". En el análisis se incluyeron 38 artículos que reportaron multirresistencia a cinco familias de antibióticos. Los integrones de clase 1 con casetes de genes aadA2 y blaPSE-1 fueron los predominantes, algunos probablemente relacionados con la isla genómica de Salmonella 1. No se encontraron integrones de clase 1 y 2 en un mismo aislamiento, ni se reportaron integrones de clase 3. La presencia de integrones explica en gran medida los perfiles de resistencia encontrados en aislamientos de diferentes fuentes de 15 países.


Assuntos
Farmacorresistência Bacteriana Múltipla , Integrons , Salmonella typhimurium , Integrons/genética , Farmacorresistência Bacteriana Múltipla/genética , Salmonella typhimurium/genética , Salmonella typhimurium/efeitos dos fármacos , Humanos , Antibacterianos/farmacologia , Infecções por Salmonella/microbiologia , Infecções por Salmonella/epidemiologia , Ilhas Genômicas , Animais
3.
Acta Trop ; 258: 107345, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39094829

RESUMO

The poultry red mite Dermanyssus gallinae is a hematophagous ectoparasite of layer hens. Infestations with poultry red mites pose an increasing threat to the egg production industry, causing serious problems to animal health and welfare, directly or indirectly as a vector of several infectious agents. In this study, we aimed to investigate common avian pathogens in mites. The mite samples were collected from 58 poultry farms in 7 regions accounting for more than 70 % of the national egg production in Algeria. The presence of 13 avian pathogens was detected using DNA and RNA samples from mites collected. Results revealed significant associations between PRM and potential pathogens such as Escherichia coli, Salmonella enterica, fowlpox virus, and gallid herpesvirus 1. Pathogen detection in Dermanyssus gallinae could serve as an early diagnostic or a risk analysis tool for infectious diseases in poultry farms, facilitating effective disease management strategies. Despite further research being necessary to address uncertainties, such a strategy could be used to enhance the integrated management of poultry health.

4.
Future Microbiol ; : 1-11, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39109942

RESUMO

Aim: To determine the efficacy of manuka honey against multidrug-resistant (MDR) and extensively drug-resistant (XDR) clinical strains of Salmonella Typhi. Materials & methods: Clinical isolates were processed using the Bactec blood culture system, identification and antibiogram by Vitek 2 and antibiotic resistance genes through polymerase chain reaction (PCR). Microbroth dilution assays evaluated the antibacterial activity of manuka honey. Results: MDR and XDR-S. Typhi was susceptible to azithromycin. These strains carried the H58, gyrA, gyrB, blaCTX-M-15 , and blaTEM-1 genes. At 100% honey, the zone of inhibition for MDR (15-23 mm) and XDR (15-24 mm) strains. 18/50 MDR and 14/50 XDR strains inhibited at 3.125 v/v% killed at 6.25 v/v% concentration respectively. Conclusion: Manuka honey could be an alternative option for treating S. Typhi infections.


Typhoid fever is a life-threatening bacterial infection caused by the Salmonella Typhi. These bacteria are transmitted through contaminated water and food and cause fever, abdominal pain, headache, vomiting, and diarrhea mainly in children under 5. There are around 9 million people get infected with S. Typhi, with an increased death of 1,10,000 annually. Bees that collect nectar from the blossoms of the Manuka tree in Australia and New Zealand produce a type of honey known as manuka honey. This honey is famous for its antibacterial activity, and potential health benefits. Therefore, we aimed to determine its antibacterial activity against S. Typhi. Our finding shows that the commonly available antibiotics did not kill S. Typhi because their DNA was drug-resistant. After applying the manuka honey, these bacteria were killed and given a clear zone ranging from 15­24mm on the agar plate. Further analysis revealed that at low concentrations of manuka honey, 3.1% and 6.25%, most of the S. Typhi stopped growing and killed, respectively. This study suggested that manuka honey, which is affordable and readily available, could be used as a treatment option to treat infections produced by these harmful bacteria after further analysis.

