Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.957
Filtrar
1.
Comput Biol Med ; 180: 108944, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39096609

RESUMO

BACKGROUND: A single learning algorithm can produce deep learning-based image segmentation models that vary in performance purely due to random effects during training. This study assessed the effect of these random performance fluctuations on the reliability of standard methods of comparing segmentation models. METHODS: The influence of random effects during training was assessed by running a single learning algorithm (nnU-Net) with 50 different random seeds for three multiclass 3D medical image segmentation problems, including brain tumour, hippocampus, and cardiac segmentation. Recent literature was sampled to find the most common methods for estimating and comparing the performance of deep learning segmentation models. Based on this, segmentation performance was assessed using both hold-out validation and 5-fold cross-validation and the statistical significance of performance differences was measured using the Paired t-test and the Wilcoxon signed rank test on Dice scores. RESULTS: For the different segmentation problems, the seed producing the highest mean Dice score statistically significantly outperformed between 0 % and 76 % of the remaining seeds when estimating performance using hold-out validation, and between 10 % and 38 % when estimating performance using 5-fold cross-validation. CONCLUSION: Random effects during training can cause high rates of statistically-significant performance differences between segmentation models from the same learning algorithm. Whilst statistical testing is widely used in contemporary literature, our results indicate that a statistically-significant difference in segmentation performance is a weak and unreliable indicator of a true performance difference between two learning algorithms.

2.
Sci Rep ; 14(1): 17827, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090089

RESUMO

Dyes are one of the common contaminants in industrial wastewater. Adsorption is the most widely method which used to treat dye-contaminated water due to their easy use, cost-effectiveness, and their efficiency was high. The aim of this study is the investigating of the utilization of the activated carbon which prepared from Raphanus seeds solid residual (ACRS) as a low cost adsorbent for removing of cationic Methylene Blue dye (MB)from wastewater. measuring the surface area using BET methods and SEM. The FT‒IR and XRD was measured. Different variables (e.g.: initial concentration of the dye, pH, contact time, and dosage) have been studied. Process has been systematically investigated experimentally at (25 ± 1 °C). The % removal of MB reached 99.4% after 90-min MB adsorption (40 mg/L) was observed within 5 min of contact time for the Raphanus seeds solid residual (ACRS) dosage of 4 g/L. MB initial concentration (10 ppm) Raphanus seeds solid residual (ACRS) effectively adsorbed MB (> 99%) over a widely range of pH (from pH 2 to pH 8). However, a swift decline in removal was observed when the pH was set at 7. The results of the adsorption kinetics analysis indicate a strong correlation with the pseudo-second-order model, as evidenced by the high regression coefficients. However, the adsorption capacity diminished with a rise in temperature. Thermodynamic calculations of (MB) onto Raphanus seeds solid residual (ACRS) is an exothermic reaction. The results have been indicated that the effectiveness of MB removal by activated carbon prepared from Raphanus seeds solid residual is favorable under neutral conditions, Raphanus seeds solid residual (ACRS) can be considered an efficient, environmentally friendly, readily available, and economical adsorbent that could treat industrial wastewater contaminated with cationic textile dyes. The objective of the experiments was to investigate the impact of various factors on the response of a process or formulation. To accomplish this goal, response surface methodology (RSM) has employed as a statistical model. RSM is an efficient and effective method for optimizing processes through the use of a quadratic polynomial model. The utilization of RSM allows for a reduction in the number of experiments needed, thus minimizing the associated costs of extensive analysis. This method has been done using Box-Behnken Design (BBD) to optimize % removal of MB. The optimal conditions as obtained from the RSM is pH 7,contact time 120 min, initial concentration 10 ppm, ACRS dosage 1 g, adsorption temperature 45 °C.

3.
Bioorg Chem ; 151: 107692, 2024 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-39102757

RESUMO

As one of a traditional Chinese medicine with dual applications in both medicinal treatment and dietary consumption, the mature seeds of D. lablab were reported to be rich in saponins and have a good effect on inflammatory related diseases. However, the substance basis for its anti-inflammatory activity remains unclear. Thus, a comprehensive phytochemical investigation on triterpenoid saponins from D. lablab seeds was carried out, resulting in the isolation and identification of twenty-one new triterpenoid saponins including dolilabsaponins A1-A4, B, C, D1-D3, E-M, N1, N2 and O (1-21) along with thirteen known analogs (22-34). Notably, the known saponins, 31, 32, and 34 were obtained from Leguminosae family for the first time. The 1H and 13C NMR data of saponins 24 and 28 were firstly reported here. Additionally, lipopolysaccharide (LPS)-stimulated RAW264.7 cells model was utilized to assess inhibitory activities of compounds 1-34 on nitric oxide (NO) production. The results revealed that compounds 1-3, 9, 10, 13-15, 18, 22, 23 and 28-34 significantly suppressed the elevation of NO levels in LPS-induced RAW264.7 cells at the concentration of 30 µM, exhibiting a concentration-dependent manner at 3, 10, and 30 µM. The results suggested that compounds 1-3, 9, 10, 13-15, 18, 22, 23, and 28-34 possessed potential anti-inflammatory activity. Further western blot assay demonstrated that 1, 9, 10, 13, 14, and 18 suppressed inflammatory response via down-regulated the expression levels of inflammatory factors, tumor necrosis factor-alpha and interleukin-6.

4.
J Appl Microbiol ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39138062

RESUMO

AIM: The aim of this study was to purify proanthocyanidins from areca nut seeds (P-AN) and to investigate the bactericidal activity and mechanism of the purified products against S. mutans. METHODS AND RESULTS: UPLC-Q-TOF-MS, FT-IR, MADLI-TOF-MS and thiolysis experiment were used for P-AN chemical analysis. Time-kill analysis and glycolytic pH drop were used to evaluate the activity of S. mutans in vitro. Meanwhile, the investigation of the bacteriostatic mechanism included membrane protein, fluidity, permeability and integrity tests. The results showed that P-AN was a kind of proanthocyanidins mainly composed of B-type proanthocyanidin and their polymers. Moreover, MADLI-TOF-MS and thiolysis experiments demonstrated that the degree of polymerization (DP) of P-AN was 13. The time-kill analysis showed that P-AN had strong bactericidal activity against S. mutans. P-AN at MIC concentrations was able to induce S. mutans death, while complete lethality occurred at 2 MIC. Glycolysis test showed that P-AN significantly inhibited S. mutans acid production (p < 0.01). The morphological changes of S. mutans were observed by SEM and TEM experiments, which indicated that P-AN destroyed the cellular structure of S. mutans. At the same time, significant changes were observed in membrane proteins, fluidity, permeability and integrity. CONCLUSION: P-AN can effectively inhibit the activity of S. mutans. P-AN can reduce the erosion of the tooth surface by the acid of S. mutans. P-AN could break the structure of cell membrane protein of S. mutans. P-AN could destroy the integrity of membrane, resulting in the death of S. mutans.

5.
Food Chem ; 460(Pt 3): 140769, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39126947

RESUMO

The exponential number of food alerts about concerning levels of some plant-alkaloids, such as pyrrolizidine, tropane and opium alkaloids, have stressed the need to monitor their occurrence in foods to avoid toxic health effects derived from their intake. Therefore, analytical strategies to simultaneously monitor the occurrence of these alkaloids should be developed to ensure food safety an comply with regulations. Accordingly, this work proposes an efficient multicomponent analytical strategy for the simultaneous extraction of these alkaloids from commercial bakery products. The analytical method was validated and applied to the analysis of 15 samples, revealing that 100% of them contained at least one of the target alkaloids, in some cases exceeding the maximum limits legislated. Moreover, in two samples the 3 different alkaloid families were detected. These results confirm the importance of simultaneously monitoring these alkaloids in food and highlight also considering some opium alkaloids in current legislation.

6.
Foods ; 13(15)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39123527

RESUMO

In this study, "Honghu White Lotus", "Red Lotus (HH)", "Hunan Cunshan Lotus (CS)", "Wuyi Xuanlian", "Space Lotus 36", "Fujian Jianning White Lotus (JB)", "Jiangsu Yangzhou Lotus (JY)", and "Suzhou Dongshan Lotus" were selected as experimental subjects. The lotus seed flesh and lotus plumule of each cultivar were selected for nutritional quality and functional active substance analyses. Comparing different cultivars of lotus seeds, the protein and crude fat contents of JY flesh were the highest at 65.59 mg/g and 13%, respectively. The VC content of JB flesh and lotus plumule is the highest at 41.56 mg/g and 204.29 mg/g, respectively. JB flesh has the lowest soluble sugar content, at 17.87 mg/g, while HB's lotus plumule and flesh have the highest content, at 33.67 mg/g and 29.62 mg/g, respectively. There was no significant difference in the crude fat content of the flesh and lotus plumule among the eight cultivars. TK flesh and lotus plumule have the highest amylose content, at 23.67 mg/g and 76.81 mg/g, respectively. Among them, the total starch content of JB (476.17 mg/g) was relatively high, whereas its amylose content was only 26.09 mg/g. Lower amylose content makes it less prone to aging. The total phenolic and flavonoid contents of the JY lotus plumule were the highest, at 18.64 and 21.04 mg/g, respectively. The alkaloid content of CS, HH, and JY was relatively high at 20.01, 19.29, and 18.68 mg/g, respectively. These can provide a consultation for the estimation and processing of the nutritional quality of different lotus seeds.

7.
Foods ; 13(15)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39123619

RESUMO

This study aimed to explore the potential use of Aleppo pine seed flour as a nutritious ingredient in biscuit production. Aleppo pine seed flour was blended with wheat flour to create biscuits with varying proportions: 15%, 30%, and 45% Aleppo pine seed flour. The analysis of the chemical composition of the biscuits revealed that increasing the proportion of Aleppo pine seed flour led to higher levels of protein, fat, and ash, while the carbohydrate content decreased. Sensory evaluation showed that biscuits with 15% Aleppo pine seed flour and 85% wheat flour had favorable characteristics in terms of color, flavor, crispness, and overall appeal. These findings indicate that incorporating Aleppo pine seed flour into wheat flour can enhance the nutritional profile of biscuits, offering higher protein, fat, and mineral content. The study suggests that a blend containing 15% Aleppo pine seed flour is optimal for producing biscuits with desirable sensory properties, making it a promising alternative ingredient for healthier biscuit formulations. Overall, this research highlights the potential of Aleppo pine seed flour to improve the nutritional quality of biscuits without compromising their sensory qualities, paving the way for its use in health-conscious baking practices.

8.
Plants (Basel) ; 13(15)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39124169

RESUMO

Thermoinhibition refers to the inability of seeds to germinate when inhibited by high temperatures, but when environmental conditions return to normal, the seeds are able to germinate rapidly again, which is different from thermodormancy. Meanwhile, with global warming, the effect of the thermoinhibition phenomenon on the yield and quality of crops in agricultural production is becoming common. Lettuce, as a horticultural crop sensitive to high temperature, is particularly susceptible to the effects of thermoinhibition, resulting in yield reduction. Therefore, it is crucial to elucidate the intrinsic mechanism of action of thermoinhibition in lettuce seeds. This review mainly outlines several factors affecting thermoinhibition of lettuce seed germination, including endosperm hardening, alteration of endogenous or exogenous phytohormone concentrations, action of photosensitizing pigments, production and inhibition of metabolites, maternal effects, genetic expression, and other physical and chemical factors. Finally, we also discuss the challenges and potential of lettuce seed germination thermoinhibition research. The purpose of this study is to provide theoretical support for future research on lettuce seed germination thermoinhibition, and with the aim of revealing the mechanisms and effects behind lettuce seed thermoinhibition. This will enable the identification of more methods to alleviate seed thermoinhibition or the development of superior heat-tolerant lettuce seeds.

9.
Molecules ; 29(15)2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39124851

RESUMO

Diabetes mellitus, characterized by dysregulated glucose metabolism, oxidative stress, and the formation of advanced glycation end products, poses a significant global health burden. In this study, we explored the potential of sorghum (Sorghum bicolor) seeds, known for their abundant phytochemical composition, as a natural remedy for diabetes and its associated damage. High-performance liquid chromatography/high-resolution mass spectrometry analysis revealed a remarkable phenolic richness in sorghum grains, including gallic acid, quercetin, and the predominant procyanidin B-1, with ecotype-specific variations in flavonoid distribution. Elemental analysis by ICP showed an abundance of macro-elements (Ca, K, Mg), trace elements (Fe, Mn, Si, Zn), and ultra-trace elements (B, Co, Cr, Cu, Mo, Se, V) essential for human health, supporting its therapeutic and nutritional potential. Additionally, the results demonstrated variable total phenolic contents (188-297 mg GAE/g dE) and total flavonoid contents (66-78 mg QE/g dE), with corresponding differences in antioxidant activities across the five ecotypes. Treatment with sorghum seed extract (SE1) significantly reduced oxidative stress markers, such as malondialdehyde (MDA)by 40% and hydrogen peroxide (H2O2) by 63%, in diabetic mice, compared to untreated diabetic controls. Moreover, sorghum extracts exhibited a remarkable increase in antioxidant enzyme activities, including a 50% increase in superoxide dismutase (SOD) activity and a 60% increase in glutathione peroxidase (GPx) activity, indicating their potential to bolster antioxidant defenses against diabetes-induced oxidative stress. These findings underscore the therapeutic potential of sorghum seeds in diabetes management and prevention, paving the way for the development of functional foods with enhanced health benefits.


Assuntos
Antioxidantes , Estresse Oxidativo , Extratos Vegetais , Sementes , Sorghum , Sorghum/química , Estresse Oxidativo/efeitos dos fármacos , Sementes/química , Animais , Camundongos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antioxidantes/farmacologia , Hiperglicemia/tratamento farmacológico , Hiperglicemia/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Flavonoides/farmacologia , Masculino , Glicosilação/efeitos dos fármacos
10.
Environ Monit Assess ; 196(9): 786, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39102158

RESUMO

This work presents a new process, based on the green nanoparticles Fe3O4 and magnetization coupling for the treatment of saline well water. In this context, iron nanoparticles were synthesized using Eucalyptus globulus leaves. The nanomaterials were characterized by scanning electron microscopy and infrared for identification. Batch experiments were conducted to illustrate the optimal parameters related to contact times and the mass of nanoparticles. The latter marked an optimal contact time of 100 min and a mass of 56 mg/L accompanied by a magnetic treatment for a contact time of 48 min. The results showed a significant (R2 = 0.93) water salinity reduction (67%) and a potential for improvement in the germination of tomato seeds (81%) through the investigation of the evolution of the length of the roots, the stems, and the number of germinated seeds.


Assuntos
Eucalyptus , Química Verde , Nanopartículas de Magnetita , Folhas de Planta , Eucalyptus/química , Folhas de Planta/química , Nanopartículas de Magnetita/química , Purificação da Água/métodos , Agricultura/métodos
11.
Plant Methods ; 20(1): 122, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39135113

RESUMO

Virus-Induced Gene Silencing (VIGS) is a versatile tool in plant science, yet its application to non-model species like sunflower demands extensive optimization due to transformation challenges. In this study, we aimed to elucidate the factors that significantly affect the efficiency of Agrobacterium-VIGS in sunflowers. After testing a number of approaches, we concluded that the seed vacuum technique followed by 6 h of co-cultivation produced the most efficient VIGS results. Genotype-dependency analysis revealed varying infection percentages (62-91%) and silencing symptom spreading in different sunflower genotypes. Additionally, we explored the mobility of tobacco rattle virus (TRV) and phenotypic silencing manifestation (photo-bleaching) across different tissues and regions of VIGS-infected sunflower plants. We showed the presence of TRV is not necessarily limited to tissues with observable silencing events. Finally, time-lapse observation demonstrated a more active spreading of the photo-bleached spots in young tissues compared to mature ones. This study not only offers a robust VIGS protocol for sunflowers but also provides valuable insights into genotype-dependent responses and the dynamic nature of silencing events, shedding light on TRV mobility across different plant tissues.

12.
J Ethnopharmacol ; 335: 118688, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39142622

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Sea buckthorn (Hippophae rhamnoides L.) has been designated a "medicine food homology" fruit by the National Health Commission of China due to its nutritional value. In traditional Chinese ethnomedicine, Hippophae rhamnoides L. is commonly used to treat nonhealing wounds such as burns, sores, and gastric ulcers. The aim of this study was to explore the healing effects of the ethyl acetate extract of sea buckthorn seeds (SBS-EF) on burn wounds. AIM OF THE STUDY: The primary objectives of this research were to determine the most effective medicinal site of action for treating burns with sea buckthorn seeds (SBS) and to investigate the underlying material basis and mechanisms of their therapeutic effects. MATERIALS AND METHODS: The effects of different components of SBS-EF on the proliferation and migration of human skin fibroblasts (HSFs) were evaluated via MTT assays, scratch assays, transwell assays, and hydroxyproline secretion analysis. SBS-EF displayed the greatest activity amongst the extracts. Subsequent analyses included network pharmacology methodology, molecular docking studies, ultraperformance liquid chromatography UPLC-Orbitrap-Exploris-120-MS and a severe second-degree burn rat model to investigate the chemical constituents and potential therapeutic mechanisms of the SBS-EF. RESULTS: In vitro studies demonstrated the efficacy of SBS-EF in promoting HSF growth and migration. UPLC-Orbitrap-Exploris-120-MS analysis revealed that SBS-EF had ten major constituents, with flavonoids being the predominant compounds, especially catechin, quercetin, and kaempferol derivatives. Network pharmacology and molecular docking analyses indicated that SBS-EF may exert its healing effects by modulating the Wnt/ß-catenin signalling pathway. Subsequent in vivo experiments demonstrated that SBS-EF accelerated burn wound healing in rats, increased hydroxyproline expression in skin tissue, facilitated skin structure repair, and enhanced collagen production and organisation over a 21 d period. Additionally, exposure to SBS-EF upregulated WNT3a and ß-catenin while downregulating GSK-3ß levels in rat skin tissue. CONCLUSIONS: The wound healing properties of SBS-EF were attributed to its ability to enhance HSF growth and migration, increase hydroxyproline levels in the skin, promote collagen accumulation, reduce scarring, and decrease the skin water content. SBS-EF may also provide therapeutic benefits for burns by modulating the Wnt/ß-catenin signalling pathway, as evidenced by its effective site and likely mechanism of action in the treatment of burned rats.

13.
Food Res Int ; 192: 114746, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39147552

RESUMO

Consumers are interested in new sustainable ingredients but are unwilling to accept undesirable sensory properties in their food products. Luffa (Luffa cylindrica) is mainly harvested and processed for its fibrous network, which is used as an exfoliator, while its seeds are usually discarded. However, the seeds have been found to have various nutritional benefits. As such, this study investigated the sensory properties of luffa seed powder added to yogurt and compared it to other seed powder (flax, sunflower, chia, and hemp). Consumers (n = 107) evaluated their liking of the different seeds added to yogurt using hedonic scales and the sensory properties using check-all-that-apply (CATA). The luffa seeds when mixed with yogurt were associated with off-colour, off-flavour, metallic, strong flavour, bitter, salty, earthy and decreased consumer liking. The flax and sunflower seeds were found to be sweet, nutty, cooked, mild flavour, and to have a smooth texture. The overall liking scores for the flax and sunflower seed samples were significantly higher than the luffa and hemp samples. Future studies should investigate different drying and roasting treatments to improve the sensory properties of the luffa seeds.


Assuntos
Comportamento do Consumidor , Helianthus , Luffa , Salvia , Sementes , Paladar , Sementes/química , Humanos , Adulto , Salvia/química , Feminino , Masculino , Luffa/química , Pessoa de Meia-Idade , Adulto Jovem , Iogurte/análise , Cannabis/química
14.
Front Nutr ; 11: 1442535, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39176030

RESUMO

Background: Radish seed is a functional food with many beneficial health effects. Glucosinolates are characteristic components in radish seed that can be transformed into bioactive isothiocyanates by gut microbiota. Objective: The present study aims to assess anti-obesity efficacy of radish seed glucosinolates (RSGs) and explored the underlying mechanisms with a focus on gut microbiota and fecal metabolome. Methods: High-fat diet-induced obese mice were supplemented with different doses of RSGs extract for 8 weeks. Changes in body weight, serum lipid, alanine aminotransferase (ALT), and aspartate aminotransferase (AST) levels; and pathological changes in the liver and adipose tissue were examined. Fecal metabolome and 16S rRNA gene sequencing were used to analyze alterations in fecal metabolite abundance and the gut microbiota, respectively. Results and conclusion: Results showed that RSG extract prevented weight gain and decreased serum lipid, ALT, AST levels and lipid deposition in liver and epididymal adipocytes in obese mice. Treatment with RSG extract also increased gut microbiota diversity and altered the dominant bacteria genera in the gut microbiota, decreasing the abundance of Faecalibaculum and increasing the abundance of Allobaculum, Romboutsia, Turicibacter, and Akkermansia. Fecal metabolome results identified 570 differentially abundant metabolites, of which glucosinolate degradation products, such as sulforaphene and 7-methylsulfinylheptyl isothiocyanate, were significantly upregulated after RSG extract intervention. Furthermore, enrichment analysis of metabolic pathways showed that the anti-obesity effects of RSG extract may be mediated by alterations in bile secretion, fat digestion and absorption, and biosynthesis of plant secondary metabolites. Overall, RSG extract can inhibit the development of obesity, and the obesity-alleviating effects of RSG are related to alternative regulation of the gut microbiota and glucosinolate metabolites.

15.
Food Chem ; 460(Pt 1): 140530, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39053282

RESUMO

An ultra-rapid, in-situ Raman microscopy strategy was developed for judging both seed freshness and seed vigor based on relative quantification of carotenoids content during sunflower seed germination. The carotenoids content was determined using the ratio of the Raman peak intensities at 1525 and 1268 cm-1 (I1525/1268). When different samples (harvest times and storage conditions) were soaked in water for 0-24 h, the carotenoids content in the embryonic axes gradually increased, with the carotenoids higher in fresher seeds. Using this method, freshly harvested sunflower seeds (2022) were successfully discriminated from seeds harvested over three previous years (2019-2021) and from seeds subjected to accelerated aging at 45 °C or 60 °C for 2-8 days, the samples were correctly differentiated >90%. In addition, a linear correlation between I1525/1268 ratio and seed germination was found (R2 > 0.95). This proposed method can serve as an ultra-rapid strategy for determination of sunflower seed quality.

16.
Food Chem ; 458: 140526, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39053392

RESUMO

Thermal processing can alter the biological activity of seed phytochemicals in various ways, thus improving shelf life, bioavailability, oxidative stability, and oil yield; it can also decrease the content of antinutritional compounds, reduce cytotoxic activity and increase the total phenolic content of the seeds. However, this treatment can also inactivate beneficial compounds, including phenolics. This review describes the effect of different thermal processing methods on the content, activity, and bioavailability of chemical compounds from different edible seeds. The outcome is dependent on the method, temperature, time of processing, and type of seeds. Although thermal processing has many benefits, its precise effect on different species requires further clarification to determine how it influences their phytochemical content and biological activity, and identify the optimal conditions for processing.

17.
J Microbiol Biotechnol ; 34(8): 1-10, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39081260

RESUMO

Aspergillus flavus, the primary mold that causes food spoilage, poses significant health and economic problems worldwide. Eliminating A. flavus growth is essential to ensure the safety of agricultural products, and extracellular compounds (ECCs) produced by Bacillus spp. have been demonstrated to inhibit the growth of this pathogen. In this study, we aimed to identify microorganisms efficient at inhibiting A. flavus growth and degrading aflatoxin B1. We isolated microorganisms from soil samples using a culture medium containing coumarin (CM medium) as the sole carbon source. Of the 498 isolates grown on CM medium, only 132 bacterial strains were capable of inhibiting A. flavus growth. Isolate 3BS12-4, identified as Bacillus siamensis, exhibited the highest antifungal activity with an inhibition ratio of 43.10%, and was therefore selected for further studies. The inhibition of A. flavus by isolate 3BS12-4 was predominantly attributed to ECCs, with a minimum inhibitory concentration and minimum fungicidal concentration of 0.512 g/ml. SEM analysis revealed that the ECCs disrupted the mycelium of A. flavus. The hydrolytic enzyme activity of the ECCs was assessed by protease, ß-1,3-glucanase, and chitinase activity. Our results demonstrate a remarkable 96.11% aflatoxin B1 degradation mediated by ECCs produced by isolate 3BS12-4. Furthermore, treatment with these compounds resulted in a significant 97.93% inhibition of A. flavus growth on peanut seeds. These findings collectively present B. siamensis 3BS12-4 as a promising tool for developing environmentally friendly products to manage aflatoxin-producing fungi and contribute to the enhancement of agricultural product safety and food security.

18.
Ann Bot ; 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39082745

RESUMO

BACKGROUND: Chia (Salvia hispanica L.) seeds have become increasingly popular among health-conscious consumers due to their high content of ω-3 fatty acids, which provide various health benefits. Comprehensive chemical analyses of chia seeds' fatty acids and proteins have been conducted, revealing their functional properties. Recent studies have confirmed the high ω-3 content of chia seed oil and have hinted at additional functional characteristics. SCOPE: This review article aims to provide an overview of the botanical, morphological, and biochemical features of chia plants, seeds, and seed mucilage. Additionally, we discuss the recent developments in genetic and molecular research on chia, including the latest transcriptomic and functional studies that examine the genes responsible for chia fatty acid biosynthesis. In recent years, research on chia seeds has shifted its focus from studying the physicochemical characteristics and chemical composition of seeds to understanding the metabolic pathways and molecular mechanisms that contribute to their nutritional benefits. This has led to a growing interest in various pharmaceutical, nutraceutical, and agricultural applications of chia. In this context, we discuss the latest research on chia, as well as the questions that remain unanswered, and identify areas that require further exploration. CONCLUSIONS: Nutraceutical compounds associated with significant health benefits including ω-3 PUFAs, proteins, and phenolic compounds with antioxidant activity have been measured in high quantities in chia seeds. However, comprehensive investigations through both in vitro experiments and in vivo animal and controlled human trials are expected to provide greater clarity on the medicinal, antimicrobial, and antifungal effects of chia seeds. The recently published genome of chia and gene editing technologies, such as CRISPR, facilitate functional studies deciphering molecular mechanisms of biosynthesis and metabolic pathways in this crop. This necessitates development of stable transformation protocols and creation of a publicly available lipid database, mutant collection, and large-scale transcriptomic datasets for chia.

19.
Front Pharmacol ; 15: 1401826, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39055489

RESUMO

Pomegranate seeds (PS) are the dried seeds derived from pomegranate fruit, accounting for approximately 20% of the fruit's total weight, and are a by-product of pomegranate juice extraction. These seeds hold significance in traditional medicine among Uyghurs and Tibetan cultures, featuring diverse clinical applications within traditional Chinese medicine. These applications include management of gastric coldness and acidity, abdominal distension, liver and gallbladder fever, and pediatric enteritis. PS demonstrates properties such as stomach tonicity, qi regulation, analgesia, and anti-inflammatory effects. Extensive research underscores the richness of PS in various phytochemical compounds and metabolites, notably unsaturated fatty acids (particularly linolenic acid and linoleic acid), phenolic compounds tocopherols, proteins, and volatile oils. Notably, among these bioactive compounds, punicic acid (PA), found within PS, demonstrates potential in the prevention and treatment of cancers, diabetes, obesity, and other ailments. Despite extensive literature on pomegranate as a botanical entity, a comprehensive review focusing specifically on the chemical composition and pharmacological effects of PS remains elusive. Therefore, this review aimed to consolidate knowledge regarding the medicinal properties of PS, summarizing its chemical composition, traditional uses, and pharmacological effects in treating various diseases, thereby laying a foundation for the advancement and application of PS in the field of pharmacology.

20.
Plant Methods ; 20(1): 110, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39044226

RESUMO

BACKGROUND: Since traditional germination test methods have drawbacks such as slow efficiency, proneness to error, and damage to seeds, a non-destructive testing method is proposed for full-process germination of radish seeds, which improves the monitoring efficiency of seed quality. RESULTS: Based on YOLOv8n, a lightweight test model YOLOv8-R is proposed, where the number of parameters, the amount of calculation, and size of weights are significantly reduced by replacing the backbone network with PP-LCNet, the neck part with CCFM, the C2f of the neck part with OREPA, the SPPF with FocalModulation, and the Detect of the head part with LADH. The ablation test and comparative test prove the performance of the model. With adoption of germination rate, germination index, and germination potential as the three vitality indicators, the seed germination phenotype collection system and YOLOv8-R model are used to analyze the full time-series sequence effects of different ZnO NPs concentrations on germination of radish seeds under varying degrees of salt stress. CONCLUSIONS: The results show that salt stress inhibits the germination of radish seeds and that the inhibition effect is more obvious with the increased concentration of NaCl solution; in cultivation with deionized water, the germination rate of radish seeds does not change significantly with increased concentration of ZnO NPs, but the germination index and germination potential increase initially and then decline; in cultivation with NaCl solution, the germination rate, germination potential and germination index of radish seeds first increase and then decline with increased concentration of ZnO NPs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA