Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Sensors (Basel) ; 24(15)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39124037

RESUMO

Silicon Photomultipliers (SiPMs) are single photon detectors that gained increasing interest in many applications as an alternative to photomultiplier tubes. In the field of space experiments, where volume, weight and power consumption are a major constraint, their advantages like compactness, ruggedness, and their potential to achieve high quantum efficiency from UV to NIR makes them ideal candidates for spaceborne, low photon flux detectors. During space missions however, SiPMs are usually exposed to high levels of radiation, both ionizing and non-ionizing, which can deteriorate the performance of these detectors over time. The goal of this work is to compare process and layout variation of SiPMs in terms of their radiation damage effects to identify the features that helps reduce the deterioration of the performance and develop the next generation of more radiation-tolerant detectors. To do this, we used protons and X-rays to irradiate several Near Ultraviolet High-Density (NUV-HD) SiPMs with small areas (single microcell, 0.2 × 0.2 mm2 and 1 × 1 mm2) produced at Fondazione Bruno Kessler (FBK), Italy. We performed online current-voltage measurements right after each irradiation step, and a complete functional characterization before and after irradiation. We observed that the main contribution to performance degradation in space applications comes from proton damage in the form of an increase in primary dark count rate (DCR) proportional to the proton fluence and a reduction in activation energy. In this context, small active area devices show a lower DCR before and after irradiation, and we propose light or charge-focusing mechanisms as future developments for high-sensitivity radiation-tolerant detectors.

2.
Sensors (Basel) ; 24(14)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39065904

RESUMO

Silicon photomultipliers (SiPMs) are solid-state single-photon-sensitive detectors that show excellent performance in a wide range of applications. In FBK (Trento, Italy), we developed a position-sensitive SiPM technology, called "linearly graded" (LG-SiPM), which is based on an avalanche-current weighted-partitioning approach. It shows position reconstruction resolution below 250 µm on an 8 × 8 mm2 device area with four readout channels and minimal distortions. A recent development in terms of LG-SIPM is a larger chip version (10 × 10 mm2) based on FBK NUV-HD technology (near-ultraviolet sensitive), with a peak photon detection efficiency at 420 nm. Such a large-area detector with position sensitivity is very interesting in applications like MR-compatible PET, high-energy physics experiments, and readout of time-projection chambers, gamma and beta cameras, or scintillating fibers, with a reduced number of channels. These SiPMs were characterized in terms of noise, photon detection efficiency, and position resolution. We also developed tiles of 2 × 2 and 3 × 3 LG-SiPMs, reaching very large sensitive areas of 20 × 20 mm2 and 30 × 30 mm2. We implemented a "smart-channel" configuration, which allowed us to have just six output channels for the 2 × 2 elements and eight channels for the 3 × 3 element tiles, preserving a position resolution below 0.5 mm. These kinds of detectors provide a great advantage in compact and low-power applications by maintaining position sensitivity over large areas with a small number of channels.

3.
J Nucl Med Technol ; 52(3): 247-251, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38901966

RESUMO

The lack of pediatrics-specific equipment for nuclear medicine imaging has resulted in insufficient diagnostic information for newborns, especially low-birth-weight infants. Although PET offers high spatial resolution and low radiation exposure, its use in newborns is limited. This study investigated the feasibility of cardiac PET imaging using the latest silicon photomultiplier (SiPM) PET technology in infants of extremely low birth weight (ELBW) using a phantom model. Methods: The study used a phantom model representing a 500-g ELBW infant with brain, cardiac, liver, and lung tissues. The cardiac tissue included a 3-mm-thick defect mimicking myocardial infarction. Organ tracer concentrations were calculated assuming 18F-FDG myocardial viability scans and 18F-flurpiridaz myocardial perfusion scans and were added to the phantom organs. Imaging was performed using an SiPM PET/CT scanner with a 5-min acquisition. The data acquired in list mode were reconstructed using 3-dimensional ordered-subsets expectation maximization with varying iterations. Image evaluation was based on the depiction of the myocardial defect compared with normal myocardial accumulation. Results: Increasing the number of iterations improved the contrast of the myocardial defect for both tracers, with 18F-flurpiridaz showing higher contrast than 18F-FDG. However, even at 50 iterations, both tracers overestimated the defect accumulation. A bull's-eye image can display the flow metabolism mismatch using images from both tracers. Conclusion: SiPM PET enabled cardiac PET imaging in a 500-g ELBW phantom with a 1-g heart. However, there were limitations in adequately depicting these defects. Considering the image quality and defect contrast,18F-flurpiridaz appears more desirable than 18F-FDG if only one of the two can be used.


Assuntos
Coração , Recém-Nascido de Peso Extremamente Baixo ao Nascer , Imagens de Fantasmas , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Silício , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/instrumentação , Humanos , Coração/diagnóstico por imagem , Recém-Nascido , Processamento de Imagem Assistida por Computador/métodos , Controle de Qualidade
4.
Sensors (Basel) ; 24(12)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38931622

RESUMO

Thanks to advancements in silicon photomultiplier sensors (SiPMs) and system-on-chip (SoC) technology, our INFN Roma1 group developed ArduSiPM in 2012, the first all-in-one scintillator particle detector in the literature. It used a custom Arduino Due shield to process fast signals, utilizing the Microchip Sam3X8E SoC's internal peripherals to control and acquire SiPM signals. The availability of radiation-tolerant SoCs, combined with the goal of reducing system space and weight, led to the development of an innovative second-generation board, a better-performing device called Cosmo ArduSiPM, suitable for space missions. The architecture of the new detector is based on the Microchip SAMV71 300 MHz, 32-bit ARM® Cortex®-M7 (Microchip Technology Inc., Chandler, AZ, USA). While the analog front-end is essentially identical to the ArduSiPM, it utilizes components with the smallest possible package. The board fits in a CubeSat module. Thanks to the compact design, the board has two independent channels, with a total weight of only 40 grams within a CubeSat form factor. The ArduSiPM architecture is based on a single microcontroller and fast discrete analog electronics. It benefits from the continued development of SoCs related to the IoT (Internet of Things) market. Compared with a system with a custom ASIC, this architecture based on software and SoC capabilities offers considerable advantages in terms of cost and development time. The ability to incorporate new commercial SoCs, continuously emerging from advancements in the aerospace and automotive industries, provides the system with a robust foundation for sustained growth over the years. A detailed characterization of the hardware and the system's response to different photon fluxes is presented in this article. Additionally, coupling the device with a scintillator was tested at the end of this article as a preliminary trial for future measurements, showing potential for further enhancement of the detector's capabilities.

5.
EJNMMI Rep ; 8(1): 18, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38910232

RESUMO

INTRODUCTION: A physiological increase in the uptake of [68Ga]Ga-labeled somatostatin analogues ([68Ga]Ga-SST) PET tracers has been reported in the uncinate pancreatic process (UP) and might be even higher in latest generation of PET/CT scanners and might be falsely interpreted as NET. We aimed to investigate the uptake of UP in a large population of NET patients who underwent [68Ga]Ga-SST PET/CT with digital SiPM detectors. We also explored potential associations between UP uptake and various clinical, imaging, and pathological factors routinely assessed in NET patients. METHODS: We analyzed all consecutive NET patients from July 2018 to June 2022 in this retrospective, single-center study. All patients underwent a [68Ga]Ga-SST PET/CT scan on a digital SiPM PET/CT scanner. On visual analysis, we distinguished between normal linear and homogenous UP uptake or abnormal if otherwise. We compared SUVmax/mean in patients with normal UP uptake to those with abnormal UP uptake with suspicious NET lesions on contrast-enhanced CT (ce-CT) and according to the site of the primary NET (pancreatic NET vs. other), patient gender (female vs. male) and tumor grade (grade 1-2 vs. 3) using a Mann-Whitney test. We also assessed the correlation between SUVmax/mean values in UP with patients' age, primary NET Ki-67 counting, and its SUVmax/mean, TLA and MTV values. RESULTS: We included 131 NET patients with a total of 34 [68Ga]Ga-DOTATATE PET/CT and 113 [68Ga]Ga-DOTATOC PET/CT scans. An abnormal UP uptake was seen in 32 patients with 65.7% of suspicious NET lesion or extrinsic compression on morphological imaging. Normal UP uptake SUVmax/mean were measured in 115 [68Ga]Ga-SST scans (78.2%) with normal UP uptake and without suspicious lesion on morphological imaging. We found an average SUVmax of 12.3 ± 4.1 for [68Ga]Ga-DOTATATE and 19.8 ± 9.8 g/ml for [68Ga]Ga-DOTATOC, hence higher than those reported in the literature [SUVmax 5 ± 1.6 to 12.6 ± 2.2 g/ml] with significant difference with abnormal UP uptake and between both PET tracers (both p < 0.01). Significant results were a higher UP uptake on [68Ga]Ga-DOTATOC in male patients (p = 0.02) and significant associations between UP uptake on [68Ga]Ga-DOTATOC and SUVmax/mean of the primary tumor (ρ [0.337-0.363]; p [0.01-0.02]). CONCLUSION: We confirmed a higher and very frequent UP uptake in latest SiPM-detector [68Ga]Ga-SST PET/CT with an even higher uptake in patients that had [68Ga]Ga-DOTATOC PET/CT. SUVmean/max were significantly higher in abnormal UP uptake but there were overlaps with UP SUV values for both [68Ga]Ga-SST and a correlation to morphological imaging is crucial. Besides, significant associations between UP uptake and SUVmean/max of the primary NET as well as patients' gender were seen in the larger cohort of [68Ga]Ga-DOTATOC patients suggesting that both physiological and pathological parameters could affect UP uptake.

6.
Sensors (Basel) ; 24(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38732806

RESUMO

The main consequence of radiation damage on a silicon photomultiplier (SiPM) is a significant increase in the dark current. If the SiPM is not adequately cooled, the power dissipation causes it to heat up, which alters its performance parameters. To investigate this heating effect, a measurement cycle was developed and performed with a KETEK SiPM glued to an Al2O3 substrate and with HPK SiPMs glued to either an Al2O3 substrate or a flexible PCB. The assemblies were connected either directly to a temperature-controlled chuck on a probe station, or through layers of materials with defined thermal resistance. An LED operated in DC mode was used to illuminate the SiPM and to tune the power dissipated in a measurement cycle. The SiPM current was used to determine the steady-state temperature reached by the SiPM via a calibration curve. The increase in SiPM temperature due to self-heating is analyzed as a function of the power dissipation in the SiPM and the thermal resistance. This information can be used to adjust the operating voltage of the SiPMs, taking into account the effects of self-heating. Similarly, this approach can be applied to investigate the unknown thermal contact of packaged SiPMs.

7.
Sensors (Basel) ; 24(9)2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38733041

RESUMO

Open Hardware-based microcontrollers, especially the Arduino platform, have become a comparably easy-to-use tool for rapid prototyping and implementing creative solutions. Such devices in combination with dedicated front-end electronics can offer low-cost alternatives for student projects, slow control and independently operating small-scale instrumentation. The capabilities can be extended to data taking and signal analysis at mid-level rates. Two detector realizations are presented, which cover the readouts of proportional counter tubes and of scintillators or wavelength-shifting fibers with silicon photomultipliers (SiPMs). The SiPMTrigger realizes a small-scale design for coincidence readout of SiPMs as a trigger or veto detector. It consists of a custom mixed signal front-end board featuring signal amplification, discrimination and a coincidence unit for rates of up to 200 kHz. The nCatcher transforms an Arduino Nano to a proportional counter readout with pulse shape analysis: time over threshold measurement and a 10-bit analog-to-digital converter for pulse heights. The device is suitable for low-to-medium-rate environments up to 5 kHz, where a good signal-to-noise ratio is crucial. We showcase the monitoring of thermal neutrons. For data taking and slow control, a logger board is presented that features an SD card and GSM/LoRa interface.

8.
Phys Med Biol ; 69(11)2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38657637

RESUMO

Objective.The efficient usage of prompt photons like Cherenkov emission is of great interest for the design of the next generation, cost-effective, and ultra-high-sensitivity time-of-flight positron emission tomography (TOF-PET) scanners. With custom, high power consuming, readout electronics and fast digitization the prospect of sub-300 ps FWHM with PET-sized BGO crystals have been shown. However, these results are not scalable to a full system consisting of thousands of detector elements.Approach.To pave the way toward a full TOF-PET scanner, we examine the performance of the FastIC ASIC with Cherenkov-emitting scintillators (BGO), together with one of the most recent SiPM detector developments based on metal trenching from FBK. The FastIC is a highly configurable ASIC with 8 input channels, a power consumption of 12 mW ch-1and excellent linearity on the energy measurement. To put the timing performance of the FastIC into perspective, comparison measurements with high-power consuming readout electronics are performed.Main results.We achieve a best CTR FWHM of 330 ps for 2 × 2 × 3 mm3and 490 ps for 2 × 2 × 20 mm3BGO crystals with the FastIC. In addition, using 20 mm long LSO:Ce:Ca crystals, CTR values of 129 ps FWHM have been measured with the FastIC, only slightly worse to the state-of-the-art of 95 ps obtained with discrete HF electronics.Significance.For the first time, the timing capability of BGO with a scalable ASIC has been evaluated. The findings underscore the potential of the FastIC ASIC in the development of cost-effective TOF-PET scanners with excellent timing characteristics.


Assuntos
Tomografia por Emissão de Pósitrons , Tomografia por Emissão de Pósitrons/instrumentação , Fatores de Tempo , Processamento de Imagem Assistida por Computador/métodos
9.
Sensors (Basel) ; 24(8)2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38676265

RESUMO

A systematic study of the nonlinear response of Silicon Photomultipliers (SiPMs) was conducted through Monte Carlo (MC) simulations. The MC code was validated against experimental data for two different SiPMs. Nonlinearity mainly depends on the balance between the photon rate and the pixel recovery time. Additionally, nonlinearity has been found to depend on the light pulse shape, the correlated noise, the overvoltage dependence of the photon detection efficiency, and the impedance of the readout circuit. Correlated noise has been shown to have a minor impact on nonlinearity, but it can significantly affect the shape of the SiPM output current. Considering these dependencies and a previous statistical analysis of the nonlinear response of SiPMs, two phenomenological fitting models were proposed for exponential-like and finite light pulses, explaining the roles of their various terms and parameters. These models provide an accurate description of the nonlinear responses of SiPMs at the level of a few percentages for a wide range of situations.

10.
Sensors (Basel) ; 24(5)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38475207

RESUMO

The finite number of pixels in a silicon photomultiplier (SiPM) limits its dynamic range to light pulses up to typically 80% of the total number of pixels in a device. Correcting the non-linear response is essential to extend the SiPM's dynamic range. One challenge in determining the non-linear response correction is providing a reference linear light source. Instead, the single-step method used to calibrate PMTs is applied, based on the difference in responses to two light sources. With this method, the response of an HPK SiPM (S14160-1315PS) is corrected to linearity within 5% while extending the linear dynamic range by a factor larger than ten. The study shows that the response function does not vary by more than 5% for a variation in the operating voltage between 2 and 5 V overvoltage in the gate length between 20 and 100 ns and for a time delay between the primary and secondary light of up to 40 ns.

11.
Jpn J Radiol ; 42(6): 639-647, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38345725

RESUMO

PURPOSE: Whole-body silicon photomultiplier positron emission tomography (WB SiPM PET) could be used to diagnose breast cancer spread before lumpectomy. We aimed to investigate the method of measuring the tumor size by WB SiPM PET as a basis for diagnosing breast cancer spread in the breast. MATERIALS AND METHODS: We retrospectively reviewed 35 breast cancer lesions in 32 patients who underwent WB SiPM PET/CT in the prone position as preoperative breast cancer examinations from September 2020 to March 2022. In all cases, a 20-mm spherical VOI was placed in the normal mammary gland to measure the mean standardised uptake value (SUVmean) and the standard deviation (SD) of 18F-fluorodeoxyglucose (FDG) uptake. We prepared four types of candidates (SUVmean + 2 SD, SUVmean + 3 SD, 1.5 SUVmean + 2 SD, 1.5 SUVmean + 3 SD) for thresholds for delineating tumor contours on PET images. On the semiautomatic viewer soft, the maximum tumor sizes were measured at each of the four thresholds and compared with the pathological tumor sizes, including the extensive intraductal component (EIC). RESULTS: The lesion detection sensitivity was 97% for WB SiPM PET. PET detected 34 lesions, excluding 4-mm ductal carcinomas in situ (DCIS). PET measurements at the '1.5 SUVmean + 2 SD' threshold demonstrated values closest to the pathological tumor sizes, including EIC. Moreover, '1.5 SUVmean + 2 SD' had the highest concordance (63%). CONCLUSIONS: The study demonstrated that among various PET thresholds, the '1.5 SUVmean + 2 SD' threshold exhibited the best performance. However, even with this threshold, the concordance rate was limited to only 63%.


Assuntos
Neoplasias da Mama , Estudos de Viabilidade , Fluordesoxiglucose F18 , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Silício , Humanos , Feminino , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Pessoa de Meia-Idade , Estudos Retrospectivos , Idoso , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Adulto , Compostos Radiofarmacêuticos , Imagem Corporal Total/métodos , Tomografia por Emissão de Pósitrons/métodos , Carga Tumoral , Idoso de 80 Anos ou mais , Cuidados Pré-Operatórios/métodos
12.
Phys Med ; 119: 103303, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38325223

RESUMO

Quantitative values of positron emission tomography (PET) images using non-local-mean in a silicon photomultiplier (SiPM)-PET/computed tomography (CT) system with phantom and clinical images. The evaluation was conducted on a National Electrical Manufacturers Association body phantom with micro-spheres (4, 5, 6, 8, 10, 13 mm) and clinical images using the SiPM-PET/CT system. The signal-to-background ratio of the phantom was set to 4, and all PET image data was obtained and reconstructed using three-dimensional ordered subset expectation maximization, time-of-flight, point-spread function, and a 4-mm Gaussian filter (GF) and clear adaptive low-noise method (CaLM) in mild, standard, and strong intensities. The evaluation included the standardized uptake value (SUV), percent contrast (QH), coefficient of variation of the background area (CVbackground) clinical imaging for SUV of lung nodules, liver signal-to-noise ratio (SNR), and visual evaluation. SUVmax for 8-mm sphere in phantom images at 2 min for GF and CaLM (mild, standard, strong) were 2.11, 2.32, 2.02, and 1.72; the QH, 8 mm was 27.33 %, 27.47 %, 21.81 %, and 16.09 %; and CVbackground was 12.78, 11.35, 7.86, and 4.71, respectively. CaLM demonstrated higher SUVmax in clinical images than GF for all lung nodule sizes. The average SUVmax for nodules with a diameter of ≤ 1 cm were 5.9 ± 2.4, 9.9 ± 4.9, 9.9 ± 5.0, and 9.9 ± 5.0 for GF and CaLM-mild, standard, and strong intensities, respectively. Liver SNRs were higher for CaLM (mild, standard, strong) compared to GF, with increasing CaLM intensity causing higher liver SNR. CaLM-mild and standard demonstrated suitability for diagnosis in visual evaluation.


Assuntos
Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia por Emissão de Pósitrons , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Estudos de Viabilidade , Tomografia por Emissão de Pósitrons/métodos , Razão Sinal-Ruído , Tecnologia , Imagens de Fantasmas , Processamento de Imagem Assistida por Computador/métodos
13.
Sensors (Basel) ; 24(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38339627

RESUMO

Source localisation and real-time dose verification are at the forefront of medical research in brachytherapy, an oncological radiotherapy procedure based on radioactive sources implanted in the patient body. The ORIGIN project aims to respond to this medical community's need by targeting the development of a multi-point dose mapping system based on fibre sensors integrating a small volume of scintillating material into the tip and interfaced with silicon photomultipliers operated in counting mode. In this paper, a novel method for the selection of the optimal silicon photomultipliers to be used is presented, as well as a laboratory characterisation based on dosimetric figures of merit. More specifically, a technique exploiting the optical cross-talk to maintain the detector linearity in high-rate conditions is demonstrated. Lastly, it is shown that the ORIGIN system complies with the TG43-U1 protocol in high and low dose rate pre-clinical trials with actual brachytherapy sources, an essential requirement for assessing the proposed system as a dosimeter and comparing the performance of the system prototype against the ORIGIN project specifications.


Assuntos
Braquiterapia , Humanos , Braquiterapia/métodos , Dosagem Radioterapêutica , Dosímetros de Radiação , Radiometria/métodos , Software
14.
Ann Nucl Med ; 38(2): 96-102, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37851300

RESUMO

OBJECTIVE: To evaluate the differences in FDG accumulation in arteries throughout the body between digital and standard PET/CT. METHODS: Forty-six people who had FDG-PET examinations with a digital PET/CT scanner for health screening between April 2020 and March 2021 and had previous examinations with a standard PET/CT scanner were the study participants. FDG accumulation in arteries throughout the body was visually assessed in each segment. Scan was considered positive when arterial FDG accumulation was equal to or greater than that of the liver. The positivity rates for general arteries and each arterial segment were compared between the two kinds of scanners. If any one of the arterial segments was considered positive, the general arteries were classified as positive. Moreover, the rate of change in results from the standard PET/CT to the digital scanner in the same individual (negative to positive, positive to negative) was examined. RESULTS: In the evaluation of general arteries, the positivity rates were 21.7% (10 cases) for the standard PET/CT, whereas positive rates were 97.8% (45 cases) for the digital PET/CT (p < 0.001). In all arterial segments, the positivity rate was significantly higher with the digital PET/CT compared to the standard PET/CT; those with the digital PET/CT were, respectively, 95.7%, 87.0%, 73.9%, 37.0%, 34.8%, and 21.7% in the femoral, brachial, aortic, subclavian, iliac, and carotid arteries. On the other hand, those with the standard PET/CT were 13.0%, 13.0%, 19.6%, 2.2%, 0%, and 4.4% in segments in the above order. Changes from negative to positive were shown in many cases; 35 cases (76.0%) of general arteries, 38 cases (82.6%) for the femoral artery, and 34 cases (73.9%) for the brachial artery. The exception was one case in which a change from positive to negative was confirmed in the carotid artery. In all arteries considered to be positive, FDG accumulation was not greater than but was equal to that in the liver with both scanners. CONCLUSIONS: Arterial FDG accumulation was significantly higher with digital PET/CT compared to conventional PET/CT. With digital PET/CT, an arterial FDG accumulation equal to the liver may not to be considered as abnormal accumulation.


Assuntos
Fluordesoxiglucose F18 , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Compostos Radiofarmacêuticos , Tomografia por Emissão de Pósitrons/métodos , Artérias Carótidas/diagnóstico por imagem
15.
Phys Med Biol ; 69(2)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38091614

RESUMO

Objective. The high production cost of commonly used lutetium-based fast scintillators and the development of silicon photomultipliers technology have made bismuth germanate (BGO) a promising candidate for time-of-flight positron emission tomography (TOF PET) detectors owing to its generation of prompt Cherenkov photons. However, using BGO as a hybrid scintillator is disadvantageous owing to its low photon statistics and distribution that does not conform well to a single Gaussian. To mitigate this, a proposal was made to increase the likelihood of detecting the first Cherenkov photons by positioning two photosensors in opposition at the entrance and exit faces of the scintillator and subsequently selectively picking an earlier timestamp. Nonetheless, the timing variation arising from the photon transit time remains affected by the entire length of the crystal, thereby presenting a possibility for further enhancement.Approach. In this study, we aimed to improve the timing performance of the dual-ended BGO Cherenkov TOF PET detector by capitalizing on the synergistic advantages of applying depth-of-interaction (DOI) information and crystal surface finishes or reflector properties. A dual-ended BGO detector was implemented using a 3 × 3 × 15 mm3BGO crystal. Coincidence events were acquired against a 3 × 3 × 3 mm3LYSO:Ce:Mg reference detector. The timing performance of the dual-ended BGO detectors was analyzed using conventionally proposed timestamp methods before and after DOI correction.Results. Through a DOI-based correction of photon transit time spread, we demonstrated a further improvement in the timing resolution of the BGO-based Cherenkov TOF PET detector utilizing a dual-ended detector configuration and adaptive arrival time pickoff. We achieved further improvements in timing resolution by correcting the offset spread induced by the fluctuation of timing signal rise time in the dual-ended detector.Significance. Although polishing the crystal surface was still favorable in terms of full-width-half-maximum value, incorporating DOI information from the unpolished crystal to compensate for photon travel time facilitated additional enhancement in the overall timing performance, thereby surpassing that achieved with the polished crystal.


Assuntos
Fótons , Tomografia por Emissão de Pósitrons , Tomografia por Emissão de Pósitrons/métodos , Lutécio , Contagem de Cintilação
16.
Radiography (Lond) ; 30(1): 13-20, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37864986

RESUMO

OBJECTIVE: The objective of this study was to perform a narrative review of digital Positron emission tomography-computed tomography (PET-CT) scanners, focussing on the current development in the technology of optimized crystal size and design, the time of flight (ToF) resolution, sensitivity, and axial field of view (AFOV). KEY FINDINGS: It was observed that significant developments were carried out on the optimization of scintillation crystal size which results in the improvement of spatial resolution. such developments include the upgrade in the AFOV after the integration of SiPM technology, which results in dynamic parametric imaging acquisition in PET and sensitivity boost. The improvement in ToF resolution and the better ToF resolution values, which result in a boost in adequate sensitivity and signal-to-noise ratio (SNR). Other upgrades include the use of the smallest crystal size of 2.76 × 2.76 mm, and the use of the lowest ToF resolution of 214 ps. The use of the largest AFOV of 194 cm with the highest observed NEMA sensitivity of 225 cps/kBq for the total body PET-CT system. CONCLUSION: Digital PET-CT systems offer various advantages such as a reduction in radiation dose from injected radiopharmaceuticals doses and the overall PET acquisition time with an improved diagnostic certainty. This is because of the better performance of the SiPM detector. Digital PET-CT also has added benefits of the dynamic acquisition and Patlak modeling capabilities into routine clinical practice with the advancement in higher AFOV PET systems. IMPLICATION: This will help the users choose the best system during the evaluation of the PET-CT for purchase in clinical and research applications. This review will further help in teaching the latest technology and developments in PET-CT systems.


Assuntos
Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia por Emissão de Pósitrons , Humanos , Imagens de Fantasmas , Tomografia por Emissão de Pósitrons/métodos , Razão Sinal-Ruído
17.
J Nucl Med ; 64(12): 1990-1997, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37857503

RESUMO

The Omni Legend 32 PET/CT system features silicon photomultiplier (SiPM)-based detectors with bismuth germanium oxide crystals and a 32-cm axial field of view (FOV). The present study aimed to determine the performance characteristics of the Omni Legend 32 PET/CT system according to National Electrical Manufacturers Association (NEMA) NU 2-2018 standards. Methods: The PET component of this system comprises 22 detector modules; each module contains 24 detector blocks with 72 bismuth germanium oxide crystals with a volume of 4.1 × 4.1 × 30 mm coupled to 18 SiPM devices with a 6 × 6 mm area, resulting in an axial FOV of 32 cm. The spatial resolution, sensitivity, count rate performance, and image quality delivered by PET were evaluated using the NEMA NU 2-2018 standard. PET images of 2 patients were evaluated to get a visual first impression of the Omni Legend 32 PET/CT system together with Precision DL. Results: The average spatial resolution at 1, 10, and 20 cm from the central axis was 4.3, 5.3, and 6.2 mm, respectively, for filtered backprojection and 3.7, 4.3, and 5.1 mm, respectively, for ordered-subset expectation maximization. The NEMA sensitivity was 47.30 and 47.05 cps/kBq at the axial center of the FOV and at a 10-cm radial offset, respectively. The scatter fraction, count rate accuracy, and peak noise-equivalent count rates were 35.4%, 1.7%, and 501.7 kcps, respectively, at 15.7 kBq/mL. Contrast recovery for the NEMA body phantom from the smallest to the largest sphere ranged from 61.3% to 93.0%, with a background variability of 5.4%-11.7% and a lung error of 5.1% for Q.Clear (ß-value, 50). Good patient image quality was obtained with the Omni Legend 32. Conclusion: The Omni Legend 32 has class-leading sensitivity and count rates within the category of whole-body PET systems while maintaining spatial resolution broadly comparable to that of other current SiPM-based PET/CT systems. This combination of properties results in a very good image quality.


Assuntos
Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia por Emissão de Pósitrons , Humanos , Padrões de Referência , Imagens de Fantasmas , Tomografia por Emissão de Pósitrons/métodos
18.
EJNMMI Phys ; 10(1): 61, 2023 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-37804338

RESUMO

BACKGROUND: Small-animal PET imaging is an important tool in preclinical oncology. This study evaluated the ability of a clinical SiPM-PET camera to image several rats simultaneously and to perform quantification data analysis. METHODS: Intrinsic spatial resolution was measured using 18F line sources, and image quality was assessed using a NEMA NU 4-2018 phantom. Quantification was evaluated using a fillable micro-hollow sphere phantom containing 4 spheres of different sizes (ranging from 3.95 to 7.86 mm). Recovery coefficients were computed for the maximum (Amax) and the mean (A50) pixel values measured on a 50% isocontour drawn on each sphere. Measurements were performed first with the phantom placed in the centre of the field of view and then in the off-centre position with the presence of three scattering sources to simulate the acquisition of four animals simultaneously. Quantification accuracy was finally validated using four 3D-printed phantoms mimicking rats with four subcutaneous tumours each. All experiments were performed for both 18F and 68Ga radionuclides. RESULTS: Radial spatial resolutions measured using the PSF reconstruction algorithm were 1.80 mm and 1.78 mm for centred and off-centred acquisitions, respectively. Spill-overs in air and water and uniformity computed with the NEMA phantom centred in the FOV were 0.05, 0.1 and 5.55% for 18F and 0.08, 0.12 and 2.81% for 68Ga, respectively. Recovery coefficients calculated with the 18F-filled micro-hollow sphere phantom for each sphere varied from 0.51 to 1.43 for Amax and from 0.40 to 1.01 for A50. These values decreased from 0.28 to 0.92 for Amax and from 0.22 to 0.66 for A50 for 68 Ga acquisition. The results were not significantly different when imaging phantoms in the off-centre position with 3 scattering sources. Measurements performed with the four 3D-printed phantoms showed a good correlation between theoretical and measured activity in simulated tumours, with r2 values of 0.99 and 0.97 obtained for 18F and 68Ga, respectively. CONCLUSION: We found that the clinical SiPM-based PET system was close to that obtained with a dedicated small-animal PET device. This study showed the ability of such a system to image four rats simultaneously and to perform quantification analysis for radionuclides commonly used in oncology.

19.
Sensors (Basel) ; 23(12)2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37420538

RESUMO

Conventional designs of an avalanche photodiode (APD) have been based on a planar p-n junction since the 1960s. APD developments have been driven by the necessity to provide a uniform electric field over the active junction area and to prevent edge breakdown by special measures. Most modern silicon photomultipliers (SiPM) are designed as an array of Geiger-mode APD cells based on planar p-n junctions. However, the planar design faces an inherent trade-off between photon detection efficiency and dynamic range due to loss of an active area at the cell edges. Non-planar designs of APDs and SiPMs have also been known since the development of spherical APDs (1968), metal-resistor-semiconductor APDs (1989), and micro-well APDs (2005). The recent development of tip avalanche photodiodes (2020) based on the spherical p-n junction eliminates the trade-off, outperforms the planar SiPMs in the photon detection efficiency, and opens new opportunities for SiPM improvements. Furthermore, the latest developments in APDs based on electric field-line crowding and charge-focusing topology with quasi-spherical p-n junctions (2019-2023) show promising functionality in linear and Geiger operating modes. This paper presents an overview of designs and performances of non-planar APDs and SiPMs.


Assuntos
Fótons , Semicondutores , Desenho de Equipamento
20.
Radiol Phys Technol ; 16(3): 384-396, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37368168

RESUMO

We evaluate the effects of list-mode reconstruction and the image-space point spread function (iPSF) on the contrast and quantitative values of positron emission tomography (PET) images using a SiPM-PET/CT system. The evaluation is conducted on an NEMA body phantom and clinical images using a Cartesion Prime SiPM-PET/CT system. The signal-to-background ratio (SBR) of the phantom is set to 2, 4, 6, and 8, and all the PET image data are obtained and reconstructed using 3D-OSEM, time-of-flight, iPSF (-/ +), and a 4-mm Gaussian filter with several iterations. The evaluation criteria include % background variability (NB,10 mm), % contrast (QH,10 mm), iPSF change in QH,10 mm (ΔQH,10 mm) for edge artifact evaluation, profile curves, visual evaluation of edge artifacts, clinical imaging for the standardized uptake value (SUV) of lung nodules, and SNRliver. NB,10 mm demonstrates no significant difference in all SBRs with and without iPSF, whereas QH,10 mm is higher based on the SBR with and without iPSF. ΔQH,10 mm indicates increased iterations and a larger rate of change (> 5%) for small spheres of < 17 mm. The profile curves portrayed almost real concentrations, except for the 10-mm sphere of SBR2 without iPSF; however, with iPSF, an overshoot was observed in the 13-mm sphere of all SBRs. The degree of overshoot increased with increasing iteration and SBR. Edge artifacts were detected at values ≥ 17-22 mm in SBRs other than SBR2 with iPSF. Irrespective of the nodal size, SUV and SNRliver improved considerably after iPSF adjustment. Therefore, the effects of list-mode reconstruction and iPSF on PET image contrast were limited, and the overcorrection of the quantitative values was validated using iPSF.


Assuntos
Processamento de Imagem Assistida por Computador , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Processamento de Imagem Assistida por Computador/métodos , Tomografia por Emissão de Pósitrons/métodos , Imagens de Fantasmas , Artefatos , Algoritmos , Fluordesoxiglucose F18
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA