Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Environ Res ; 259: 119529, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38960359

RESUMO

In this study, pomegranate seed waste (PSW) was added into sand filter (SF) to increase removal efficiency of Lead (Pb(II)) and Copper (Cu(II)) from polluted water. The performance of PSW was compared with activated carbon (AC) as a typical adsorbent. Based on the SEM, EDX, FTIR, XRD, BET and proximate analyses, PSW had porous structure with specific surface area of 2.76 m2/g and active compounds which suggested PSW as an appropriate adsorbent for heavy metals (HMs) adsorption. According to the batch experiments, SF without treatment could only remove 46% and 35% of Pb(II) and Cu(II), respectively. These numbers increased to 88% and 75% for Pb(II) and Cu(II) by adding 3 g/kg PSW to the SF, respectively under the optimal conditions of HMs initial concentrations = 100 mg/L, pH = 7 and contact time = 60 min. The adsorption kinetic and isotherm followed the pseudo-first-order and Langmuir models, respectively indicating that mainly physisorption was involved in the HMs adsorption process of PSW. Based on the column experiments (flow rate = 62.5 mL/min), the Pb(II) and Cu(II) removal increased from 14% to 60% and 10%-55%, respectively after 5 pore volumes (40 min) by adding 3 g/kg PSW to the SF. Breakthrough curves matched better with Thomas mode rather than Adam's Bohart proving Langmuir adsorption isotherm. Our finding suggested modification of SF with PSW is a promising approach for efficient removal of HMs from water.


Assuntos
Cobre , Filtração , Chumbo , Poluentes Químicos da Água , Purificação da Água , Adsorção , Cobre/química , Cobre/isolamento & purificação , Chumbo/química , Chumbo/isolamento & purificação , Cinética , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Filtração/métodos , Purificação da Água/métodos , Areia/química , Punica granatum/química , Sementes/química
2.
Water Res ; 262: 122059, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39059201

RESUMO

The demand for safe drinking water is constantly challenged by increasing biohazards. One widely used solution is implementing indoor-operated slow sand filtration (SSF) as one of the final barriers in water production. SSF has gained popularity due to its low energy consumption and efficient removal of biohazards, especially microorganisms, without using chemicals. SSF involves both physical-chemical and biological removal, particularly in the "Schmutzdecke", which is a biofilm-like layer on the sand bed surface. To achieve the optimal performance of SSF, a systematic understanding of the influence of SSF operating parameters on the Schmutzdecke development and filter filtration performance is required. Our study focused on three operational parameters, i.e., sand material, sand size, and the addition of an inoculum (suspension of matured Schmutzdecke), on the mini-scale filters. The effects of these parameters on the Schmutzdecke development and SSF removal performance were studied by biochemical analyses and 16S amplicon sequencing, together with spiking experiments with Escherichia coli (E. coli) in the mini-scale filters. Our results indicate that the mini-scale filters successfully developed Schmutzdeckes and generated bacterial breakthrough curves efficiently. The sand size and material were found to have an impact on Schmutzdecke's development. The addition of inoculum to new filters did not induce significant changes in the microbial community composition of the Schmutzdecke, but we observed positive effects of faster Schmutzdecke development and better removal performance in some inoculated filters. Our study highlights the value of mini-scale filters for SSF studies, which provide insights into Schmutzdecke microbial ecology and bacterial removal with significantly reduced requirements of materials and effort as compared to larger-scale filters. We found that operational parameters have a greater impact on the Schmutzdecke biochemical characteristics and removal performances than on the microbial community composition. This suggests that Schmutzdecke characteristics may provide more reliable predictors of SSF removal performance, which could help to improve safe drinking water production.