5.
Foodborne Pathog Dis ; 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39110442

RESUMO

Between 2017 and 2019, pulsed-field gel electrophoresis was replaced by whole genome sequencing (WGS) for identifying enteric disease clusters in Canada. The number and characteristics of all clusters of Listeria monocytogenes, Salmonella, Shiga toxin-producing Escherichia coli (STEC), and Shigella spp. between 2015 and 2021 were analyzed. Following the transition to WGS, an increase in the number of Salmonella, STEC, and Shigella clusters was noted, whereas the number of clusters of L. monocytogenes decreased. Unlike previous subtyping methods, WGS provided increased resolution to identify discrete clusters of Salmonella Enteritidis. This led to the identification of a number of outbreaks linked to frozen raw breaded chicken products and ultimately a change in food safety policy to reduce the number of illnesses associated with these products. Other pathogens did not experience a similar increase in the number of outbreaks detected. Although WGS did provide increased confidence in the genetic relatedness of cases and isolates, challenges remained in collecting epidemiological data to link these illnesses to a common source.

6.
Front Vet Sci ; 11: 1433514, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39100761

RESUMO

Since the use of antibiotics as growth promoters in animal feed has been restricted or banned in several countries, finding suitable alternatives is crucial for maintaining animal health. In this study, a novel formate acidifier named sodium diformate (NaDF) was synthesized, and the effects on growth performance and the prevention effects against Salmonella enterica serovar Pullorum infections in chickens were assessed. In broilers, NaDF supplementation improved growth performance, as evidenced by increased body weights and reduced feed conversion ratios. At 38 days of age, NaDF supplementation increased the levels of growth-hormone and ghrelin in the serum, lowered pH values in the gut, improved duodenal morphology, as shown by increased villus length/crypt depth ratios. NaDF also modulated the abundance of beneficial and harmful bacteria without changing the general microbiota diversity and short-chain fatty acids levels, which would be beneficial for maintaining gut homeostasis during its use. NaDF exhibited a broad spectrum of antibacterial activity in vitro. Supplementation with NaDF effectively decreased S. Pullorum colonization in the cecum, liver and spleen in chickens, and mitigated pathological changes in the tissues. Therefore, as a novel acidifier, NaDF can improve chicken growth performance by increasing growth-related hormones levels while maintaining the diversity of gut microbiota, and also resist intestinal bacterial infection. These results provided evidences for the application of NaDF as an effective and safe animal feed in poultry farming.

7.
Bull Exp Biol Med ; 177(2): 281-286, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39096449

RESUMO

Different methods for fixing biofilms of Staphylococcus aureus and Salmonella enterica for light and electron microscopy were compared. Paraformaldehyde fixation did not preserve biofilm integrity during dehydration; Ito-Karnovsky fixation revealed cell morphology, but did not preserve the matrix. Ruthenium red combined with aldehydes allowed the matrix to be preserved and visualized. An analysis of the ultrastructure of S. aureus and S. enterica cells in biofilms and suspensions at various fixations is presented. The ultrastructure of the biofilm matrix has been described.


Assuntos
Biofilmes , Salmonella enterica , Staphylococcus aureus , Biofilmes/crescimento & desenvolvimento , Staphylococcus aureus/fisiologia , Salmonella enterica/fisiologia , Salmonella enterica/ultraestrutura , Salmonella enterica/crescimento & desenvolvimento , Formaldeído , Fixadores/farmacologia , Fixadores/química , Microscopia Eletrônica , Polímeros
8.
Sci Rep ; 14(1): 19169, 2024 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-39160213

RESUMO

The resistance of foodborne pathogens to antimicrobial agents is a potential danger to human health. Hence, establishing the status of good agricultural practices (GAPs) and the antimicrobial susceptibility of major foodborne pathogens has a significant programmatic implication in planning interventions. The objective of this study was to assess the gap in attaining GAP and estimate the prevalence and antimicrobial susceptibility profile of Salmonella in vegetable farms fertilized with animal manure in Addis Ababa, Ethiopia. A total of 81 vegetable farms from four sub-cities in Addis Ababa were visited, and 1119 samples were collected: soil (n = 271), manure (n = 375), vegetables (n = 398), and dairy cattle feces (n = 75). Additional data were collected using a structured questionnaire. Isolation of Salmonella was done using standard microbiology techniques and antimicrobial susceptibility testing was conducted using disk diffusion assays. Carriage for antimicrobial resistance genes was tested using polymerase chain reaction (PCR). Among the 81 vegetable farms visited, 24.7% used animal manure without any treatment, 27.2% used properly stored animal manure and 80.2% were easily accessible to animals. The prevalence of Salmonella was 2.3% at the sample level, 17.3% at the vegetable farm level, and 2.5% in vegetables. The highest rate of resistance was recorded for streptomycin, 80.7% (21 of 26), followed by kanamycin, 65.4% (17 of 26), and gentamicin, 61.5% (16 of 26). Multidrug resistance was detected in 61.5% of the Salmonella isolates. Vegetable farms have a gap in attaining GAPs, which could contribute to increased contamination and the transfer of antimicrobial resistance to the vegetables. The application of GAPs, including proper preparation of compost and the appropriate use of antimicrobials in veterinary practices, are recommended to reduce the emergence and spread of antimicrobial resistance.


Assuntos
Antibacterianos , Fazendas , Esterco , Salmonella , Verduras , Etiópia/epidemiologia , Animais , Salmonella/isolamento & purificação , Salmonella/efeitos dos fármacos , Salmonella/genética , Verduras/microbiologia , Esterco/microbiologia , Prevalência , Bovinos , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Fertilizantes , Microbiologia do Solo , Farmacorresistência Bacteriana , Humanos , Fezes/microbiologia , Agricultura
9.
Cell Rep ; 43(9): 114648, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39167491

RESUMO

Metabolic reprogramming is crucial for activating innate immunity in macrophages, and the accumulation of immunometabolites is essential for effective defense against infection. The NAD+/NADH (ratio of nicotinamide adenine dinucleotide and its reduced counterpart) redox couple serves as a critical node that integrates metabolic pathways and signaling events, but how this metabolite couple engages macrophage activation remains unclear. Here, we show that the NAD+/NADH ratio serves as a molecular signal that regulates proinflammatory responses and type I interferon (IFN) responses divergently. Salmonella Typhimurium infection leads to a decreased NAD+/NADH ratio by inducing the accumulation of NADH. Further investigation shows that an increased NAD+/NADH ratio correlates with attenuated proinflammatory responses and enhanced type I IFN responses. Conversely, a decreased NAD+/NADH ratio is linked to intensified proinflammatory responses and restrained type I IFN responses. These results show that the NAD+/NADH ratio is an essential cell-intrinsic factor that orchestrates innate immunity, which enhances our understanding of how metabolites fine-tune innate immunity.

10.
mSystems ; : e0058624, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39158311

RESUMO

Nontyphoidal Salmonella (NTS) is the main etiological agent of human nontyphoidal salmonellosis. The aim of this study was to analyze the epidemiological characteristics and horizontal transfer mechanisms of antimicrobial resistance (AMR) genes from eight strains of NTS detected in Zhenjiang City, Jiangsu Province, China. Fecal samples from outpatients with food-borne diarrhea were collected in 2022. The NTS isolates were identified, and their susceptibility was tested with the Vitek 2 Compact system. The genomes of the NTS isolates were sequenced with the Illumina NovaSeq platform and Oxford Nanopore Technologies platform. The AMR genes and mobile genetic elements (MGEs) were predicted with the relevant open access resources. Eight strains of NTS were isolated from 153 specimens, and Salmonella Typhimurium ST19 was the most prevalent serotype. The AMR gene with the highest detection rate was AAC(6')-Iaa (10.5%) followed by TEM-1 (7.9%), sul2 (6.6%), and tet(A) (5.3%). Eleven MGEs carrying 34 AMR genes were identified on the chromosomes of 3 of the 8 NTS, including 3 resistance islands, 6 composite transposons (Tns), and 2 integrons. Eighteen plasmids carrying 40 AMR genes were detected in the 8 NTS strains, including 6 mobilizable plasmids, 3 conjugative plasmids, and 9 nontransferable plasmids, 7 of which carried 10 composite Tns and 3 integrons. This study provided a theoretical basis, from a genetic perspective, for the prevention and control of NTS resistance in Zhenjiang City. IMPORTANCE: Human nontyphoidal salmonellosis is one of the common causes of bacterial food-borne illnesses, with significant social and economic impacts, especially those caused by invasive multidrug-resistant nontyphoidal Salmonella, which entails high morbidity and mortality. Antimicrobial resistance is mainly mediated by drug resistance genes, and mobile genetic elements play key roles in the capture, accumulation, and dissemination of antimicrobial resistance genes. Therefore, it is necessary to study the epidemiological characteristics and horizontal transfer mechanisms of antimicrobial resistance genes of nontyphoidal Salmonella to prevent the spread of multidrug-resistant nontyphoidal Salmonella.

11.
Poult Sci ; 103(11): 104172, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39178817

RESUMO

Salmonellosis is still one of the most reported zoonoses worldwide and poultry meat is a major source, as chickens are often persistent carriers of Salmonella. Medium-chain fatty acids (MCFA) are known for their strong antimicrobial activity. MCFAs used today in the animal feed industry, however, mainly originate from the palm oil industry, which is notorious for its negative impact on the climate. We investigated the effect of a specific blend of palm-free MCFAs (ranging from C6 to C9) on Salmonella Enteritidis (SE) colonization in broiler chickens and in vitro SE characteristics. Fifty Ross 308 broiler chickens were randomly divided in 2 treatment groups. Chickens received either un-supplemented feed or feed supplemented with 300 ppm MCFAs from D0 onwards. On D7, all chickens were orally inoculated with 1600 CFU of SE. Cloacal swabs (D11) and samples of liver and caeca (D12) of all animals were collected and SE was enumerated. Percentage of SE-positive caecum samples was significantly (P = 0.044) reduced in birds receiving MCFAs compared to those receiving unsupplemented feed (36% vs. 64%). In vitro work performed with the same SE strain showed that preincubating the Salmonella bacteria with MCFAs at a sub-minimal inhibitory concentration significantly (p < 0.05) reduced bacterial adhesion to and invasion in Caco-2 cells, which may explain the observed reduction in intestinal SE colonization in the in vivo trial. Together, these results show that the tested eco-friendly MCFA blend could be a promising tool in the control of Salmonella in broilers.

12.
Mol Cell ; 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39178862

RESUMO

Binding of the bacterial Rho helicase to nascent transcripts triggers Rho-dependent transcription termination (RDTT) in response to cellular signals that modulate mRNA structure and accessibility of Rho utilization (Rut) sites. Despite the impact of temperature on RNA structure, RDTT was never linked to the bacterial response to temperature shifts. We show that Rho is a central player in the cold-shock response (CSR), challenging the current view that CSR is primarily a posttranscriptional program. We identify Rut sites in 5'-untranslated regions of key CSR genes/operons (cspA, cspB, cspG, and nsrR-rnr-yjfHI) that trigger premature RDTT at 37°C but not at 15°C. High concentrations of RNA chaperone CspA or nucleotide changes in the cspA mRNA leader reduce RDTT efficiency, revealing how RNA restructuring directs Rho to activate CSR genes during the cold shock and to silence them during cold acclimation. These findings establish a paradigm for how RNA thermosensors can modulate gene expression.

13.
Poult Sci ; 103(10): 104086, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-39098298

RESUMO

Probiotics are increasingly recognized for their capacity to combat pathogenic bacteria. In this study, we isolated a strain of Ligilactobacillus salivarius XP132 from the gut microbiota of healthy chickens. This strain exhibited resistance to low pH and bile salts, auto-aggregation capabilities, and the ability to co-aggregate with pathogenic Salmonella. The in vitro antibacterial activity of Ligilactobacillus salivarius XP132 was tested using an Oxford cup antibacterial test, and the results showed that Ligilactobacillus salivarius XP132 exhibited broad-spectrum antibacterial activity, with especially strong antibacterial activity against Salmonella. In animal experiments with white feather broilers and specific-pathogens-free (SPF) chickens, we orally administered 1 × 109 CFU XP132 live bacteria per chicken per day, and detected the content of Salmonella in the liver, spleen, intestinal contents, and eggs of the chickens by RT-qPCR. Oral administration of Lactobacillus salivarius XP132 group significantly reduced the levels of Salmonella in chicken liver, spleen, intestinal contents and eggs, and the oral administration of Ligilactobacillus salivarius XP132 significantly inhibited the horizontal and vertical transmission of Salmonella in SPF chickens and white-feathered broilers. After oral administration of XP132, the production of chicken serum anti-infective cytokine IFN-γ was also significantly up-regulated, thereby enhancing the host's ability to resist infection. In addition, the production of various serum inflammatory cytokines, including IL-1ß, IL-6, IL-8, and TNF-α, was down-regulated, leading to significant amelioration of the inflammatory response induced by S. Pullorum in chickens. These findings suggest that Ligilactobacillus salivarius XP132 possesses potent antibacterial and immunomodulatory properties that effectively prevent both horizontal and vertical transmission of Salmonella Pullorum, highlighting its potential as a valuable tool for the prevention and control of Salmonella disease.

14.
J Cardiol Cases ; 30(2): 55-58, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39156211

RESUMO

Non-typhoid endocarditis is uncommon. Non-typhoid Salmonella paratyphi A endocarditis is even more rare. Although the spectrum of available antibiotics is adequate for treatment, the importance of this condition stresses its rarity of occurrence and presentation. Here, we present the case of a middle-aged male suffering from S. paratyphi A endocarditis. Learning objective: Salmonella paratyphi A endocarditis is extremely rare, mostly affecting the mitral valve. There is an increasing trend of S. paratyphi A infection in the Indian subcontinent. S. paratyphi A endocarditis should be suspected in all patients who have recurrent fever with chills for >3 to 4 weeks, associated with dyspnea on exertion and weight loss. Newer mutations with antibiotic resistance are becoming more common, which might pose serious problems.

15.
Microbiol Resour Announc ; : e0000924, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39162441

RESUMO

We present a complete genome of Salmonella enterica subsp. enterica serovar Hessarek isolated from a human stool from an outbreak linked to egg consumption in South Australia. Orientation of the rrn operon and characteristics of the Salmonella virulence plasmid indicates that this serovar is virulent toward humans and birds.

16.
Microbiol Resour Announc ; : e0028924, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39162450

RESUMO

Antimicrobial exposure can potentially lead to increased antimicrobial resistance plasmid transfer. Sequencing data were collected from the RNA of pairs of Salmonella enterica and Escherichia coli exposed or not exposed to tetracycline over time to determine differences in transcription-associated tetracycline exposure during in vitro conjugation experiments.

17.
Microbiol Resour Announc ; : e0000624, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39162457

RESUMO

In this study, we performed whole-genome sequencing of three ciprofloxacin-resistant Salmonella Reading strains isolated from poultry meat. Genomes of S. Reading strains contained an average of 4.81 Mbp size with 52.1% GC. The isolates exhibited blaOXA-10, aac [6']-Iaa, aadA1, cmlA1, qnrS1, and tetA resistance genes and IncX1 and IncX2 plasmids.

18.
Microbiol Resour Announc ; : e0058624, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39162465

RESUMO

Oxford Nanopore long reads of simulated bacterial communities from fresh spinach and surface water were generated (R9.4.1+SQK-LSK109 and R10.4+SQK-LSK112; 0.5, one, and two million reads). Salmonella enterica serotype Heidelberg, Montevideo, or Typhimurium was included alone or in combination in the spinach community, while the water community harbored Pseudomonas aeruginosa.

19.
Gut Microbes ; 16(1): 2392877, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39189642

RESUMO

Salmonella enterica serovar Typhimurium (STm) causes gastroenteritis and can progress to reactive arthritis (ReA). STm forms biofilms in the gut that secrete the amyloid curli, which we previously demonstrated can trigger autoimmunity in mice. HLA-B27 is a genetic risk factor for ReA; activation of the unfolded protein response (UPR) due to HLA-B27 misfolding is thought to play a critical role in ReA pathogenesis. To determine whether curli exacerbates HLA-B27-induced UPR, bone marrow-derived macrophages (BMDMs) isolated from HLA-B27 transgenic (tg) mice were used. BMDMs treated with purified curli exhibited elevated UPR compared to C57BL/6, and curli-induced IL-6 was reduced by pre-treating macrophages with inhibitors of the IRE1α branch of the UPR. In BMDMs, intracellular curli colocalized with GRP78, a regulator of the UPR. In vivo, acute infection with wild-type STm increased UPR markers in the ceca of HLA-B27tg mice compared to C57BL/6. STm biofilms that contain curli were visible in the lumen of cecal tissue sections. Furthermore, curli was associated with macrophages in the lamina propria, colocalizing with GRP78. Together, these results suggest that UPR plays a role in the curli-induced inflammatory response, especially in the presence of HLA-B27, a possible mechanistic link between STm infection and genetic susceptibility to ReA.


Assuntos
Proteínas de Bactérias , Chaperona BiP do Retículo Endoplasmático , Endorribonucleases , Antígeno HLA-B27 , Macrófagos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Serina-Treonina Quinases , Salmonella typhimurium , Resposta a Proteínas não Dobradas , Animais , Camundongos , Antígeno HLA-B27/genética , Antígeno HLA-B27/metabolismo , Antígeno HLA-B27/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Salmonella typhimurium/imunologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Endorribonucleases/metabolismo , Endorribonucleases/genética , Biofilmes/crescimento & desenvolvimento , Humanos , Infecções por Salmonella/imunologia , Infecções por Salmonella/microbiologia , Interleucina-6/metabolismo , Interleucina-6/genética
20.
Microbiol Spectr ; : e0127124, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39189759

RESUMO

Salmonella enterica serovar Typhimurium (ST) is a predominant serovar causing foodborne illnesses worldwide. Traditional detection methods often face challenges, including the need for specialized equipment, skilled operators, and lengthy procedures. To address these limitations, we developed a rapid, sensitive, and specific ST detection method by integrating loop-mediated isothermal amplification (LAMP) with the clustered regularly interspaced short palindromic repeats and associated protein 12b (CRISPR/Cas12b) system, all within a single tube. Our results indicate that the LAMP-CRISPR/Cas12b reaction can be completed isothermally in under 1 h without requiring specialized instruments. The platform's limit of detection (LoD) is 12.5 copies per reaction. Additionally, the system demonstrated 100% inclusivity and exclusivity when tested against 30 reference strains, highlighting its specificity. In practical applications, the LoDs for ST in pure nucleic acid and contaminated fecal samples were 2.32 and 23.2 CFU/mL, respectively, with higher sensitivity observed in pure nucleic acid samples. Overall, our findings underscore the potential of the one-tube LAMP-CRISPR/Cas12b platform as a rapid, sensitive, and specific tool for ST detection, particularly in resource-limited settings. IMPORTANCE: Here, we have provided a novel one-step method for Salmonella Typhimurium detection in one pot by integrating the LAMP assay with the CRISPR/Cas12b system, offering significant advantages in terms of simplicity, speed, and accuracy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA