Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 211
Filtrar
1.
ACS Sens ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38968930

RESUMO

DNA-based tension sensors have innovated the imaging and calibration of mechanosensitive receptor-transmitted molecular forces, such as integrin tensions. However, these sensors mainly serve as binary reporters, only indicating if molecular forces exceed one predefined threshold. Here, we have developed tandem tension sensor (TTS), which comprises two consecutive force-sensing units, each with unique force detection thresholds and distinct fluorescence spectra, thereby enabling the quantification of molecular forces with dual reference levels. With TTS, we revealed that vinculin is not required for transmitting integrin tensions at approximately 10 pN (piconewtons) but is essential for elevating integrin tensions beyond 20 pN in focal adhesions (FAs). Such high tensions have emerged during the early stage of FA formation. TTS also successfully detected changes in integrin tensions in response to disrupted actin formation, inhibited myosin activity, and tuned substrate elasticity. We also applied TTS to examine integrin tensions in platelets and revealed two force regimes, with integrin tensions surpassing 20 pN at cell central regions and 13-20 pN integrin tensions at the cell edge. Overall, TTS, especially the construct consisting of a hairpin DNA (13 pN opening force) and a shearing DNA (20 pN opening force), stands as a valuable tool for the quantification of receptor-transmitted molecular forces within living cells.

2.
ACS Appl Mater Interfaces ; 16(28): 36678-36687, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38966894

RESUMO

Stretchable organic phototransistor arrays have potential applications in artificial visual systems due to their capacity to perceive ultraweak light across a broad spectrum. Ensuring uniform mechanical and electrical performance of individual devices within these arrays requires semiconductor films with large-area scale, well-defined orientation, and stretchability. However, the progress of stretchable phototransistors is primarily impeded by their limited electrical properties and photodetection capabilities. Herein, wafer-scale and well-oriented semiconductor films were successfully prepared using a solution shearing process. The electrical properties and photodetection capabilities were optimized by improving the polymer chain alignment. Furthermore, a stretchable 10 × 10 transistor array with high device uniformity was fabricated, demonstrating excellent mechanical robustness and photosensitive imaging ability. These arrays based on highly stretchable and well-oriented wafer-scale semiconductor films have great application potential in the field of electronic eye and artificial visual systems.

3.
Philos Trans A Math Phys Eng Sci ; 382(2275): 20230186, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38910399

RESUMO

Enhanced geothermal systems (EGSs) developed by hydraulic stimulation are promising for exploiting petrothermal heat by improving fluid pathways in low-permeable geothermal reservoir rocks. However, fluid injection into the subsurface can potentially cause large seismic events by reactivating pre-existing faults, which is a significant barrier to EGSs. The management of injection-induced seismicity is, therefore, essential for the success of EGSs. During the hydraulic stimulation of an EGS, fluid can be injected into a fault zone or into the rock matrix containing pre-existing faults adjacent to the injection well. The differences in hydromechanical responses between fluid injection into and adjacent to a fault have not been investigated in detail. Here, we performed triaxial fluid injection experiments involving injecting fluid directly and indirectly into a fault in granite rock samples to analyse the distinct hydromechanical responses and estimate the injection-induced seismicity in both cases. Our results suggest that in addition to directly injecting fluid into a critically stressed fault, injecting into nearly intact granite adjacent to the fault could also cause injection-induced seismic hazards owing to the high fluid pressure required to create new fractures in the granite matrix. It is, therefore, important to carefully identify pre-existing faults within tight reservoirs to avoid injecting fluid adjacent to them. Additionally, once prior unknown faults are delineated during hydraulic stimulation, appropriate shut-in strategies should be implemented immediately to mitigate seismic risks. This article is part of the theme issue 'Induced seismicity in coupled subsurface systems'.

4.
Gels ; 10(6)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38920897

RESUMO

The functional characteristics of starch can be altered by shear force, which makes the impact on its microstructure of great importance to the food industry. This study investigated the effects of freeze-drying on the gel texture, pasting capabilities, and swelling power of starches made from sweet potatoes (SP), chickpeas (CP), and wheat (WS) combined with Cordia (CG) and Ziziphus gum (ZG). The samples were annealed in water without shearing and in a rapid visco-analyzer (RVA) for 30 min at 60 °C while being spun at 690 rpm. Both native and freeze-dried samples were mixed with 1% or 3% ZG and CG. After annealing, the starches were examined using a texture analyzer and RVA. The results showed that freeze-drying had a substantial (p > 0.05) impact on the starch granule, in addition to the effect of annealing. The peak viscosity of freeze-dried native CP and SP starches increased, but the peak viscosity of freeze-dried wheat starch decreased. The setbacks for CP and WS increased, whereas the setbacks for SP varied slightly. Furthermore, it was demonstrated that annealing in an RVA exhibited a substantially lower peak viscosity than annealing in a water bath; the RVA's shearing effect may have been the cause of this difference. Cordia gum fared better than ZG in terms of peak viscosity, although ZG significantly reduced setback in comparison to CG. Among the various blends, the native WB sample had the lowest hardness (100 ± 4.9 g), while the freeze-dried WB SP sample had the greatest (175.5 ± 4.8 g). Shearing of starches broke up the granules into smaller pieces, which made them gel at lower temperatures. This could be a good thing when they are needed for food uses that require little cooking.

5.
Food Res Int ; 188: 114466, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823863

RESUMO

The effect of microfluidization treatment on the primary, secondary, and tertiary structure of soybean protein isolate (SPI) was investigated. The samples were treated with and without controlling the temperature and circulated in the system 1, 3, and 5 times at high pressure (137 MPa). Then, the treated samples were freeze-dried and reconstituted in water to check the impact of the microfluidization on two different states: powder and solution. Regarding the primary structure, the SDS-PAGE analysis under reducing conditions showed that the protein bands remained unchanged when exposed to microfluidization treatment. When the temperature was controlled for the samples in their powder state, a significant decrease in the quantities of ß-sheet and random coil and a slight reduction in α-helix content was noticed. The observed decrease in ß-sheet and the increase in ß-turns in treated samples indicated that microfluidization may lead to protein unfolding, opening the hydrophobic regions. Additionally, a lower amount of α-helix suggests a higher protein flexibility. After reconstitution in water, a significant difference was observed only in α-helix, ß-sheet and ß-turn. Related to the tertiary structure, microfluidization increases the surface hydrophobicity. Among all the conditions tested, the samples where the temperature is controlled seem the most suitable.


Assuntos
Manipulação de Alimentos , Interações Hidrofóbicas e Hidrofílicas , Pós , Proteínas de Soja , Proteínas de Soja/química , Manipulação de Alimentos/métodos , Estrutura Secundária de Proteína , Temperatura , Projetos Piloto , Eletroforese em Gel de Poliacrilamida , Glycine max/química , Soluções , Liofilização
6.
Sci Rep ; 14(1): 10865, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740875

RESUMO

Shear failure of rock bridges is an important process in geological phenomena, including landslides and earthquakes. However, the progressive failure of natural rock bridges has not yet been fully understood. In this work, we carried out direct shearing experiments on both granite and marble rock bridges, and applied acoustic emission (AE) monitoring throughout the experiments. With the mechanical curves and the evolution of AE activity (including AE energy rate and b value), the failure of rock bridges can be divided into three pre-failure phases and one ultimate failure phases. We analyzed the effects of normal stress and lithology on the pre-failure phases. We noted that with the increasing of normal stress, the length of stable cracking phase decreases and the length of unstable cracking phase slightly increases, except for marble rock bridges at high normal stress, which maintains a great proportion of stable cracking phase that possibly results from the great off-fault damage. Increasing normal stress also suppresses the dilation of granite rock bridges, but has a different effect on marble rock bridges, which also suggests the effect of lithology on failure modes.

7.
ACS Biomater Sci Eng ; 10(6): 3958-3967, 2024 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-38711418

RESUMO

Microgels are advanced scaffolds for tissue engineering due to their proper biodegradability, good biocompatibility, and high specific surface area for effective oxygen and nutrient transfer. However, most of the current monodispersed microgel fabrication systems rely heavily on various precision pumps, which highly increase the cost and complexity of their downstream application. In this work, we developed a simple and facile system for the controllable generation of uniform alginate microgels by integrating a gas-shearing strategy into a glass microfluidic device. Importantly, the cell-laden microgels can be rapidly prepared in a pump-free manner under an all-aqueous environment. The three-dimensional cultured green fluorescent protein-human A549 cells in alginate microgels exhibited enhanced stemness and drug resistance compared to those under two-dimensional conditions. The pancreatic cancer organoids in alginate microgels exhibited some of the key features of pancreatic cancer. The proposed microgels showed decent monodispersity, biocompatibility, and versatility, providing great opportunities in various biomedical applications such as microcarrier fabricating, organoid engineering, and high-throughput drug screening.


Assuntos
Alginatos , Microgéis , Alginatos/química , Alginatos/farmacologia , Humanos , Microgéis/química , Células A549 , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Dispositivos Lab-On-A-Chip , Engenharia Tecidual/métodos , Alicerces Teciduais/química
8.
ACS Appl Mater Interfaces ; 16(23): 30228-30238, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38810990

RESUMO

A bottom-contact organic field-effect transistor (OFET) is easily adaptable to the standard lithography process because the contact electrodes are deposited before the organic semiconductor (OSC). However, the low surface energy of bare electrodes limits utilizing solution-processed single-crystal OSCs. Additionally, the bare electrode usually leads to a significant charge injection barrier, owing to its relatively low work function (WF). Here, we simultaneously improved the surface energy and WF of gold electrodes by conducting oxygen plasma treatment to achieve high-performance OFET based on solution-processed organic single crystals. We cultivated a thin layer of gold oxide on Au electrodes to increase the WF by ∼0.7 eV. The surface energy of Au electrodes was enhanced to the same as AlOx dielectric surface, enabling the seamless growth of large-area C8-BTBT (2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene) organic single-crystal thin films via solution shearing. This technique facilitates the production of high-performance OFETs with the highest carrier mobility of 6.7 cm2 V-1 s-1 and sharp switching characterized by a subthreshold swing of 63.6 mV dec-1. The bottom-contact OFETs exhibited a lower contact resistance of 1.19 kΩ cm than its F4-TCNQ-doped top-contact control device. This method offers a straightforward and effective strategy for producing high-quality single-crystal OFETs, which are potentially suitable for commercial applications.

9.
Food Chem ; 451: 139456, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38670022

RESUMO

Frozen surimi quality generally correlates with oxidation, but impacts of protein oxidation on salt-dissolved myofibrillar protein (MP) sol in surimi remain unclear. Hence, physicochemical and gelling properties of MP sol with different oxidation degrees were investigated subjected to freeze-thaw cycles. Results showed that mild oxidation (≤1 mmol/L) improved unfrozen MP gel quality with lowest cooking loss (3.29 %) and highest hardness (829.76 N). Whereas, oxidized sol suffering freeze-thawing degenerated severely, showing reduction of 23.85 % of salt soluble protein contents with H2O2 concentrations of 10 mmol/L. Shearing before heating influenced gelling properties of freeze-thawed sol, depending on oxidation levels. Oxidized gel with shearing displayed disorganized network structures, whereas gel without shearing displayed relatively complete appearances without holes under high oxidation condition (10 mmol/L). Overall, freeze-thaw process aggravated denaturation extents of MP sol subjected to oxidation, further causing high water loss and yellow color of heat-induced gel, especially to gel with shearing.


Assuntos
Produtos Pesqueiros , Congelamento , Géis , Proteínas Musculares , Oxirredução , Animais , Géis/química , Produtos Pesqueiros/análise , Proteínas Musculares/química , Suínos , Agregados Proteicos , Miofibrilas/química , Proteínas de Peixes/química , Culinária , Manipulação de Alimentos
10.
Sci Rep ; 14(1): 8619, 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38616200

RESUMO

The joints are existing throughout the underground rock mass. It is of great significance to investigate the shear performance of the rock mass to maintain the stability of the underground structure. In this study, we conducted orthogonal tests to determine the proportion of rock-like materials, and used JRC curves to make specimen molds and then prepare the specimens. We conducted straight shear tests and uniaxial compression tests to determine the various mechanical parameters of the rock-like materials. Next, we carried out the compression and shear tests to investigate the shear characteristics of the specimens, and study the damage pattern and shear strength of the jointed rock mass under different confining pressures and roughness levels. The mesoscopic displacements in the shear process of joints were analyzed by using ABAQUS. The test results show that the effect of the confining pressure on the shear strength of the joint plane is relatively obvious, and a larger confining pressure indicates a larger shear strength. The effects of different joint plane roughness and shear rated on the shear characteristics of the joint plane are also significant. The mesoscopic displacement difference inside the joint plane with higher roughness is relatively large, and the stress concentration phenomenon is obvious and lasts longer, which leads to the faster destruction of the specimen with higher roughness and the higher destruction degree. Therefore, we suggest that the priority should be given to the reinforcement of jointed rock mass with high roughness during the construction to prevent sudden destabilization and failure.

11.
J Sci Food Agric ; 104(11): 6573-6583, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-38520286

RESUMO

BACKGROUND: Pectin extracted by high-speed shearing from passion fruit peel (HSSP) is a potentially excellent wall material for encapsulating curcumin, which has multiple advantages over pectin prepared by heated water extraction. HSSP was used to fabricate complex nanoparticles of zein-sodium caseinate-pectin for encapsulation of curcumin in this study. The influence of heating on the physicochemical properties of the composite nanoparticles was also investigated, as well as the effect of composite nanoparticles on the encapsulation efficiency, antioxidant activity and release characteristics of curcumin. RESULTS: The nanoparticles were formed through electrostatic interactions, hydrogen bonds and hydrophobic interactions between the proteins and HSSP. A temperature of 50 °C was more favorable for generating compact and small-sized nanoparticles, which could effectively improve the encapsulation efficiency and functional properties. Moreover, compared to other pectin used in the study, the nanoparticles prepared with HSSP showed the best functionality with a particle size of 234.28 ± 0.85 nm, encapsulation rate of 90.22 ± 0.54%, free radical scavenging rate of 78.97% and strongest protective capacity in simulated gastric fluid and intestinal release effect. CONCLUSION: Zein-sodium caseinate-HSSP is effective for encapsulating and delivering hydrophobic bioactive substances such as curcumin, which has potential applications in the functional food and pharmaceutical industries. © 2024 Society of Chemical Industry.


Assuntos
Caseínas , Curcumina , Composição de Medicamentos , Frutas , Nanopartículas , Tamanho da Partícula , Passiflora , Pectinas , Zeína , Pectinas/química , Passiflora/química , Zeína/química , Caseínas/química , Curcumina/química , Nanopartículas/química , Frutas/química , Extratos Vegetais/química , Interações Hidrofóbicas e Hidrofílicas , Portadores de Fármacos/química , Antioxidantes/química
12.
Sci Rep ; 14(1): 6166, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486000

RESUMO

Understanding direction-dependent friction anisotropy is necessary to optimize interface shear resistance across soil-structure. Previous studies estimated interface frictional anisotropy quantitatively using contractive sands. However, no studies have explored how sand with a high dilative tendency around the structural surface affects the interface shear response. In this study, a series of interface direct shear tests are conducted with selected French standard sand and snakeskin-inspired surfaces under three vertical stresses (50, 100, and 200 kPa) and two shearing directions (cranial → caudal or caudal → cranial). First, the sand-sand test observes a higher dilative response, and a significant difference between the peak and residual friction angles (ϕpeak - ϕres = 8°) is obtained at even a lower initial relative density Dr = 40%. In addition, the interface test results show that (1) shearing against the scales (cranial shearing) mobilizes a larger shear resistance and produces a dilative response than shearing along the scales (caudal shearing), (2) a higher scale height or shorter scale length exhibits a higher dilative tendency and produces a higher interface friction angle, and (3) the interface anisotropy response is more pronounced during cranial shearing in all cases. Further analysis reveals that the interface friction angle and dilation angle are decreased with the scale geometry ratio (L/H). For L/H values between 16.67 and 60, the interface dilation angle varies between 9° and 4° for cranial first shearing and 3.9°-2.6° for caudal first shearing. However, the difference in dilation angle within the same shearing direction is less than 1°.

13.
Small Methods ; 8(3): e2300842, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38009770

RESUMO

Conjugated polymers often show efficient charge carrier transport along their backbone which is a primary factor in the electrical behavior of Organic Field Effect Transistor (OFETs) devices fabricated from these materials. Herein, a solution shearing procedure is reported to fabricate micro/nano wires from a diketopyrrolopyrrole (DPP)-based polymer. Millimeter to nanometer long polymer wires orientated in the coating direction are developed after a thorough analysis of the deposition conditions. It shows several morphological regimes-film, transition, and wires and experimentally derive a phase diagram for the parameters coating speed and surface energy of the substrate. The as-fabricated wires are isolated, which is confirmed by optical, atomic force, and scanning electron microscopy. Beside the macroscopic alignment of wires, cross-polarized optical microscopy images show strong birefringence suggesting a high degree of molecular orientation. This is further substantiated by polarized UV-Vis-NIR spectroscopy, selected area electron diffraction transmission electron microscopy, and grazing-incidence wide-angle X-ray scattering. Finally, an enhanced electrical performance of single wire OFETs is observed with a 15-fold increase in effective charge carrier mobility to 1.57 cm2 V-1 s-1 over devices using films (0.1 cm2 V-1 s-1 ) with similar values for on/off current ratio and threshold voltage.

14.
J Mech Behav Biomed Mater ; 150: 106317, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38118374

RESUMO

The purpose of this study was to evaluate the effects of immobilization on mechanical properties of skeletal muscle over the time. An in vivo rat model was used to investigate the shear modulus change of the flexor carpi ulnaris (FCU) in a short position. Measurements were performed by shear wave elastography (SWE) to compare contralateral and immobilized cases. The results showed a significant increase of 18.1% (p = 3.86. 10-7) in the shear modulus of immobilized skeletal muscle after two weeks (D14) when compared with the contralateral case. For the purposes of comparison, in vitro mechanical pure shearing tests were performed on samples collected from the skeletal muscles of the same rats. Although the difference between contralateral and immobilized cases was 17.6% (p = 0.32) at D14, the shear modulus difference was 35.7% (p = 0.0126 and p = 1.57.10-5 for immobilization and contralateral respectively) between in vivo and in vitro approaches. The mechanical properties changes were then correlated with the density of collagen from histological analysis, and it was shown that the contralateral collagen surface density was 25.4% higher than the immobilized density at D14 (p = 0.001). Thus, the results showed the feasibility of the comparison between the two approaches, which can surely be improved by optimizing the experimental protocols.


Assuntos
Técnicas de Imagem por Elasticidade , Animais , Ratos , Técnicas de Imagem por Elasticidade/métodos , Módulo de Elasticidade , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/fisiologia , Técnicas In Vitro , Colágeno
15.
ACS Nano ; 17(24): 25507-25518, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38079354

RESUMO

The commercialization of lithium-sulfur (Li-S) batteries has been hampered by diverse challenges, including the shuttle phenomenon and low electrical/ionic conductivity of lithium sulfide and sulfur. To address these issues, extensive research has been devoted to developing multifunctional interlayers. However, interlayers capable of simultaneously suppressing the polysulfide (PS) shuttle and ensuring stable electrical and ionic conductivity are relatively uncommon. Moreover, the use of thick and heavy interlayers results in an unavoidable decline in the energy density of Li-S batteries. We developed an ultrathin (750 nm), lightweight (0.182 mg cm-2) interlayer that facilitates mixed ionic-electronic conduction using the solution shearing technique. The interlayer, composed of carbon nanotube (CNT)/Nafion/poly-3,4-ethylenedioxythiophene:tetracyanoborate (PEDOT:TCB), effectively suppresses the shuttle phenomenon through the synergistic segregation and adsorption effects on PSs by Nafion and CNT/PEDOT, respectively. Furthermore, the electrical/ionic conductivity of the interlayer can be improved via counterion exchange and homogeneous Li+ ion flux/good wettability from SO3- functional group of Nafion, respectively. Enhanced sulfur utilization and reaction kinetics through polysulfide shuttle inhibition and facilitated electron/ion transfer by interlayer enable a high discharge capacity of 1029 mA h g-1 in the Li-S pouch cell under a high sulfur loading of 5.3 mg cm-2 and low electrolyte/sulfur ratio of 5 µL mg-1.

16.
Int J Mol Sci ; 24(23)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38068993

RESUMO

Tinnitus is the perception of noise in the absence of acoustic stimulation (phantom noise). In most patients suffering from chronic peripheral tinnitus, an alteration of outer hair cells (OHC) starting from the stereocilia (SC) occurs. This is common following ototoxic drugs, sound-induced ototoxicity, and acoustic degeneration. In all these conditions, altered coupling between the tectorial membrane (TM) and OHC SC is described. The present review analyzes the complex interactions involving OHC and TM. These need to be clarified to understand which mechanisms may underlie the onset of tinnitus and why the neuropathology of chronic degenerative tinnitus is similar, independent of early triggers. In fact, the fine neuropathology of tinnitus features altered mechanisms of mechanic-electrical transduction (MET) at the level of OHC SC. The appropriate coupling between OHC SC and TM strongly depends on autophagy. The involvement of autophagy may encompass degenerative and genetic tinnitus, as well as ototoxic drugs and acoustic trauma. Defective autophagy explains mitochondrial alterations and altered protein handling within OHC and TM. This is relevant for developing novel treatments that stimulate autophagy without carrying the burden of severe side effects. Specific phytochemicals, such as curcumin and berberin, acting as autophagy activators, may mitigate the neuropathology of tinnitus.


Assuntos
Zumbido , Humanos , Células Ciliadas Auditivas Externas , Estereocílios , Som , Estimulação Acústica
17.
ACS Appl Mater Interfaces ; 15(46): 53913-53923, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37955400

RESUMO

Solution shearing, a meniscus-guided coating process, can create large-area metal-organic framework (MOF) thin films rapidly, which can lead to the formation of uniform membranes for separations or thin films for sensing and catalysis applications. Although previous work has shown that solution shearing can render MOF thin films, examples have been limited to a few prototypical systems, such as HKUST-1, Cu-HHTP, and UiO-66. Here, we expand on the applicability of solution shearing by making thin films of NU-901, a zirconium-based MOF. We study how the NU-901 thin film properties (i.e., crystallinity, surface coverage, and thickness) can be controlled as a function of substrate temperature and linker concentration. High fractional surface coverage of small-area (∼1 cm2) NU-901 thin films (0.88 ± 0.06) is achieved on a glass substrate for all conditions after one blade pass, while a low to moderate fractional surface coverage (0.73 ± 0.18) is obtained for large-area (∼5 cm2) NU-901 thin films. The crystallinity of NU-901 crystals increases with temperature and decreases with linker concentration. On the other hand, the adjusted thickness of NU-901 thin films increases with both increasing temperature and linker concentration. We also extend the solution shearing technique to synthesize MOF-525 thin films on a transparent conductive oxide that are useful for electrocatalysis. We show that Fe-metalated MOF-525 films can reduce CO2 to CO, which has implications for CO2 capture and utilization. The demonstration of thin film formation of NU-901 and MOF-525 using solution shearing on a wide range of substrates will be highly useful for implementing these MOFs in sensing and catalytic applications.

18.
Heliyon ; 9(11): e20807, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38034658

RESUMO

Stenosis is caused by an abnormal growth in the artery's lumen. This undesirable growth can change the hemodynamic characteristics of the blood flow which could be injurious to normal health. Theoretical results obtained for specific geometrics are given for the velocity distribution, pressure, wall shearing stress, and other different phenomena. Flow resistance has been shown that the wall shear decreases with decreasing peripheral layer viscosity, but these properties increase with increasing stenosis size. A two-fluid blood model with a core of micro-polar fluid and a periphery of Newtonian blood has been researched in the presence of moderate stenosis. In terms of modified Bessels functions of zero and first order, analytical equations for flow resistance, wall shear stress, and diffusion via stenosis have been found. Therefore, understanding and preventing arterial illnesses need a thorough grasp of the specific flow characteristics of a channel with restriction. The results for wall shearing stress resistance to flow and concentration profiles have been obtained and discussed with the help of graphically.

19.
Environ Entomol ; 52(6): 1095-1107, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37788433

RESUMO

In the northern Great Lakes region, the creation and maintenance of early-successional woody communities as wildlife habitat have increasingly become a conservation priority. The extent to which insect pollinators use these systems remains largely anecdotal. In summer (June-August) of 2021, we surveyed 49 early-successional sites in the western Great Lakes region treated with either shrub-shearing or silviculture (young forest) for bumble bees, butterflies, and habitat components (i.e., structural vegetation and floral resources). Hierarchical distance models predicted pollinator densities (λ^) to be, on average, λ^ = 84 bumble bees/ha and λ^ = 102 butterflies/ha. Although sheared shrubland and young forest communities supported comparable densities of bumble bees and butterflies, density was not equal across all sites. At the microhabitat scale, butterfly density and morphospecies richness were negatively associated with tall shrub cover and butterfly morphospecies richness (but not density) was driven by floral richness. Similarly, bumble bee density was positively associated with metrics of floral resources, underscoring the importance of blooming plants within these woody systems. Landscape covariates explained variation in butterfly density/richness but not bumble bee density. Ultimately, our results demonstrate that blooming plant abundance is an important driver of bumble bee and butterfly densities within these managed early-successional communities. Because early-successional woody communities are dynamic and their herbaceous openings are ephemeral, routine management would ensure that a variety of successional conditions exist on the landscape to meet the needs of bumble bees, butterflies, and potentially other insect pollinators.


Assuntos
Borboletas , Himenópteros , Abelhas , Animais , Lagos , Ecossistema , Florestas , Plantas , Polinização
20.
Math Biosci Eng ; 20(8): 15374-15406, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37679184

RESUMO

Medical image fusion is a crucial technology for biomedical diagnoses. However, current fusion methods struggle to balance algorithm design, visual effects, and computational efficiency. To address these challenges, we introduce a novel medical image fusion method based on the multi-scale shearing rolling weighted guided image filter (MSRWGIF). Inspired by the rolling guided filter, we construct the rolling weighted guided image filter (RWGIF) based on the weighted guided image filter. This filter offers progressive smoothing filtering of the image, generating smooth and detailed images. Then, we construct a novel image decomposition tool, MSRWGIF, by replacing non-subsampled shearlet transform's non-sampling pyramid filter with RWGIF to extract richer detailed information. In the first step of our method, we decompose the original images under MSRWGIF to obtain low-frequency subbands (LFS) and high-frequency subbands (HFS). Since LFS contain a large amount of energy-based information, we propose an improved local energy maximum (ILGM) fusion strategy. Meanwhile, HFS employ a fast and efficient parametric adaptive pulse coupled-neural network (AP-PCNN) model to combine more detailed information. Finally, the inverse MSRWGIF is utilized to generate the final fused image from fused LFS and HFS. To test the proposed method, we select multiple medical image sets for experimental simulation and confirm its advantages by combining seven high-quality representative metrics. The simplicity and efficiency of the method are compared with 11 classical fusion methods, illustrating significant improvements in the subjective and objective performance, especially for color medical image fusion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...