Assuntos
Água Potável , Escherichia coli , Filtração , Areia , Purificação da Água , Água Potável/microbiologia , Purificação da Água/métodos , Dióxido de Silício/química , Biofilmes
3.
Water Res ; 260: 121923, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38878320

RESUMO

Rapid sand filters (RSF) are an established and widely applied technology for the removal of dissolved iron (Fe2+) and ammonium (NH4+) among other contaminants in groundwater treatment. Most often, biological NH4+oxidation is spatially delayed and starts only upon complete Fe2+ depletion. However, the mechanism(s) responsible for the inhibition of NH4+oxidation by Fe2+ or its oxidation (by)products remains elusive, hindering further process control and optimization. We used batch assays, lab-scale columns, and full-scale filter characterizations to resolve the individual impact of the main Fe2+ oxidizing mechanisms and the resulting products on biological NH4+ oxidation. modeling of the obtained datasets allowed to quantitatively assess the hydraulic implications of Fe2+ oxidation. Dissolved Fe2+ and the reactive oxygen species formed as byproducts during Fe2+ oxidation had no direct effect on ammonia oxidation. The Fe3+ oxides on the sand grain coating, commonly assumed to be the main cause for inhibited ammonia oxidation, seemed instead to enhance it. modeling allowed to exclude mass transfer limitations induced by accumulation of iron flocs and consequent filter clogging as the cause for delayed ammonia oxidation. We unequivocally identify the inhibition of NH4+oxidizing organisms by the Fe3+ flocs generated during Fe2+ oxidation as the main cause for the commonly observed spatial delay in ammonia oxidation. The addition of Fe3+ flocs inhibited NH4+oxidation both in batch and column tests, and the removal of Fe3+ flocs by backwashing completely re-established the NH4+removal capacity, suggesting that the inhibition is reversible. In conclusion, our findings not only identify the iron form that causes the inhibition, albeit the biological mechanism remains to be identified, but also highlight the ecological importance of iron cycling in nitrifying environments.


Assuntos
Filtração , Água Subterrânea , Ferro , Nitrificação , Água Subterrânea/química , Ferro/química , Compostos de Amônio , Oxirredução , Amônia , Purificação da Água/métodos
4.
Membranes (Basel) ; 14(6)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38921492

RESUMO

The removal of dissolved organic matter (DOM) from seawater before the reverse osmosis (RO) processes is crucial for alleviating organic fouling of RO membranes. However, research is still insufficiently developed in the comparison of the effectiveness of integrating coagulation with ultrafiltration (UF) or sand filtration (SF) in the pretreatment stage of seawater reverse osmosis (SWRO) for the removal of DOM. In this study, we investigated the effect of pretreatment technologies on RO fouling caused by DOM in seawater, including the integration of coagulation and sand filtration (C-S pretreatment) and the integration of coagulation and ultrafiltration (C-U pretreatment). Both integrated pretreatments achieved comparable DOM removal rates (70.2% for C-U and 69.6% for C-S), and C-S exhibited enhanced removal of UV-absorbing compounds. Although C-U was more proficient in reducing the silt density index (below 2) compared to C-S (above 3) and improved the elimination of humic acid-like organics, it left a higher proportion of tyrosine-protein-like organics, soluble microbial by-product-like organics, and finer organics in the effluent, leading to the formation of a dense cake layer on RO membrane and a higher flux decline. Therefore, suitable technologies should be selected according to specific water conditions to efficiently mitigate RO membrane fouling.

5.
Appl Environ Microbiol ; 90(4): e0225323, 2024 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-38440988

RESUMO

We evaluated a unique model in which four full-scale wastewater treatment plants (WWTPs) with the same treatment schematic and fed with similar influent wastewater were tracked over an 8-month period to determine whether the community assembly would differ in the activated sludge (AS) and sand filtration (SF) stages. For each WWTP, AS and SF achieved an average of 1-log10 (90%) and <0.02-log10 (5%) reduction of total cells, respectively. Despite the removal of cells, both AS and SF had a higher alpha and beta diversity compared to the influent microbial community. Using the Sloan neutral model, it was observed that AS and SF were individually dominated by different assembly processes. Specifically, microorganisms from influent to AS were predominantly determined by the selective niche process for all WWTPs, while the microbial community in the SF was relatively favored by a stochastic, random migration process, except two WWTPs. AS also contributed more to the final effluent microbial community compared with the SF. Given that each WWTP operates the AS independently and that there is a niche selection process driven mainly by the chemical oxygen demand concentration, operational taxonomic units unique to each of the WWTPs were also identified. The findings from this study indicate that each WWTP has its distinct microbial signature and could be used for source-tracking purposes.IMPORTANCEThis study provided a novel concept that microorganisms follow a niche assembly in the activated sludge (AS) tank and that the AS contributed more than the sand filtration process toward the final microbial signature that is unique to each treatment plant. This observation highlights the importance of understanding the microbial community selected by the AS stage, which could contribute toward source-tracking the effluent from different wastewater treatment plants.


Assuntos
Esgotos , Purificação da Água , Esgotos/química , Eliminação de Resíduos Líquidos , Areia , Rios , Águas Residuárias
6.
Sci Total Environ ; 912: 169074, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38056676

RESUMO

The omnipresence of microplastics (MPs) in potable water has become a major concern due to their potential disruptive effect on human health. Therefore, the effective removal of MPs in drinking water is essential for life preservation. In this study, tap water containing microplastic <10 µm in size was treated using constructed pilot-scale rapid sand filtration (RSF) system to investigate the removal efficiency and the mechanisms involved. The results show that the RSF provides significant capacity for the removal and immobilization of MPs < 10 µm diameter (achieving 98 %). Results showed that silicate sand reacted with MPs through a cooperative assembly process, which mainly involved interception, trapping, entanglement, and adsorption. The MPs were quantified by Flow cytometry instrument. A kinetics study underlined the pivotal role of physio-chemisorption in the removal process. MP particles smaller than absorbents, saturation of adsorbents, and reactor hydrodynamics were identified as limiting factors, which were alleviated by backwashing. Backwashing promoted the desorption of up to 97 % MPs, conducive for adsorbent active site regeneration. These findings revealed the critical role of RSF and the importance of backwashing in removing MPs. Understanding the mechanisms involved in removing microplastics from drinking water is crucial in developing more efficient strategies to eliminate them.


Assuntos
Água Potável , Poluentes Químicos da Água , Purificação da Água , Humanos , Adsorção , Microplásticos , Plásticos , Areia
7.
Water Res ; 247: 120816, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37952399

RESUMO

As one of five Laurentian Great Lakes, Lake Erie ranks among the top freshwater drinking sources and ecosystems globally. Historical and current agriculture mismanagement and climate change sustains the environmental landscape for late summer cyanobacterial harmful algal blooms, and consequently, cyanotoxins such as microcystin (MC). Microcystin microbial degradation is a promising mitigation strategy, however the mechanisms controlling the breakdown of MCs in Lake Erie are not well understood. Pelee Island, Ontario, Canada is located in the western basin of Lake Erie and the bacterial community in the sand has demonstrated the capacity of metabolizing the toxin. Through a multi-omic approach, the metabolic, functional and taxonomical signatures of the Pelee Island microbial community during MC-LR degradation was investigated over a 48-hour period to comprehensively study the degradation mechanism. Cleavage of bonds surrounding nitrogen atoms and the upregulation of nitrogen deamination (dadA, alanine dehydrogenase, leucine dehydrogenase) and assimilation genes (glnA, gltB) suggests a targeted isolation of nitrogen by the microbial community for energy production. Methylotrophic pathways RuMP and H4MPT control assimilation and dissimilation of carbon, respectively and differential abundance of Methylophilales indicates an interconnected role through electron exchange of denitrification and methylotrophic pathways. The detected metabolites did not resolve a clear breakdown pathway, but rather the diversity of products in combination with taxonomic and functional results supports that a variety of strategies are applied, such as epoxidation, hydroxylation, and aromatic degradation. Annual repeated exposure to the toxin may have allowed the community to adaptatively establish a novel pathway through functional plasticity and horizontal gene transfer. The culmination of these results reveals the complexity of the Pelee Island sand community and supports a dynamic and cooperative metabolism between microbial species to achieve MC degradation.


Assuntos
Cianobactérias , Microbiota , Lagos/microbiologia , Microcistinas/metabolismo , Areia , Cianobactérias/metabolismo , Nitrogênio/metabolismo , Ontário
8.
Toxins (Basel) ; 15(9)2023 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-37755969

RESUMO

The occurrence of toxic blooms of cyanobacteria has been a matter of public health interest due to the cyanotoxins produced by these microorganisms. Cylindrospermopsin (CYN) is a cyanotoxin of particular concern due to its toxic effects on humans. This study investigated the removal and effects of CYN in ripened slow sand filters (SSFs) treating water from Paranoá Lake, Brasilia, Brazil. Four pilot-scale SSFs were ripened and operated for 74 days. Two contamination peaks with CYN were applied along the filtration run. The improvement of any of the evaluated water quality parameters was not affected by the presence of CYN in the raw water. The SSFs efficiently removed CYN, presenting concentrations lower than 0.8 µg/L in the filtered water. The microbiota of the SSFs were dominated by protozoa of the genus Euglypha and amoebas of the genera Arcella, Centropyxis, and Amoeba, together with some groups of rotifers. These microorganisms played a crucial role in removing total coliforms and E. coli. In addition, CYN was not identified as a determining factor in the microbiota composition.


Assuntos
Toxinas de Cianobactérias , Escherichia coli , Humanos , Brasil , Contaminação de Medicamentos
9.
Sci Total Environ ; 901: 165848, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-37536584

RESUMO

This work studies a biological process based on a microalgae-bacteria consortium for recycling nutrients in a recirculating aquaculture system (RAS) implanted in an intensive marine aquaculture farm. Additionally, some techniques were used for microalgae biomass harvesting and tested the effectiveness of filtration by a column with multi-layer sand to reduce the solids concentrations in the effluent. The consortium was grown in photobioreactors in batch and semi-continuous operation modes using the solids concentrated stream generated in the RAS system. The semi-continuous operation showed a high percentage of TDN and TDP removal, achieving final concentrations of 1.09 ± 0.02 mg·L-1 and 0.01 ± 0.01 mg·L-1, respectively, while DOC was reduced to 3.87 ± 0.06 mg·L-1. The values of productivity 44 ± 9 mg TSS·L-1 indicated that the studied stream is a suitable culture medium for the growth of the microalgae-bacteria consortium. A combination of harvesting techniques was studied, coagulation-flocculation-settling and coagulation-flocculation-flotation. The first step was to optimise the dose of FeCl3 through the coagulation-flocculation test to pre-concentrate the biomass generated, achieving an optimal dose of 0.106 mg Fe·mg TSS-1. Then, two separation processes were applied to the stream and compared: settling and flotation. The maximum removal efficiency (90.2 ± 0.3 %) was obtained in the settling process, so the coagulation-flocculation-settling was select as the best combination of harvesting techniques. Finally, sand filtration was studied as an effluent refining process to improve solids reduction of the water obtained in the harvesting step resulting in an effluent with 17.18 ± 1.49 mg TSS·L-1. The proposed sequence process is capable of recycling nutrients from an intensive marine aquaculture farm by using these resources via transformation into microalgae biomass and generating quality effluent.

10.
Water Res ; 243: 120404, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37586176

RESUMO

Slow sand filters (SSF) are widely used in the production of drinking water as a last barrier in the removal of pathogens. This removal mainly depends on the 'Schmutzdecke', a biofilm-like layer on the surface of the sand bed. Most previous studies focused on the total community as revealed by DNA analysis rather than on the active community, which may lead to an incorrect understanding of the SSF ecology. In the current study, we determined and compared the DNA- (total) and RNA-displayed (active) communities in the Schmutzdecke layer from 10 full-scale slow sand filters and further explored the SSF core microbiome in terms of both presence (DNA) and activity (RNA). Discrepancies were observed between the total and the active community, although there was a consistent grouping in the PCoA analysis. The DNA-displayed community may be somewhat inflated, while the RNA-displayed community could reveal low abundance (or rare) but active community members. The overall results imply that both DNA (presence) and RNA (activity) data should be considered to prevent the underestimation of organisms of functional importance but lower abundance. Microbial communities of studied mature Schmutzdecke were shaped by the influent water. Nevertheless, a core microbiome was shared by the mature Schmutzdeckes from independent filters, representing the dominant and consistent microbial community composition in slow sand filters. In the DNA samples, a total of 33 VSC families ('very strict core', with a relative abundance >0.1% and 100% prevalence) were observed across all filters. Among the RNA samples, there were 18 VSC families, including 16 families that overlapped with the DNA VSC families and 2 unique RNA VSC families. The core microbial community structure was influenced by the operational parameters, including the Schmutzdecke age and the sand size, and was less influenced by water flow. In addition, indicator organisms ('biomarkers') for the Schmutzdecke age, which show the longest duration that SSF can maintain a good operation, were observed in our study. The abundant presence of bacteria belonging to bacteriap25 and Caldilineaceae was associated with older Schmutzdeckes, revealing longer periods of stable operation performance of the filter, while the high abundance of bacteria belonging to Bdellovibrionaceae and Bryobacteraceae related to short periods of stable operation performance.


Assuntos
Água Potável , Microbiota , Purificação da Água , Humanos , Filtração/métodos , Purificação da Água/métodos , Bactérias/genética , Dióxido de Silício/química
11.
J Environ Manage ; 344: 118403, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37364494

RESUMO

Stormwater treatment and reuse can alleviate water pollution and scarcity while current sand filtration systems showed low treatment performance for stormwater. For enhancing E. coli removal in stormwater, this study applied the bermudagrass-derived activated biochars (BCs) in the BC-sand filtration systems for E. coli removal. Compared with the pristine BC (without activation), the FeCl3 and NaOH activations increased the BC carbon content from 68.02% to 71.60% and 81.22% while E. coli removal efficiency increased from 77.60% to 81.16% and 98.68%, respectively. In all BCs, the BC carbon content showed a highly positive correlation with E. coli removal efficiency. The FeCl3 and NaOH activations also led to the enhancement of roughness of BC surface for enhancing E. coli removal by straining (physical entrapment). The main mechanisms for E. coli removal by BC-amended sand column were found to be hydrophobic attraction and straining. Additionally, under 105-107 CFU/mL of E. coli, final E. coli concentration in NaOH activated BC (NaOH-BC) column was one order of magnitude lower than those in pristine BC and FeCl3 activated BC (Fe-BC) columns. The presence of humic acid remarkably lowered the E. coli removal efficiency from 77.60% to 45.38% in pristine BC-amended sand column while slightly lowering the E. coli removal efficiencies from 81.16% and 98.68% to 68.65% and 92.57% in Fe-BC and NaOH-BC-amended sand columns, respectively. Moreover, compared to pristine BC, the activated BCs (Fe-BC and NaOH-BC) also resulted in the lower antibiotics (tetracycline and sulfamethoxazole) concentrations in the effluents from the BC-amended sand columns. Therefore, for the first time, this study indicated NaOH-BC showed high potential for effective treatment of E. coli from stormwater by the BC-amended sand filtration system compared with pristine BC and Fe-BC.


Assuntos
Areia , Purificação da Água , Escherichia coli , Cynodon , Purificação da Água/métodos , Abastecimento de Água , Chuva , Hidróxido de Sódio , Carvão Vegetal/química , Filtração/métodos
12.
Water Res ; 235: 119905, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36989799

RESUMO

Drinking water treatment plants (DWTPs) are designed to remove physical, chemical, and biological contaminants. However, until recently, the role of DWTPs in minimizing the cycling of antibiotic resistance determinants has got limited attention. In particular, the risk of selecting antibiotic-resistant bacteria (ARB) is largely overlooked in chlorine-free DWTPs where biological processes are applied. Here, we combined high-throughput quantitative PCR and metagenomics to analyze the abundance and dynamics of microbial communities, antibiotic resistance genes (ARGs), and mobile genetic elements (MGEs) across the treatment trains of two chlorine-free DWTPs involving dune-based and reservoir-based systems. The microbial diversity of the water increased after all biological unit operations, namely rapid and slow sand filtration (SSF), and granular activated carbon filtration. Both DWTPs reduced the concentration of ARGs and MGEs in the water by circa 2.5 log gene copies mL-1, despite their relative increase in the disinfection sub-units (SSF in dune-based and UV treatment in reservoir-based DWTPs). The total microbial concentration was also reduced (2.5 log units), and none of the DWTPs enriched for bacteria containing genes linked to antibiotic resistance. Our findings highlight the effectiveness of chlorine-free DWTPs in supplying safe drinking water while reducing the concentration of antibiotic resistance determinants. To the best of our knowledge, this is the first study that monitors the presence and dynamics of antibiotic resistance determinants in chlorine-free DWTPs.


Assuntos
Água Potável , Microbiota , Purificação da Água , Água Potável/análise , Antagonistas de Receptores de Angiotensina/análise , Inibidores da Enzima Conversora de Angiotensina/análise , Bactérias/genética , Genes Bacterianos , Antibacterianos/análise , Cloro/análise
13.
Sci Total Environ ; 873: 162344, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36813196

RESUMO

Microplastics and antibiotics were frequently detected in the effluent of sand filtration, while the presence of microplastics may change the interactions between the antibiotics and the quartz sands. However, the influence of microplastics on the transport of antibiotics in sand filtration has not been revealed. In this study, ciprofloxacin (CIP) and sulfamethoxazole (SMX) were respectively grafted on AFM probes to determine the adhesion forces to the representative microplastics (PS and PE) and the quartz sand. CIP and SMX exhibited low and high mobilities in the quartz sands, respectively. Compositional analysis of the adhesion forces indicated that the lower mobility of CIP in sand filtration columns could be attributed to the electrostatic attraction between the quartz sand and CIP compared with repulsion for SMX. Moreover, the significant hydrophobic interaction between the microplastics and the antibiotics could be responsible for the competitive adsorption of the antibiotics to the microplastics from the quartz sands; meanwhile, the π-π interaction further enhanced the adsorption of PS to the antibiotics. As a result of the high mobility of microplastics in the quartz sands, the carrying effect of microplastics enhanced the transport of antibiotics in the sand filtration columns regardless of their original mobilities. This study provided insights into the mechanism of the microplastics on enhancing the transport of antibiotics in sand filtration systems from the perspective of the molecular interaction.


Assuntos
Antibacterianos , Areia , Antibacterianos/química , Quartzo/química , Plásticos/química , Microplásticos , Porosidade , Ciprofloxacina/química , Sulfametoxazol , Análise Espectral
14.
Int J Mol Sci ; 24(2)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36674812

RESUMO

The World Health Organization (WHO) reports that two billion people worldwide lack access to safely managed water sources, including 1.2 billion who already have access to improved water sources. In many countries, household point-of-use (POU) water-treatment options are used to remove or deactivate microorganisms in water, but not all POU technologies meet WHO performance requirements to achieve safe drinking water. To improve the effectiveness of POU technologies, the use of multiple treatment barriers should be used as a way to increase overall treatment performance. The focus of this research is to evaluate multiple barrier treatment using chitosan, an organic coagulant−flocculant, to improve microbial and turbidity reductions in combination with sand filtration. Bench-scale intermittently operated sand filters with 16 cm layers of sands of two different grain sizes representing slow and rapid sand filters were dosed daily over 57 days with microbially spiked surface water volumes corresponding to household use. E. coli bacteria and MS2 coliphage virus reductions were quantified biweekly (N = 17) using culture methods. Bacteria and virus removals were significantly improved over sand filtration without chitosan pretreatment (Wilcoxon Rank-Sum, p < 0.05). When water was pretreated at an optimal chitosan dose of 10 mg/L followed by sand filtration, log10 reductions in bacteria and viruses met the two-star WHO performance level of effectiveness. Microbial and turbidity reductions generally improved over the filter operating period but showed no trends with filtration rates.


Assuntos
Quitosana , Água Potável , Vírus , Purificação da Água , Humanos , Escherichia coli , Dióxido de Silício , Purificação da Água/métodos , Bactérias
15.
Water Res ; 230: 119508, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36610181

RESUMO

The propagation of antibiotic-resistant bacteria (ARB) greatly endangers the ecological safety and human health. This study employed pyrite (FeS2, naturally abundant mineral) for periodate (PI) activation to disinfect ARB. FeS2/PI system could disinfect 1 × 107 CFU mL-1 of kanamycin-resistant E.coli below the limit of detection in 20 min. Efficient ARB inactivation performance was achieved in pH from 3 to 9, ionic strength from 0 to 300 mM, with HA (0.1-10 mg L-1) in suspension, and in real water samples including tap water, river water and sewage. FeS2/PI system could also efficiently disinfect gentamycin-resistant E.coli and Gram-positive B. subtilis. The generated reactive species including Fe(IV), ·O2- and ·OH would attack cell membrane and overwhelmed intracellular defense system. The intracellular kanamycin resistance genes in cells would be released and then degraded in FeS2/PI system. PI preferred to be adsorbed on Fe site of FeS2 (with lower adsorption energy, more occupancy of bonding state and stronger bonding strength). The subsequent transfer of electron cloud from Fe site to PI would cleave IO bond to generate reactive species. Moreover, FeS2/PI system could also combine with sand filtration system to efficiently capture and disinfect ARB. Therefore, FeS2/PI system is a promising approach to inactivate ARB in different scenarios.


Assuntos
Antagonistas de Receptores de Angiotensina , Desinfecção , Humanos , Inibidores da Enzima Conversora de Angiotensina , Antibacterianos/farmacologia , Bactérias , Água
16.
Chemosphere ; 316: 137685, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36603682

RESUMO

Adsorption has proven to be most effective for arsenic removal. But standalone adsorption cannot cater to the need for large-scale treatment in centralized water supply systems. Combining adsorption with other low-pressure membrane processes may aid in scaling up and intensifying the overall arsenic removal. In the present pilot study, a low-cost laterite-derived adsorbent (LDA) has been used in combination with cross-flow ultrafiltration (Ads-UF) to develop a strategy suitable for remediation of arsenic-contaminated water. Effect of adsorbent particles on permeate flux has been assessed at different transmembrane pressure (0.2-0.6 MPa). Two different hybrid configurations, with and without intermediate sand filtration (SF), i.e. Ads-SF-UF and Ads-UF, were considered. Resistance-in-series and combined complete pore block-cake layer models have been used to understand the flux profiles. In the case of arsenic-spiked groundwater, it was observed that flux decline, at 0.6 MPa, was 28% higher with Ads-UF during a 12 h run compared to Ads-SF-UF. Spent LDA retrieved from the sand column was found to retain the elemental composition as that of the unused LDA (as per FT-IR and EDX) and was considered safe for disposal based on Toxicity Characteristic Leaching Procedure (TCLP). Cost estimation for a facility with 200 m3/day treatment capacity has also been presented.


Assuntos
Arsênio , Poluentes Químicos da Água , Purificação da Água , Ultrafiltração , Arsênio/análise , Areia , Espectroscopia de Infravermelho com Transformada de Fourier , Projetos Piloto , Purificação da Água/métodos , Poluentes Químicos da Água/análise , Membranas Artificiais , Adsorção
17.
J Hazard Mater ; 443(Pt A): 130219, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36367474

RESUMO

The fate and transport of microplastics (MPs) during deep bed filtration were investigated using combined laboratory experiments and numerical modeling. A series of column experiments were conducted within the designated ranges of six operating parameters (i.e., size of the MP and collector, seepage velocity, porosity, temperature, and ionic strength). A variance-based sensitivity analysis, the Fourier amplitude sensitivity test, was conducted to determine the priority in affecting both the attachment coefficient at the pore scale, and the subsequent stabilized height of the breakthrough curve at the continuum scale, which follows non-monotonic trends with singularity in the size of MP (i.e., 1 µm). Finally, Damkohler numbers were introduced to analyze the dominant mechanisms (e.g., attachment, detachment, or straining) in the coupled hydro-chemical process. The robustness of conceptual frameworks bridges the gap between pore-scale interactions and the explicit MPs removal in the continuum scale, which could support decision-making in determining the priority of parameters to retain MPs during deep bed filtration.


Assuntos
Microplásticos , Areia , Plásticos , Filtração , Porosidade
18.
Nanomaterials (Basel) ; 14(1)2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38202487

RESUMO

The efficiency of sand filtration was investigated in terms of the behavior of the nanoplastics (NPLs) with different surface functionalities. The initial condition concentrations of NPLs were varied, and their effects on retention and transport were investigated under a constant flow rate in saturated porous media. The behavior of NPLs in this porous system was discussed by considering Z- average size and zeta (ζ) potential measurements of each effluent. The retention efficiencies of NPLs were ranked as functionalized with amidine [A-PS]+ > with sulfate [S-PS]- > with surfactant-coated amidine [SDS-A-PS]-. The reversibility of the adsorption process was revealed by introducing surfactant into the sand filter system containing adsorbed [A-PS]+ at three different initial state concentration conditions. The deposition behavior on sand grain showed that positively charged NPLs were attached to the quartz surface, and negatively charged NPLs were attached to the edge of the clay minerals, which can be caused by electrical heterogeneities. The homoaggregates made of positively charged NPLs were more compact than those made of negatively charged NPLs and surfactant-coated NPLs. An anti-correlation was revealed, suggesting a connection between the fractal dimension (Df) of NPL aggregates and retention efficiencies. Increased Df values are associated with decreased retention efficiencies.The findings underscore the crucial influence of NPL surface properties in terms of retention efficiency and reversible adsorption in the presence of surfactants in sand filtration systems.

19.
Toxins (Basel) ; 14(10)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36287933

RESUMO

Africa's water needs are often supported by eutrophic water bodies dominated by cyanobacteria posing health threats to riparian populations from cyanotoxins, and Lake Victoria is no exception. In two embayments of the lake (Murchison Bay and Napoleon Gulf), cyanobacterial surveys were conducted to characterize the dynamics of cyanotoxins in lake water and water treatment plants. Forty-six cyanobacterial taxa were recorded, and out of these, fourteen were considered potentially toxigenic (i.e., from the genera Dolichospermum, Microcystis, Oscillatoria, Pseudanabaena and Raphidiopsis). A higher concentration (ranging from 5 to 10 µg MC-LR equiv. L−1) of microcystins (MC) was detected in Murchison Bay compared to Napoleon Gulf, with a declining gradient from the inshore (max. 15 µg MC-LR equiv. L−1) to the open lake. In Murchison Bay, an increase in Microcystis sp. biovolume and MC was observed over the last two decades. Despite high cell densities of toxigenic Microcystis and high MC concentrations, the water treatment plant in Murchison Bay efficiently removed the cyanobacterial biomass, intracellular and dissolved MC to below the lifetime guideline value for exposure via drinking water (<1.0 µg MC-LR equiv. L−1). Thus, the potential health threats stem from the consumption of untreated water and recreational activities along the shores of the lake embayments. MC concentrations were predicted from Microcystis cell numbers regulated by environmental factors, such as solar radiation, wind speed in the N−S direction and turbidity. Thus, an early warning through microscopical counting of Microcystis cell numbers is proposed to better manage health risks from toxigenic cyanobacteria in Lake Victoria.


Assuntos
Cianobactérias , Água Potável , Microcystis , Purificação da Água , Microcistinas , Lagos/microbiologia , Toxinas de Cianobactérias
20.
Microorganisms ; 10(10)2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36296256

RESUMO

Cyclospora cayetanensis is an enigmatic human parasite that sickens thousands of people worldwide. The scarcity of research material and lack of any animal model or cell culture system slows research, denying the produce industry, epidemiologists, and regulatory agencies of tools that might aid diagnosis, risk assessment, and risk abatement. Fortunately, related species offer a strong foundation when used as surrogates to study parasites of this type. Species of Eimeria lend themselves especially well as surrogates for C. cayetanensis. Those Eimeria that infect poultry can be produced in abundance, share many biological features with Cyclospora, pose no risk to the health of researchers, and can be studied in their natural hosts. Here, we overview the actual and potential uses of such surrogates to advance understanding of C. cayetanensis biology, diagnostics, control, and genomics, focusing on opportunities to improve prevention, surveillance, risk assessment, and risk reduction. Studying Eimeria surrogates accelerates progress, closing important research gaps and refining promising tools for producers and food safety regulators to monitor and ameliorate the food safety risks imposed by this emerging, enigmatic parasite.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA