Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 974
Filtrar
1.
Cancer Lett ; 599: 217151, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39094827

RESUMO

Plexiform neurofibromas (PNFs) are a prevalent and severe phenotype associated with NF1, characterized by a high teratogenic rate and potential for malignant transformation. The growth and recurrence of PNFs are attributed to aberrant proliferation and migration of Nf1-deficient Schwann cells. Protein tyrosine phosphatase receptor S (PTPRS) is believed to modulate cell migration and invasion by inhibiting the EMT process in NF1-derived malignant peripheral nerve sheath tumors. Nevertheless, the specific role of PTPRS in NF1-derived PNFs remains to be elucidated. The study utilized the GEO database and tissue microarray to illustrate a decrease in PTPRS expression in PNF tissues, linked to tumor recurrence. Furthermore, the down- and over-expression of PTPRS in Nf1-deficient Schwann cell lines resulted in the changes of cell migration and EMT processes. Additionally, RTK assay and WB showed that PTPRS knockdown can promote EGFR expression and phosphorylation. The restoration of EMT processes disrupted by alterations in PTPRS levels in Schwann cells can be achieved through EGFR knockdown and EGFR inhibitor. Moreover, high EGFR expression has been significantly correlated with poor prognosis. These findings underscore the potential role of PTPRS as a tumor suppressor in the recurrence of PNF via the regulation of EGFR-mediated EMT processes, suggesting potential targets for future clinical interventions.


Assuntos
Movimento Celular , Transição Epitelial-Mesenquimal , Receptores ErbB , Neurofibroma Plexiforme , Células de Schwann , Células de Schwann/metabolismo , Células de Schwann/patologia , Humanos , Neurofibroma Plexiforme/patologia , Neurofibroma Plexiforme/genética , Neurofibroma Plexiforme/metabolismo , Receptores ErbB/metabolismo , Receptores ErbB/genética , Linhagem Celular Tumoral , Neurofibromina 1/genética , Neurofibromina 1/metabolismo , Regulação Neoplásica da Expressão Gênica , Fosforilação , Transdução de Sinais , Recidiva Local de Neoplasia/patologia , Recidiva Local de Neoplasia/genética , Neurofibromatose 1/genética , Neurofibromatose 1/metabolismo , Neurofibromatose 1/patologia , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/genética , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo
2.
Development ; 151(15)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39092608

RESUMO

Melanocytes evolved to produce the melanin that gives colour to our hair, eyes and skin. The melanocyte lineage also gives rise to melanoma, the most lethal form of skin cancer. The melanocyte lineage differentiates from neural crest cells during development, and most melanocytes reside in the skin and hair, where they are replenished by melanocyte stem cells. Because the molecular mechanisms necessary for melanocyte specification, migration, proliferation and differentiation are co-opted during melanoma initiation and progression, studying melanocyte development is directly relevant to human disease. Here, through the lens of advances in cellular omic and genomic technologies, we review the latest findings in melanocyte development and differentiation, and how these developmental pathways become dysregulated in disease.


Assuntos
Diferenciação Celular , Linhagem da Célula , Melanócitos , Melanoma , Melanócitos/metabolismo , Melanócitos/citologia , Humanos , Animais , Melanoma/patologia , Melanoma/metabolismo , Melanoma/genética , Crista Neural/metabolismo , Proliferação de Células , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/genética
3.
Pract Neurol ; 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39174303

RESUMO

Vestibular schwannoma is a common benign tumour that may cause local complications. However, vestibular schwannoma has a known association with communicating hydrocephalus presenting with symptoms of normal pressure hydrocephalus and requiring treatment by ventricular shunting or tumour resection. We report a 79-year-old woman who presented with subacute gait apraxia, cognitive impairment and urinary incontinence. CT and MR imaging identified a 20 mm vestibular schwannoma and communicating hydrocephalus; her cerebrospinal fluid (CSF) protein was elevated. Her symptoms improved following ventriculoperitoneal shunt insertion. The mechanism by which non-obstructing vestibular schwannoma causes hydrocephalus is unclear, but hyperproteinorrachia is probably important, likely by impeding CSF resorption.

4.
Front Pharmacol ; 15: 1399363, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39005937

RESUMO

Background: Leprosy is a chronic infectious disease caused by Mycobacterium leprae, which can lead to a disabling neurodegenerative condition. M. leprae preferentially infects skin macrophages and Schwann cells-glial cells of the peripheral nervous system. The infection modifies the host cell lipid metabolism, subverting it in favor of the formation of cholesterol-rich lipid droplets (LD) that are essential for bacterial survival. Although researchers have made progress in understanding leprosy pathogenesis, many aspects of the molecular and cellular mechanisms of host-pathogen interaction still require clarification. The purinergic system utilizes extracellular ATP and adenosine as critical signaling molecules and plays several roles in pathophysiological processes. Furthermore, nucleoside surface receptors such as the adenosine receptor A2AR involved in neuroimmune response, lipid metabolism, and neuron-glia interaction are targets for the treatment of different diseases. Despite the importance of this system, nothing has been described about its role in leprosy, particularly adenosinergic signaling (AdoS) during M. leprae-Schwann cell interaction. Methods: M. leprae was purified from the hind footpad of athymic nu/nu mice. ST88-14 human cells were infected with M. leprae in the presence or absence of specific agonists or antagonists of AdoS. Enzymatic activity assays, fluorescence microscopy, Western blotting, and RT-qPCR analysis were performed. M. leprae viability was investigated by RT-qPCR, and cytokines were evaluated by enzyme-linked immunosorbent assay. Results: We demonstrated that M. leprae-infected Schwann cells upregulated CD73 and ADA and downregulated A2AR expression and the phosphorylation of the transcription factor CREB (p-CREB). On the other hand, activation of A2AR with its selective agonist, CGS21680, resulted in: 1) reduced lipid droplets accumulation and pro-lipogenic gene expression; 2) reduced production of IL-6 and IL-8; 3) reduced intracellular M. leprae viability; 4) increased levels of p-CREB. Conclusion: These findings suggest the involvement of the AdoS in leprosy neuropathogenesis and support the idea that M. leprae, by downmodulating the expression and activity of A2AR in Schwann cells, decreases A2AR downstream signaling, contributing to the maintenance of LD accumulation and intracellular viability of the bacillus.

5.
Neurosci Lett ; 837: 137916, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39059459

RESUMO

After peripheral nerve injury (PNI), the long-term healing process at the injury site involves a progressive accumulation of collagen fibers and the development of localized scar tissue. Excessive formation of scar tissue within nerves hinders the process of nerve repair. In this study, we demonstrate that scar formation following nerve injury induces alterations in the local physical microenvironment, specifically an increase in nerve stiffness. Recent research has indicated heightened expression of Piezo1 in Schwann cells (SCs). Our findings also indicate Piezo1 expression in SCs and its association with suppressed proliferation and migration. Transcriptomic data suggests that activation of Piezo1 results in elevated expression of senescence-associated genes. GO enrichment analysis reveals upregulation of the TGF-ß pathway. Overall, our study highlights the potential for Piezo1-induced signaling to regulate SC senescence and its potential significance in the pathophysiology of fibrotic scar formation surrounding peripheral nerves.


Assuntos
Senescência Celular , Cicatriz , Fibrose , Canais Iônicos , Traumatismos dos Nervos Periféricos , Células de Schwann , Células de Schwann/metabolismo , Células de Schwann/patologia , Animais , Cicatriz/metabolismo , Cicatriz/patologia , Senescência Celular/fisiologia , Canais Iônicos/metabolismo , Canais Iônicos/genética , Traumatismos dos Nervos Periféricos/metabolismo , Traumatismos dos Nervos Periféricos/patologia , Proliferação de Células , Camundongos , Fator de Crescimento Transformador beta/metabolismo , Masculino
6.
Biochem Biophys Res Commun ; 729: 150353, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38972137

RESUMO

Research into Schwann cell (SC)-related diseases has been hampered by the difficulty of obtaining human-derived SCs, which have limited proliferative capacity. This has resulted in a delay in progress in drug discovery and cell therapy targeting SCs. To overcome these limitations, we developed a robust method for inducing the differentiation of human induced pluripotent stem cells (hiPSCs) into SCs. We established hiPSC lines and successfully generated high-purity Schwann cell precursors (SCPs) from size-controlled hiPSC aggregates by precisely timed treatment with our proprietary enzyme solution. Such SCPs were successfully expanded and further differentiated into myelin basic protein (MBP) expressing SC populations when treated with an appropriate medium containing dibutyryl-cAMP (db-cAMP). These differentiated cells secreted factors that induced neurite outgrowth in vitro. Our method allows for the efficient and stable production of SCPs and SCs from hiPSCs. This robust induction and maturation method has the potential to be a valuable tool in drug discovery and cell therapy targeting SC-related diseases.


Assuntos
Diferenciação Celular , Células-Tronco Pluripotentes Induzidas , Células de Schwann , Células de Schwann/citologia , Células de Schwann/metabolismo , Humanos , Diferenciação Celular/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteína Básica da Mielina/metabolismo , Proteína Básica da Mielina/genética , Células Cultivadas , Linhagem Celular , Bucladesina/farmacologia , Técnicas de Cultura de Células/métodos
7.
Hand Clin ; 40(3): 409-420, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38972685

RESUMO

Electrical stimulation is emerging as a perioperative strategy to improve peripheral nerve regeneration and enhance functional recovery. Despite decades of research, new insights into the complex multifaceted mechanisms of electrical stimulation continue to emerge, providing greater understanding of the neurophysiology of nerve regeneration. In this study, we summarize what is known about how electrical stimulation modulates the molecular cascades and cellular responses innate to nerve injury and repair, and the consequential effects on axonal growth and plasticity. Further, we discuss how electrical stimulation is delivered in preclinical and clinical studies and identify knowledge gaps that may provide opportunities for optimization.


Assuntos
Terapia por Estimulação Elétrica , Regeneração Nervosa , Traumatismos dos Nervos Periféricos , Humanos , Regeneração Nervosa/fisiologia , Traumatismos dos Nervos Periféricos/terapia , Traumatismos dos Nervos Periféricos/fisiopatologia , Animais , Plasticidade Neuronal/fisiologia
8.
Int J Pharm ; 661: 124477, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39013530

RESUMO

Peripheral nerve injuries, predominantly affecting individuals aged 20-40, pose significant healthcare challenges, with current surgical methods often failing to achieve complete functional recovery. This study focuses on the development of 3D printed hydrogel nerve conduits using modified hyaluronic acid (HA) for potentially enhancing peripheral nerve regeneration. Hyaluronic acid was chemically altered with cysteamine HCl and methacrylic anhydride to create thiolated HA (HA-SH) and methacrylated HA (HA-MA), achieving a modification degree of approximately 20 %. This modification was crucial to maintain the receptor interaction of HA. The modified HA was rigorously tested to ensure cytocompatibility in neuronal and glial cell lines. Subsequently, various 3D printed HA formulations were evaluated, focusing on improving HA's inherent mechanical weaknesses. These formulations were assessed for cytotoxicity through direct contact and elution extract testing, confirming their safety over a 24-h period. Among the neurotrophic compounds tested, Tyrosol emerged as the most effective in promoting Schwann cell proliferation in vitro. The 3D printed HA system demonstrated proficiency in loading and releasing Tyrosol at physiological pH. The findings from this research highlight the promising role of 3D printed HA and Tyrosol in the field of nerve tissue engineering, offering a novel approach to peripheral nerve regeneration.


Assuntos
Proliferação de Células , Ácido Hialurônico , Regeneração Nervosa , Impressão Tridimensional , Células de Schwann , Células de Schwann/efeitos dos fármacos , Ácido Hialurônico/química , Ácido Hialurônico/administração & dosagem , Proliferação de Células/efeitos dos fármacos , Regeneração Nervosa/efeitos dos fármacos , Animais , Linhagem Celular , Hidrogéis/química , Hidrogéis/administração & dosagem , Humanos , Ratos , Engenharia Tecidual/métodos , Traumatismos dos Nervos Periféricos/tratamento farmacológico
9.
Glia ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38989661

RESUMO

Rapid nerve conduction in the peripheral nervous system (PNS) is facilitated by the multilamellar myelin sheath encasing many axons of peripheral nerves. Charcot-Marie-Tooth type 1A (CMT1A), and hereditary neuropathy with liability to pressure palsy (HNPP) are common demyelinating inherited peripheral neuropathies and are caused by mutations in the peripheral myelin protein 22 (PMP22) gene. Duplication of PMP22 leads to its overexpression and causes CMT1A, while its deletion results in PMP22 under expression and causes HNPP. Here, we investigated novel targets for modulating the protein level of PMP22 in HNPP. We found that genetic attenuation of the transcriptional coactivator Yap in Schwann cells reduces p-TAZ levels, increased TAZ activity, and increases PMP22 in peripheral nerves. Based on these findings, we ablated Yap alleles in Schwann cells of the Pmp22-haploinsufficient mouse model of HNPP and identified fewer tomacula on morphological assessment and improved nerve conduction in peripheral nerves. These findings suggest YAP modulation may be a new avenue for treatment of HNPP.

10.
Cells ; 13(13)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38995011

RESUMO

Unsuccessful axonal regeneration in transected spinal cord injury (SCI) is mainly attributed to shortage of growth factors, inhibitory glial scar, and low intrinsic regenerating capacity of severely injured neurons. Previously, we constructed an axonal growth permissive pathway in a thoracic hemisected injury by transplantation of Schwann cells overexpressing glial-cell-derived neurotrophic factor (SCs-GDNF) into the lesion gap as well as the caudal cord and proved that this novel permissive bridge promoted the regeneration of descending propriospinal tract (dPST) axons across and beyond the lesion. In the current study, we subjected rats to complete thoracic (T11) spinal cord transections and examined whether these combinatorial treatments can support dPST axons' regeneration beyond the transected injury. The results indicated that GDNF significantly improved graft-host interface by promoting integration between SCs and astrocytes, especially the migration of reactive astrocyte into SCs-GDNF territory. The glial response in the caudal graft area has been significantly attenuated. The astrocytes inside the grafted area were morphologically characterized by elongated and slim process and bipolar orientation accompanied by dramatically reduced expression of glial fibrillary acidic protein. Tremendous dPST axons have been found to regenerate across the lesion and back to the caudal spinal cord which were otherwise difficult to see in control groups. The caudal synaptic connections were formed, and regenerated axons were remyelinated. The hindlimb locomotor function has been improved.


Assuntos
Axônios , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Regeneração Nervosa , Células de Schwann , Traumatismos da Medula Espinal , Animais , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/terapia , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/fisiopatologia , Células de Schwann/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Axônios/metabolismo , Ratos , Ratos Sprague-Dawley , Feminino , Astrócitos/metabolismo
11.
Oncol Lett ; 28(3): 403, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38983126

RESUMO

Granular cell tumors (GCTs) are neoplasms of uncertain histopathological etiology and therefore there are no universally accepted treatment strategies. GCTs are characterized by abundant eosinophilic granules. Since they are predominantly located in the skin and subcutaneous tissues, gastric GCTs are exceedingly rare. The present study documents the case of a 52-year-old man who visited the Gastroenterology Clinic of the People's Hospital of Putuo District (Zhoushan, China) due to upper abdominal fullness. Endoscopic ultrasonography revealed a well-defined hypoechoic nodule in the submucosal layer of the stomach body. The lesion was completely excised using endoscopic submucosal dissection and the patient made a full postoperative recovery. Immunohistochemistry showed positivity for S100 and CD68, with CD34 expression surrounding the tumor cells. At telephone follow-up until May 2024, the patient's fullness and discomfort were noted to be relieved. The characteristics of the CD34 expression pattern may serve as a novel basis for the pathological diagnosis of gastric GCTs. Endoscopic resection is a feasible option for gastric GCTs smaller than 2 cm.

12.
Adv Sci (Weinh) ; : e2400066, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38973154

RESUMO

The mechanism and function of the expression of Schwann characteristics by nevus cells in the mature zone of the dermis are unknown. Early growth response 3 (EGR3) induces Schwann cell-like differentiation of melanoma cells by simulating the process of nevus maturation, which leads to a strong phenotypic transformation of the cells, including the formation of long protrusions and a decrease in cell motility, proliferation, and melanin production. Meanwhile, EGR3 regulates the levels of myelin protein zero (MPZ) and collagen type I alpha 1 chain (COL1A1) through SRY-box transcription factor 10 (SOX10)-dependent and independent mechanisms, by binding to non-strictly conserved motifs, respectively. Schwann cell-like differentiation demonstrates significant benefits in both in vivo and clinical studies. Finally, a CD86-P2A-EGR3 recombinant mRNA vaccine is developed which leads to tumor control through forced cell differentiation and enhanced immune infiltration. Together, these data support further development of the recombinant mRNA as a treatment for cancer.

13.
Cell Physiol Biochem ; 58(4): 292-310, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38973197

RESUMO

BACKGROUND/AIMS: Tactile perception relies on mechanoreceptors and nerve fibers, including c-fibers, Aß-fibers and Aδ-fibers. Schwann cells (SCs) play a crucial role in supporting nerve fibers, with non-myelinating SCs enwrapping c-fibers and myelinating SCs ensheathing Aß and Aδ fibers. Recent research has unveiled new functions for cutaneous sensory SCs, highlighting the involvement of nociceptive SCs in pain perception and Meissner corpuscle SCs in tactile sensation. Furthermore, Piezo2, previously associated with Merkel cell tactile sensitivity, has been identified in SCs. The goal of this study was to investigate the channels implicated in SC mechanosensitivity and the release process of neurotrophic factor secretion. METHODS: Immortalized IFRS1 SCs and human primary SCs generated two distinct subtypes of SCs: undifferentiated and differentiated SCs. Quantitative PCR was employed to evaluate the expression of differentiation markers and mechanosensitive channels, including TRP channels (TRPV4, TRPM7 and TRPA1) and Piezo channels (Piezo1 and Piezo2). To validate the functionality of specific mechanosensitive channels, Ca2+ imaging and electronic cell sizing experiments were conducted under hypotonic conditions, and inhibitors and siRNAs were used. Protein expression was assessed by Western blotting and immunostaining. Additionally, secretome analysis was performed to evaluate the release of neurotrophic factors in response to hypotonic stimulation, with BDNF, a representative trophic factor, quantified using ELISA. RESULTS: Induction of differentiation increased Piezo2 mRNA expression levels both in IFRS1 and in human primary SCs. Both cell types were responsive to hypotonic solutions, with differentiated SCs displaying a more pronounced response. Gd3+ and FM1-43 effectively inhibited hypotonicity-induced Ca2+ transients in differentiated SCs, implicating Piezo2 channels. Conversely, inhibitors of Piezo1 and TRPM7 (Dooku1 and NS8593, respectively) had no discernible impact. Moreover, Piezo2 in differentiated SCs appeared to participate in regulatory volume decreases (RVD) after cell swelling induced by hypotonic stimulation. A Piezo2 deficiency correlated with reduced RVD and prolonged cell swelling, leading to heightened release of the neurotrophic factor BDNF by upregulating the function of endogenously expressed Ca2+-permeable TRPV4. CONCLUSION: Our study unveils the mechanosensitivity of SCs and implicates Piezo2 channels in the release of neurotrophic factors from SCs. These results suggest that Piezo2 may contribute to RVD, thereby maintaining cellular homeostasis, and may also serve as a negative regulator of neurotrophic factor release. These findings underscore the need for further investigation into the role of Piezo2 in SC function and neurotrophic regulation.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Tamanho Celular , Canais Iônicos , Células de Schwann , Células de Schwann/metabolismo , Células de Schwann/citologia , Humanos , Canais Iônicos/metabolismo , Tamanho Celular/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Canais de Cátion TRPV/metabolismo , Canais de Cátion TRPV/genética , RNA Interferente Pequeno/metabolismo , Diferenciação Celular , Células Cultivadas , Interferência de RNA , Cálcio/metabolismo , Canal de Cátion TRPA1/metabolismo , Canal de Cátion TRPA1/genética , Mecanotransdução Celular
14.
Glia ; 72(9): 1572-1589, 2024 09.
Artigo em Inglês | MEDLINE | ID: mdl-38895764

RESUMO

The velocity of axonal impulse propagation is facilitated by myelination and axonal diameters. Both parameters are frequently impaired in peripheral nerve disorders, but it is not known if the diameters of myelinated axons affect the liability to injury or the efficiency of functional recovery. Mice lacking the adaxonal myelin protein chemokine-like factor-like MARVEL-transmembrane domain-containing family member-6 (CMTM6) specifically from Schwann cells (SCs) display appropriate myelination but increased diameters of peripheral axons. Here we subjected Cmtm6-cKo mice as a model of enlarged axonal diameters to a mild sciatic nerve compression injury that causes temporarily reduced axonal diameters but otherwise comparatively moderate pathology of the axon/myelin-unit. Notably, both of these pathological features were worsened in Cmtm6-cKo compared to genotype-control mice early post-injury. The increase of axonal diameters caused by CMTM6-deficiency thus does not override their injury-dependent decrease. Accordingly, we did not detect signs of improved regeneration or functional recovery after nerve compression in Cmtm6-cKo mice; depleting CMTM6 in SCs is thus not a promising strategy toward enhanced recovery after nerve injury. Conversely, the exacerbated axonal damage in Cmtm6-cKo nerves early post-injury coincided with both enhanced immune response including foamy macrophages and SCs and transiently reduced grip strength. Our observations support the concept that larger peripheral axons are particularly susceptible toward mechanical trauma.


Assuntos
Axônios , Animais , Axônios/patologia , Axônios/metabolismo , Axônios/fisiologia , Camundongos , Camundongos Knockout , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Células de Schwann/metabolismo , Células de Schwann/patologia , Bainha de Mielina/metabolismo , Bainha de Mielina/patologia , Nervo Isquiático/lesões , Nervo Isquiático/patologia , Traumatismos dos Nervos Periféricos/patologia , Traumatismos dos Nervos Periféricos/metabolismo , Traumatismos dos Nervos Periféricos/fisiopatologia
15.
Cureus ; 16(4): e57674, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38707060

RESUMO

Mucosal Schwann cell hamartomas (MSCHs) are non-common noncancerous growths derived from Schwann cells in the peripheral nervous system, often found unexpectedly during routine colonoscopy examinations. These growths primarily occur in the colon, although they can also appear in the esophagus and are not linked to familial cancer syndromes. Diagnosis relies on specific histological characteristics and staining patterns. It is essential to distinguish MSCHs accurately since their appearance can closely resemble that of malignant tumors. Characteristically, these hamartomas test positive for S-100 protein but do not exhibit markers typical of other gastrointestinal growths, such as gastrointestinal stromal tumors (negative for KIT), leiomyomas (negative for smooth muscle actin), neurofibromas (negative for CD34), and perineuromas (negative for epithelial membrane antigen or claudin-1). This report discusses the case of a 48-year-old woman who was diagnosed with MSCH during a screening colonoscopy.

16.
Eur J Case Rep Intern Med ; 11(5): 004461, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38715874

RESUMO

Schwann cells are found in the peripheral nervous system and can sometimes appear as benign hamartoma lesions in various parts of the body. Although rare in the gastrointestinal (GI) tract, they have been observed in the colon. Recently, mucosal Schwann cell hamartomas of the GI tract have been studied, and it was discovered that they had yet to be investigated up to 2009. In this context, we present the case of a 60-year-old man who was found to have lesions in the transverse colon during a routine colonoscopy. No further investigations were conducted since these lesions have not been associated with any risk of malignancy transformation and have not been linked to any inherited syndromes. LEARNING POINTS: Mucosal Schwann cell hamartomas are rare types of polyps that can be found anywhere in the gastrointestinal tract.They are benign lesions not usually associated with any inherited syndrome and they are usually found incidentally by endoscopy.These polyps are benign and might not require further follow-up once diagnosed.

17.
Neuropeptides ; 106: 102438, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38749170

RESUMO

Functional recovery after nerve injury is a significant challenge due to the complex nature of nerve injury repair and the non-regeneration of neurons. Schwann cells (SCs), play a crucial role in the nerve injury repair process because of their high plasticity, secretion, and migration abilities. Upon nerve injury, SCs undergo a phenotypic change and redifferentiate into a repair phenotype, which helps in healing by recruiting phagocytes, removing myelin fragments, promoting axon regeneration, and facilitating myelin formation. However, the repair phenotype can be unstable, limiting the effectiveness of the repair. Recent research has found that transplantation of SCs can be an effective treatment option, therefore, it is essential to comprehend the phenotypic changes of SCs and clarify the related mechanisms to develop the transplantation therapy further.


Assuntos
Regeneração Nervosa , Traumatismos dos Nervos Periféricos , Fenótipo , Células de Schwann , Células de Schwann/fisiologia , Animais , Regeneração Nervosa/fisiologia , Humanos , Traumatismos dos Nervos Periféricos/terapia , Recuperação de Função Fisiológica/fisiologia , Bainha de Mielina/fisiologia
18.
J Nanobiotechnology ; 22(1): 283, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789980

RESUMO

BACKGROUND: Endothelial cell (EC)-driven intraneural revascularization (INRV) and Schwann cells-derived exosomes (SCs-Exos) both play crucial roles in peripheral nerve injury (PNI). However, the interplay between them remains unclear. We aimed to elucidate the effects and underlying mechanisms of SCs-Exos on INRV following PNI. RESULTS: We found that GW4869 inhibited INRV, as well as that normoxic SCs-Exos (N-SCs-Exos) exhibited significant pro-INRV effects in vivo and in vitro that were potentiated by hypoxic SCs-Exos (H-SCs-Exos). Upregulation of glycolysis emerged as a pivotal factor for INRV after PNI, as evidenced by the observation that 3PO administration, a glycolytic inhibitor, inhibited the INRV process in vivo and in vitro. H-SCs-Exos more significantly enhanced extracellular acidification rate/oxygen consumption rate ratio, lactate production, and glycolytic gene expression while simultaneously suppressing acetyl-CoA production and pyruvate dehydrogenase E1 subunit alpha (PDH-E1α) expression than N-SCs-Exos both in vivo and in vitro. Furthermore, we determined that H-SCs-Exos were more enriched with miR-21-5p than N-SCs-Exos. Knockdown of miR-21-5p significantly attenuated the pro-glycolysis and pro-INRV effects of H-SCs-Exos. Mechanistically, miR-21-5p orchestrated EC metabolism in favor of glycolysis by targeting von Hippel-Lindau/hypoxia-inducible factor-1α and PDH-E1α, thereby enhancing hypoxia-inducible factor-1α-mediated glycolysis and inhibiting PDH-E1α-mediated oxidative phosphorylation. CONCLUSION: This study unveiled a novel intrinsic mechanism of pro-INRV after PNI, providing a promising therapeutic target for post-injury peripheral nerve regeneration and repair.


Assuntos
Células Endoteliais , Exossomos , Glicólise , Traumatismos dos Nervos Periféricos , Células de Schwann , Células de Schwann/metabolismo , Exossomos/metabolismo , Animais , Células Endoteliais/metabolismo , Camundongos , Traumatismos dos Nervos Periféricos/metabolismo , Traumatismos dos Nervos Periféricos/terapia , Masculino , Ratos , MicroRNAs/metabolismo , MicroRNAs/genética , Camundongos Endogâmicos C57BL , Neovascularização Fisiológica , Ratos Sprague-Dawley , Compostos de Anilina , Compostos de Benzilideno
19.
Neurochem Res ; 49(8): 2120-2130, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38819695

RESUMO

Spinal cord injury (SCI) is a severe neurological condition that involves a lengthy pathological process. This process leads to the upregulation of chondroitin sulfate proteoglycans (CSPGs) by reactive glia, which impedes repair and regeneration in the spinal cord. The role of the CSPG-specific receptor protein tyrosine phosphatase-sigma (PTP-σ) in post-SCI remains largely unexplored. Exosomes have great potential in the diagnosis, prognosis, and treatment of SCI due to their ability to easily cross the blood‒brain barrier. Schwann cell-derived exosomes (SCDEs) promote functional recovery in mice post-SCI by decreasing CSPG deposition. However, the mechanism by which SCDEs decrease CSPGs after SCI remains unknown. Herein, we observed elevated levels of PTP-σ and increased CSPG deposition during glial scar formation after SCI in vivo. After SCDEs were injected into SCI mice, CSPG deposition decreased in scar tissue at the injury site, the expression of PTP-σ increased during axonal growth around the injury site, and motor function subsequently recovered. Additionally, we demonstrated that the use of both Rho/ROCK inhibitors and SCDEs inhibited the reparative effects of SCDEs on scar tissue after SCI. In conclusion, our study revealed that treatment with SCDEs targeting the Rho/ROCK signaling pathway reduced PTP-σ activation in the CSPG post-SCI, which inhibited scar tissue formation.


Assuntos
Axônios , Proteoglicanas de Sulfatos de Condroitina , Exossomos , Células de Schwann , Traumatismos da Medula Espinal , Quinases Associadas a rho , Animais , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia , Células de Schwann/metabolismo , Exossomos/metabolismo , Quinases Associadas a rho/metabolismo , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Axônios/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/fisiologia , Feminino , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo
20.
Cell Biosci ; 14(1): 52, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649908

RESUMO

BACKGROUND AND AIMS: The evolution of demyelination in individual internodes remains unclear although it has been noticed the paranodal demyelination precedes internodal demyelination in neuropathies with diverse aetiologies. For therapeutic purpose, it is fundamental to know whether the demyelinating procedure in affected internodes can be interrupted. This study aimed to delineate the development of demyelination in individual internodes in avian riboflavin deficient neuropathy. METHODS: Newborn broiler meat chickens were maintained either on a routine diet containing 5.0 mg/kg riboflavin, a riboflavin deficient diet containing 1.8 mg/kg riboflavin, or initially a riboflavin deficient diet for 11 days and then routine diet plus riboflavin repletion from day 12. Evolution of demyelination in individual internodes was analyzed by teased nerve fibre studies from day 11 to 21. RESULTS: In riboflavin deficient chickens, demyelination was the predominant feature: it was mainly confined to the paranodal region at day 11; extended into internodal region, but less than half of the internodal length in most affected internodes at day 16; involved more than half or whole internode at day 21. In the internode undergoing demyelination, myelin degeneration of varying degrees was noticed in the cytoplasm of the Schwann cell wrapping the internode. Two days after riboflavin repletion, co-existence of remyelination and active demyelination within individual internodes was noticed. Remyelination together with preserved short original internodes was the characteristic feature 4 and 9 days after riboflavin repletion. CONCLUSION: Riboflavin repletion interrupts the progression from paranodal to internodal demyelination in riboflavin deficient chickens and promotes remyelination before complete internodal demyelination.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA