Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 785
Filtrar
1.
Materials (Basel) ; 17(10)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38793243

RESUMO

The use of thermoplastic composites (TPCs) as one of the lightweight solutions will inevitably encounter problems in connection. Resistance welding has the characteristics of high strength, simplicity, and high reliability, and is considered a very potential hot-melt connection technology. The resistance welding technology of unidirectional carbon fiber-reinforced polyphenylene sulfide composites (UCF/PPS) was systematically studied. The experimental results show that the 100-mesh brass mesh has the best resin wetting effect and heating efficiency, and the PPS/oxidized 100-mesh brass mesh composite resistance element (Ox-RE/PPS) has the highest welding strength. The welding failure mode changes from interface failure and RE failure to interlayer structure damage and fiber fracture. The single-factor experimental results show that the maximum welding strength is reached at 310 °C, 1.15 MPa, and 120 kW/m2. According to the conclusion of the single-factor experiment, the Box-Behnken method was further used to design a three-factor, three-level experiment, and a quadratic regression model was established according to the test results. The results of variance analysis, fitting curve analysis, and perturbation plot analysis proved that the model had high fitting and prediction abilities. From the 3D surface diagram analysis, the influence of power density is the largest, and the interaction between welding temperature and power density is the most significant. Combined with the analysis of Design Expert 13 software, the optimal range of process parameters was obtained as follows: welding temperature 313-314 °C, welding pressure 1.04-1.2 MPa, and power density 124-128 kW/m2. The average strength of resistance welding joints prepared in the optimal range of process parameters was 13.58 MPa.

2.
Adv Mater ; : e2402695, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38742820

RESUMO

Flexible supercapacitors can potentially power next-generation flexible electronics. However, the mechanical and electrochemical stability of flexible supercapacitors under different flexible conditions is limited by the weak bonding between adjacent layers, posing a significant hindrance to their practical applicability. Herein, based on the uninterrupted 3D network during the growth of bacterial cellulose (BC), a flexible all-in-one supercapacitor is cultivated through a continuous biosynthesis process. This strategy ensures the continuity of the 3D network of BC throughout the material, thereby forming a continuous electrode-separator-electrode structure. Benefitting from this bioinspired structure, the all-in-one supercapacitor not only achieves a high areal capacitance (3.79 F cm-2) of electrodes but also demonstrates the integration of high tensile strength (2.15 MPa), high shear strength (more than 54.6 kPa), and high bending resistance, indicating a novel pathway toward high-performance flexible power sources.

3.
Sci Rep ; 14(1): 11618, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773225

RESUMO

This study examines the efficacy of employing calcium sulfoaluminate (CSA) cement, an environmentally friendly binder, for enhancing the geomechanical characteristics of sand, particularly under low confining pressure conditions. A series of triaxial consolidated drained tests were performed on sand samples treated with varying content (5, 7, and 10%) of CSA cement and 10% ordinary Portland cement (OPC) under various low confining pressures (50, 100, 200, and 400 kPa). The test findings demonstrated the importance of cement content and confining pressure on the mode of failure, stress-strain and volumetric behavior, failure characteristics, and shear strength parameters of the treated quartz sand. After a curing period of 14 days, samples treated with 10% CSA cement exhibited a remarkable 212% increase in peak deviator stress and an 89% reduction in axial strain at failure, indicating higher initial stiffness compared to untreated samples under a 400 kPa confining pressure. Furthermore, the samples treated with 10% CSA exhibited higher peak deviator stress, initial stiffness, and strength development compared to those treated with 10% OPC. The scanning electron microscopy analysis provides insights into particle breakage and bond degradation processes, which increase with confining pressure in CSA-treated samples. Also, the mode of failure analysis reveals a transition from ductile to slightly brittle behavior with increasing cement content. Notably, the geomechanical properties of the treated material emphasized the significant impact of CSA cement on soil improvement. Thus offering a sustainable alternative for soil improvement in construction projects.

4.
Platelets ; 35(1): 2353582, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38773939

RESUMO

Platelets are central to thrombosis. Research at the intersection of biological and physical sciences provides proof-of-concept for shear rate-dependent platelet slip at vascular stenosis and near device surfaces. Platelet slip extends the observed biological "slip-bonds" to the boundary of functional gliding without contact. As a result, there is diminished engagement of the coagulation cascade by platelets at these surfaces. Comprehending platelet slip would more precisely direct antithrombotic regimens for different shear environments, including for percutaneous coronary intervention (PCI). In this brief report we promote translation of the proof-of-concept for platelet slip into improved antithrombotic regimens by: (1) reviewing new supporting basic biological science and clinical research for platelet slip; (2) hypothesizing the principal variables that affect platelet slip; (3) applying the consequent construct model in support of-and in some cases to challenge-relevant contemporary guidelines and their foundations (including for urgent, higher-risk PCI); and (4) suggesting future research pathways (both basic and clinical). Should future research demonstrate, explain and control platelet slip, then a paradigm shift for choosing and recommending antithrombotic regimens based on predicted shear rate should follow. Improved clinical outcomes with decreased complications accompanying this paradigm shift for higher-risk PCI would also result in substantive cost savings.


Assuntos
Plaquetas , Humanos , Plaquetas/metabolismo , Plaquetas/efeitos dos fármacos , Fibrinolíticos/farmacologia , Fibrinolíticos/uso terapêutico
5.
Materials (Basel) ; 17(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38730752

RESUMO

Surface preparation is an important step in adhesive technology. A variety of abrasive, chemical, or concentrated energy source treatments are used. The effects of these treatments vary due to the variety of factors affecting the final strength of bonded joints. This paper presents the results of an experimental study conducted to determine the feasibility of using fiber laser surface treatments in place of technologically and environmentally cumbersome methods. The effect of surface modification was studied on three materials: aluminum EN AW-1050A and aluminum alloys EN AW-2024 and EN AW-5083. For comparison purposes, joints were made with sandblasted and laser-textured surfaces and those rolled as reference samples for the selected overlap variant, glued with epoxy adhesive. The joints were made with an overlap of 8, 10, 12.5, 14, and 16 mm, and these tests made it possible to demonstrate laser processing as a useful technique to reduce the size of the overlap and achieve even higher load-bearing capacity of the joint compared to sandblasting. A comparative analysis was also carried out for the failure force of the adhesive bond and the failure energy. The results show the efficiency and desirability of using lasers in bonding, allowing us to reduce harmful technologies and reduce the weight of the bonded structure.

6.
Materials (Basel) ; 17(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38730812

RESUMO

The effects of the sintering duration and powder fraction (Ag-coated Cu/SnAgCu) on the microstructure and reliability of transient liquid phase sintered (TLPS) joints are investigated. The results show that two main intermetallic compounds (IMCs, Cu6Sn5 and Cu3Sn) formed in the joints. The Cu6Sn5 ratio generally decreased with increasing sintering time, Cu powder fraction, and thermal treatment. The void ratio of the high-Cu-fraction joints decreased and increased with increasing sintering and thermal stressing durations, respectively, whereas the low-Cu-fraction counterparts were stable. We also found that the shear strength increased with increasing thermal treatment time, which resulted from the transformation of Cu6Sn5 and Cu3Sn. Such findings could provide valuable information for optimizing the TLPS process and assuring the high reliability of electronic devices.

7.
Int J Biol Macromol ; 270(Pt 1): 132303, 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38744366

RESUMO

In order to solve ecological remediation issues for abandoned mines with steep slopes, a kind of hydrogels with high cohesion and water-retaining were designed by inorganic mineral skeleton combining with polymeric organic network cavities. This eco-friendly hydrogel (MFA/HA-g-p(AA-co-AM)) was prepared with acrylic acid (AA)-acrylamide (AM) as network, which was grafted with humic acids (HA) as network binding point reinforcement skeleton and polar functional group donors, KOH-modified fly ash (MFA) as internal supporter. The maximum water absorption capacities were 1960 g/g for distilled water, which followed the pseudo-second-order model. This super water absorption was attributed to the first stage of 62 % fast absorption due to the high specific surface area, pore volume and low osmotic pressure, moreover, the multiple hydrophilic functional groups and network structure swell contributed to 36 % of the second stage slow adsorption. In addition, the pore filling of water in mesoporous channels contributed the additional 2 % water retention on the third stage. The high saline-alkali resistance correlated with the electrostatic attraction with MFA and multiple interactions with oxygen-containing functional groups in organic components. MFA and HA also enhanced the shear strength and fertility retention properties. After 5 cycles of natural dehydration and reabsorption process, these excellent characteristics of reusability and water absorption capacity kept above 97 %. The application of 0.6 wt% MFA/HA-g-p(AA-co-AM) at 15° slope could improve the growth of ryegrass by approximately 45 %. This study provides an efficient and economic superabsorbent material for ecological restoration of abandoned mines with steep slopes.

8.
Waste Manag ; 185: 43-54, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38820783

RESUMO

Plastics within municipal solid waste (MSW) are non-degradable. As MSW continues to degrade, the relative content of plastics rises, and particle gradation may also change. Moreover, throughout the landfilling process, MSW is subjected to various stress conditions, potentially influencing its mechanical properties. This study explored the effects of varying plastic contents, different particle gradations, and distinct stress paths on the mechanical properties of MSW, and consolidated drained triaxial tests of 42 groups of reconstituted MSW specimens were conducted. The results showed that there was an optimal plastic content of 6-9 % for MSW, where the shear strength of MSW was higher than that of MSW with other plastic contents. When the stress path changed from TC45 to TC72, the optimal plastic content of MSW changed from 6 % to 9 %. As the plastic content increased, both the cohesion and internal friction angle of the MSW initially increased, then subsequently decreased. The impact of plastic content on cohesion was more pronounced than on the internal friction angle, especially at larger strains. Under various stress paths, MSW with distinct particle size distributions demonstrated diverse stress-strain behaviors. Traditional criteria for evaluating well-graded conditions in soils are not suitable for MSW. The effect of gradation on the cohesion of MSW is essentially due to the predominant role of fiber content; the relationship between gradation and the internal friction angle in MSW is complex and correlates closely with the content of both coarse and fine particles, as well as fibers. This study serves as an essential reference for predicting deformations in landfills and analyzing the stability of landfill slopes.

9.
Heliyon ; 10(7): e28149, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38560272

RESUMO

In this study, the objective is to explore the practicability of incorporating synthetic fibre reinforced polymer (SFRP) stirrups into reinforced concrete beams. This investigation revolves around evaluating their effectiveness from two key perspectives: their structural performance and environmental impact. To accomplish this, four set of specimens were prepared, each integrating SFRP stirrups, and testing them under a rigorous three-point bending load test. The structural performance analysis entails a comprehensive examination on the critical design factors such as: the load-deflection relationship and the contribution these SFRP stirrups to improve the ductility performance, flexural stiffness, deformability factor, flexural toughness and energy absorption capacity. The findings of this study indicate that the SFRP stirrups exhibit commendable shear capacity, meeting the necessary requirements, and simultaneously demonstrate satisfactory ductility. It is determined, that the optimal design for these SFRP stirrups involves utilizing narrow and thin stirrups placed at relatively larger intervals. Furthermore, this research delves into assessing the environmental impact of incorporating SFRP stirrups. This assessment enables us to comprehensively evaluate the environmental implications of the entire life cycle of these stirrups in structural beam. Moreover, the analysis reveals that, SFRP stirrups yields lower environmental impacts compared to their steel counterparts, they still provide valuable insights into the overall sustainability considerations within the context of reinforced concrete structures.

10.
Artigo em Inglês | MEDLINE | ID: mdl-38598686

RESUMO

Clathrates are potential "phonon-glass, electron-crystal" thermoelectric semiconductors, whose structure of polyhedron stacks is very attractive. However, their mechanical properties have not yet met the requirements of industrial applications. Here, we report the ideal strength of element-substituted type-I and type-VIII clathrates and the shear deformation mechanism by using density functional theory. The results show that the framework element is the determinant of the intrinsic mechanical properties of the clathrates and is affected by sequential weakening of Si-Ge-Sn. The highest ideal shear strength is 8.71 GPa for I-Ba8Au6Si40 along the (110)/[001] slip system, which is attributed to the formation of higher-energy Si-Si covalent bonds. Meanwhile, the ideal shear strength of Ba-filled I/VIII clathrates (4.51/2.65 GPa) is higher than that of Sr-filled clathrates (3.64 GPa/1.91 GPa). In addition, the strength and ultimate strain of VIII-Ba8Ga16Sn30 can be significantly increased by the structural coordination accommodating with the stiffness of the Ga-Ge bond to achieve simultaneous bond breaking. Our findings demonstrate that the element substitution strategy is an effective approach for designing highly robust clathrates.

11.
Polymers (Basel) ; 16(7)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38611141

RESUMO

Short fiber-reinforced thermoplastic polymers (SFRTPs) are commonly used in various molding methods due to their high specific elasticity and strength. To evaluate the interfacial strength, several determination methods have been proposed, including the interfacial shear strength (IFSS). In previous research, an IFSS evaluation method based on the short beam shear method was proposed. However, this method is only applicable to micrometer-sized fibers with high stiffness levels that are not easily bent. When utilizing cellulose fiber, the interfacial shear strength (IFSS) results frequently exhibit significant deviations. To tackle this issue, we suggest an enhanced experimental technique that employs beam-shaped specimens with welding points based on the short beam shear test. Furthermore, we conducted a three-dimensional analysis of the original method to determine the fiber orientation angle and IFSS. The outcomes were compared with previously reported determinations. The IFSS achieved through the novel method proposed in this paper exhibits high precision and reliability, rendering it suitable for use with soft and flexible fibers.

12.
Polymers (Basel) ; 16(8)2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38675008

RESUMO

The aim of this research is to investigate basalt as a natural mineral-based fibre together with a vitrimeric resin as a sustainable alternative to standard composite materials. Vitrimers combine the properties of thermoset and thermoplastic polymers, enabling the repair of specimens and hence prolonging the lifetime of the composite material. The micro-mechanical characteristics between the basalt fibres and the vitrimer resin are reported and shown to match those of a standard Skyflex K51 epoxy resin. Discontinuous (4 mm) basalt fibres were employed to produce aligned discontinuous fibre-reinforced composites (ADFRCs) using the high-performance discontinuous fibre (HiPerDiF) technology. The mechanical characteristics of the laminates were investigated through tensile testing and the fracture zones were analysed under a scanning electron microscope. By normalising the results by their respective fibre volume fraction, it was discovered that the vitrimer-basalt ADFRCs exhibited, on average, a 4% higher strength and a 25% higher stiffness compared to their basalt epoxy counterparts. The repair potential of the vitrimer ADFRC specimens was explored during low-temperature compression repair. Two approaches were tested using double-sided local- and full-patch repair. Both successfully recovered a significant amount of their prime strength. In conclusion, the potential of the sustainable vitrimer-basalt composite is shown by its competitive mechanical performance. Combining this with the manufacturing flexibility, repair potential, and recyclability of the material, the vitrimer-basalt composite seems to be a competitive alternative to standard glass epoxies.

13.
Polymers (Basel) ; 16(8)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38675030

RESUMO

In order to investigate the durability of fiber-reinforced polymer composites in hygrothermal environments, hygrothermal accelerate aging tests, for 360 days at 70 °C, RH70%; 70 °C, RH85%; 85 °C, RH70%; and 85 °C, RH85% and natural storage for 2 years in Guangzhou, China, were carried out for composite laminates. Then, the moisture absorption and interlaminar shear strength were measured. The hygrothermal damage mechanism of the composite was studied by Fourier transform infrared (FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and field emission scanning electron microscopy (FSEM). A dual stress storage life prediction model and the equivalent relationship between natural storage and hygrothermal acceleration were established. The results show that the order of moisture absorption rates, moisture absorption contents, and the severity effect order on the interlaminar shear strength is RH85%; 85 °C > 70 °C; RH85% > 85 °C; RH70% > 70 °C; and RH70%. The time to achieve an effective moisture absorption balance is opposite to this. The moisture absorption rate meets Fick's law before the effective moisture absorption balance, and then shows a linear trend. The interlayer shear strength still decreases exponentially with aging, which is mainly caused by the resin plasticization and interface weakening. Hygrothermal accelerated aging for 13.4831 days at 85 °C; RH85% is equivalent to that for one-year actual storage in Guangzhou. According to the failure criterion of shear strength decreasing to 77%, the storage life of T700/epoxy in Guangzhou is 14.4661 years.

14.
Photobiomodul Photomed Laser Surg ; 42(5): 343-349, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38579157

RESUMO

Objective: This in vitro study evaluates the shear bond strength (SBS) of yttria-stabilized tetragonal zirconia (Y-TZP) and resin cement after different surface treatments. Materials and methods: Forty-eight ceramic cubes were divided into four groups (n = 12): G1 (control) sandblasting with Al2O3; G2-sandblasting with silica-coated Al2O3 (Rocatec); G3-Rocatec + CO2 laser; and G4-CO2 laser + Rocatec. A metallic primer was applied to the pretreated ceramic. A rubber ring was adapted on the central area, and then, the resin cement was inserted into the matrix and photoactivated. The samples were evaluated regarding surface roughness (Ra), SBS, failure type, and qualitatively with scanning electron microscopy (SEM). The data were analyzed by one-way analysis of variance followed by Tukey's test (p < 0.05). Results: The mean values of Ra (µm) were as follows: G1-4.52a, G2-4.24a,b, G3-4.10a,b, and G4-2.90b and the mean values of SBS (MPa) were as follows: G1-7.84a , G2-4.41b , G3-4.61b and G4-6.14a,b. SEM analyses showed superficial irregularities for all groups, being more prominent for G1. The presence of silica deposits was observed for G2, G3, and G4, but in the last two groups there were some linear areas, promoted by the fusion of silica, due to the thermomechanical action of the CO2 laser. Conclusions: The surface treatment with CO2 laser + Rocatec, using one MDP-based cement, can be an alternative protocol for the adhesion cementation of Y-TZP ceramic since it was as effective as the conventional pretreatment with aluminum oxide sandblasting.


Assuntos
Cerâmica , Colagem Dentária , Teste de Materiais , Microscopia Eletrônica de Varredura , Cimentos de Resina , Resistência ao Cisalhamento , Propriedades de Superfície , Ítrio , Zircônio , Zircônio/química , Ítrio/química , Cimentos de Resina/química , Cerâmica/química , Colagem Dentária/métodos , Lasers de Gás , Técnicas In Vitro , Dióxido de Silício/química , Óxido de Alumínio/química
15.
Proc Inst Mech Eng H ; 238(5): 550-561, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38627994

RESUMO

The designed biomedical implants require excellent shear strength primarily for mechanical stability against forces in human body. However, metallic implants undergo stress shielding with release of toxic ions in the body. Thus, Fused Deposition Modeling (FDM) has made significant progress in the biomedical field through the production of customized implants. The mechanical behavior is highly dependent on printing parameters, however, the effect of these parameters on punch shear strength of ASTM D732-02 standard specimens has not been explored. Thus, in the current study, the effect of infill density (IFD), printing speed (PTS), wall thickness (WLT), and layer thickness (LYT) has been investigated on the punch shear strength using Response Surface Methodology. The Analysis of Variance (ANOVA) has been performed for predicting statistical model with 95% confidence interval. During the statistical analysis, the terms with p-value lower than 0.05 were considered significant and the influence of process parameters has been examined using microscopic images. The surface plots have been used for discussing the effect of interactions between printing parameters. The statistical results revealed IFD as the most significant contributing factor, followed by PTS, LYT, and WLT. The study concluded by optimization of printing parameters for obtaining the highest punch shear strength.


Assuntos
Teste de Materiais , Poliésteres , Resistência ao Cisalhamento , Poliésteres/química , Próteses e Implantes , Estresse Mecânico , Impressão Tridimensional
16.
Front Microbiol ; 15: 1331120, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38468850

RESUMO

Currently, there is a growing interest in transforming wastewater treatment plants (WWTPs) into resource recovery plants. Microorganisms in aerobic granular sludge produce extracellular polymeric substances (EPS), which are considered sustainable resources to be extracted and can be used in diverse applications. Exploring applications in other high-value materials, such as adhesives, will not only enhance the valorization potential of the EPS but also promote resource recovery. This study aimed to characterize a water-soluble fraction extracted from the EPS collected at the demonstration plant in the Netherlands based on its chemical composition (amino acids, sugar, and fatty acids) and propose a proof-of-concept for its use as an adhesive. This fraction comprises a mixture of biomolecules, such as proteins (26.6 ± 0.3%), sugars (21.8 ± 0.2%), and fatty acids (0.9%). The water-soluble fraction exhibited shear strength reaching 36-51 kPa across a pH range of 2-10 without additional chemical treatment, suggesting a potential application as an adhesive. The findings from this study provide insights into the concept of resource recovery and the valorization of excess sludge at WWTPs.

17.
Materials (Basel) ; 17(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38541477

RESUMO

The toughening modification of epoxy resin has received widespread attention. The addition of the second-phase resin has a good toughening effect on epoxy resin. In order to investigate the effect of the second-phase resin on the interphase of composites, in this work the interfacial properties of carbon fiber (CF)/epoxy resin with the second-phase resin structure were investigated. Methodologies including surface structure observation, chemical characteristics, surface energy of the CF, and micro-phase structure characterization of resin were tested, followed by the micro-interfacial performance of CF/epoxy composites before and after hygrothermal treatment. The results revealed that the sizing process has the positive effect of increasing the interfacial bonding properties of CF/epoxy. From the interfacial shear strength (IFSS) test, the introduction of the second phase in the resin reduced the interfacial bonding performance between the CF and epoxy. After the hygrothermal treatment, water molecules diffused along the interfacial paths between the two resins, which in turn created defects and consequently brought about a reduction in the IFSS.

18.
Materials (Basel) ; 17(6)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38541548

RESUMO

Brazing a SiO2f/SiO2 composite with metals is often faced with two problems: poor wettability with the brazing alloy and high residual stress in the joint. To overcome these problems, we report a combined method of selective etching and depositing reduced graphene oxide (rGO) on the surface of a SiO2f/SiO2 composite (3D-rGO-SiO2f/SiO2) to assist brazing with TC4. After the combined treatment, a "3D-rGO" buffer layer formed on the surface layer of the SiO2f/SiO2, and the contact angle was reduced from 130° to 38°, which meant the wettability of active brazing alloy on the surface of SiO2f/SiO2 was obviously improved. In addition, the "3D-rGO" buffer layer contributed to fully integrating the brazing alloy and SiO2f/SiO2; then, the infiltration of the brazing alloy into the surface layer of the SiO2f/SiO2 was enhanced and formed the reduced graphene oxide with a pinning structure in the three dimensional ("3D-pinning-rGO") structure. Moreover, the joining area of the brazing alloy and SiO2f/SiO2 was expanded and the mismatch degree between the SiO2f/SiO2 and TC4 was reduced, which was achieved by the "3D-pinning-rGO" structure. Furthermore, the concentration of the residual stress in the SiO2f/SiO2-TC4 joints transferred from the SiO2f/SiO2 to the braided quartz fibers, and the residual stress reduced from 142 MPa to 85 MPa. Furthermore, the 3D-pinning-rGO layer facilitated the transfer of heat between the substrates during the brazing process. Finally, the shear strength of the SiO2f/SiO2-TC4 joints increased from 12.5 MPa to 43.7 MPa by the selective etching and depositing rGO method.

19.
Adv Biomed Res ; 13: 5, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38525401

RESUMO

Background: This study assessed the effect of combined application of hydrofluoric (HF) acid and phosphoric acid (PA) and active irrigation (AI) with a microbrush on shear bond strength (SBS) of lithium disilicate (LDS) ceramics to enamel. Materials and Methods: This in vitro study was conducted on 40 extracted teeth that received enamel preparation with a #12 cylindrical bur. Forty IPS e.max LT rods (3mm diameter, 6mm height) were fabricated and randomly assigned to four groups (n = 10) for surface treatment with 5% HF (group 1), 5% HF and AI with a microbrush for 20 seconds (group 2), 5% HF and 32% PA (group 3), and 5% HF and 32% PA plus AI with a microbrush for 20 seconds (group 4). Silane and Choice 2 cement were used for bonding rods to enamel. The SBS was measured by a universal testing machine. Data were analyzed by two-way analysis of variance (ANOVA), Bonferroni, and Chi-square tests (alpha = 0.05). Results: Group 4 had the highest SBS, and group 1 had the lowest SBS (P < 0.05). Group 2 had a significantly higher SBS than group 1, and group 4 had a significantly higher SBS than group 3. AI with a microbrush significantly increased the SBS (P < 0.05), but the application of PA caused no significant change in SBS (P > 0.05). The interaction effect of PA and AI on SBS was not significant (P > 0.05). Conclusion: The application of PA in addition to 5% HF acid caused no significant change in the SBS of LDS ceramic to enamel. However, AI with a microbrush significantly increased the SBS.

20.
Materials (Basel) ; 17(5)2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38473526

RESUMO

With the continuous reduction of chip size, fluxless soldering has brought attention to high-density, three-dimensional packaging. Although fluxless soldering technology with formic acid (FA) atmosphere has been presented, few studies have examined the effect of the Pt catalytic, preheating time, and soldering pad on FA soldering for the Sn-58Bi solder. The results have shown that the Pt catalytic can promote oxidation-reduction and the formation of a large pore in the Sn-58Bi/Cu solder joint, which causes a decrease in shear strength. ENIG (electroless nickel immersion gold) improves soldering strength. The shear strength of Sn-58Bi/ENIG increases under the Pt catalytic FA atmosphere process due to the isolation of the Au layer on ENIG. The Au layer protects metal from corrosion and provides a good contact surface for the Sn-58Bi solder. The shear strength of the Sn-58Bi/ENIG joints under a Pt catalytic atmosphere improved by 44.7% compared to using a Cu pad. These findings reveal the improvement of the shear strength of solder joints bonded at low temperatures under the FA atmosphere.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...