Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 944
Filtrar
1.
J Biomed Opt ; 30(Suppl 1): S13703, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39034959

RESUMO

Significance: Standardization of fluorescence molecular imaging (FMI) is critical for ensuring quality control in guiding surgical procedures. To accurately evaluate system performance, two metrics, the signal-to-noise ratio (SNR) and contrast, are widely employed. However, there is currently no consensus on how these metrics can be computed. Aim: We aim to examine the impact of SNR and contrast definitions on the performance assessment of FMI systems. Approach: We quantified the SNR and contrast of six near-infrared FMI systems by imaging a multi-parametric phantom. Based on approaches commonly used in the literature, we quantified seven SNRs and four contrast values considering different background regions and/or formulas. Then, we calculated benchmarking (BM) scores and respective rank values for each system. Results: We show that the performance assessment of an FMI system changes depending on the background locations and the applied quantification method. For a single system, the different metrics can vary up to ∼ 35 dB (SNR), ∼ 8.65 a . u . (contrast), and ∼ 0.67 a . u . (BM score). Conclusions: The definition of precise guidelines for FMI performance assessment is imperative to ensure successful clinical translation of the technology. Such guidelines can also enable quality control for the already clinically approved indocyanine green-based fluorescence image-guided surgery.


Assuntos
Benchmarking , Imagem Molecular , Imagem Óptica , Imagens de Fantasmas , Razão Sinal-Ruído , Imagem Molecular/métodos , Imagem Molecular/normas , Imagem Óptica/métodos , Imagem Óptica/normas , Processamento de Imagem Assistida por Computador/métodos
2.
Acta Radiol ; : 2841851241271109, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39169708

RESUMO

BACKGROUND: Photon-counting detector computed tomography (PCD-CT) is a groundbreaking technology with promising results for visualization of small bone structures. PURPOSE: To analyze the delineation of the thoracic spine in multiplanar reconstructions (MPR) on PCD-CT compared to energy-integrating detector (EID)-CT. MATERIAL AND METHODS: Two euthanized mice were examined using different scanners: (i) 20-slice EID-CT and (ii) dual-source PCD-CT at various CTDIVol values. Readers evaluated the thoracic spine and selected series with best visualization among signal-to-noise ratio (SNR)-matched pairs. RESULTS: SNR was significantly higher in PCD-CT reconstructions (Br68) and lower in Hr98 reconstructions compared to EID-CT. Bone detail visualization was superior in PCD-CT (especially in Hr98 reconstructions) compared to EID-CT. CONCLUSION: MPR on a PCD-CT had a higher SNR and better bone detail visualization even at lower radiation doses compared to EID-CT. PCD-CT with bone reconstructions showed the best delineation of small bone structures and might be considered in clinical routine.

3.
Biosensors (Basel) ; 14(8)2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39194634

RESUMO

Here, we report an ultrasoft extra long-lasting, reusable hydrogel-based sensor that enables high-quality electrophysiological recording with low-motion artifacts. The developed sensor can be used and stored in an ambient environment for months before being reused. The developed sensor is made of a self-adhesive electrical-conductivity-enhanced ultrasoft hydrogel mounted in an Ecoflex-based frame. The hydrogel's conductivity was enhanced by incorporating polypyrrole (PPy), resulting in a conductivity of 0.25 S m-1. Young's modulus of the sensor is only 12.9 kPa, and it is stretchable up to 190%. The sensor was successfully used for electrocardiography (ECG) and electromyography (EMG). Our results indicate that using the developed hydrogel-based sensor, the signal-to-noise ratio of recorded electrophysiological signals was improved in comparison to that when medical-grade silver/silver chloride (Ag/AgCl) wet gel electrodes were used (33.55 dB in comparison to 22.16 dB). Due to the ultra-softness, high stretchability, and self-adhesion of the developed sensor, it can conform to the skin and, therefore, shows low susceptibility to motion. In addition, the sensor shows no sign of irritation or allergic reaction, which usually occurs after long-term wearing of medical-grade Ag/AgCl wet gel electrodes on the skin. Further, the sensor is fabricated using a low-cost and scalable fabrication process.


Assuntos
Eletrocardiografia , Eletromiografia , Hidrogéis , Hidrogéis/química , Humanos , Técnicas Biossensoriais , Condutividade Elétrica , Polímeros , Pirróis/química , Dispositivos Eletrônicos Vestíveis , Eletrodos , Razão Sinal-Ruído
4.
Eur Radiol ; 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39110181

RESUMO

OBJECTIVES: Fat-signal suppression is essential for breast diffusion magnetic resonance imaging (or diffusion-weighted MRI, DWI) as the very low diffusion coefficient of fat tends to decrease absolute diffusion coefficient (ADC) values. Among several methods, the STIR (short-tau inversion recovery) method is a popular approach, but signal suppression/attenuation is not specific to fat contrary to other methods such as SPAIR (spectral adiabatic (or attenuated) inversion recovery). This article focuses on those two techniques to illustrate the importance of appropriate fat suppression in breast DWI, briefly presenting the pros and cons of both approaches. METHODS AND RESULTS: We show here through simulation and data acquired in a dedicated breast DWI phantom made of vials with water and various concentrations of polyvinylpyrrolidone (PVP) how ADC values obtained with STIR DWI may be biased toward tissue components with the longest T1 values: ADC values obtained with STIR fat suppression may be over/underestimated depending on the T1 and ADC profile within tissues. This bias is also illustrated in two clinical examples. CONCLUSION: Fat-specific methods should be preferred over STIR for fat-signal suppression in breast DWI, such as SPAIR which also provides a higher sensitivity than STIR for lesion detection. One should remain aware, however, that efficient fat-signal suppression with SPAIR requires good B0 shimming to avoid ADC underestimation from residual fat contamination. CLINICAL RELEVANCE STATEMENT: The spectral adiabatic (or attenuated) inversion recovery (SPAIR) method should be preferred over short-tau inversion recovery (STIR) for fat suppression in breast DWI. KEY POINTS: Fat-signal suppression is essential for breast DWI; the SPAIR method is recommended. Short-tau inversion recovery (STIR) is not specific to fat; as a result, SNR is decreased and ADC values may be over- or underestimated. The STIR fat-suppression method must not be used after the injection of gadolinium-based contrast agents.

5.
Indian J Otolaryngol Head Neck Surg ; 76(4): 3081-3087, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39130274

RESUMO

BACKGROUND: The digit in the noise test is a simple hearing screening tool that can identify hearing loss at the early stage. This screening tool takes less time than traditional pure-tone audiometry. There is a scarcity of hearing health professionals with few resources for carrying out hearing screening on a large scale in India. Hence, a hearing screening tool for the Hindi-speaking population is needed. AIM AND OBJECTIVE: The study aimed to develop and validate the Digit in Noise test in Hindi (DIN-H). METHODS: A native Hindi female speaker recorded single digits from 1 to 9 made into triplet combinations, which were binaurally presented to 20 normal hearing subjects having hearing thresholds less than 25 dBHL from 250 to 8000 Hz in the presence of broadband speech-shaped noise. The digit triplets were homogenized using speech intelligibility function for similar difficulty levels across stimuli. The homogenized stimuli were evaluated by obtaining the Speech Recognition Threshold (SRT) of 20 normal hearing subjects. RESULTS: The Mean SRT was - 10.4 and - 11.3 dB before and after homogenization. A strong positive correlation existed between test and retest SRTs (0.78). Mean SRT and slope obtained before and after optimization were comparable to other languages like Korean and English. This test can act as a reliable screening tool for assessing individuals. The test was administered to 106 normal hearing participants. The 95th percentile of the SRT value obtained was - 5.6 dB, which was kept as a cut-off score for the screening test. CONCLUSION: DIN-H can be used as a screening tool for assessing the integrity of the auditory system on a large scale in less time for the Hindi-speaking population.

6.
Sensors (Basel) ; 24(13)2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-39001164

RESUMO

Hyperspectral detection of the change rate of organic matter content in agricultural remote sensing requires a high signal-to-noise ratio (SNR). However, due to the large number and efficiency limitation of the components, it is difficult to improve the SNR. This study uses high-efficiency convex grating with a diffraction efficiency exceeding 50% across the 360-850 nm range, a back-illuminated Complementary Metal Oxide Semiconductor (CMOS) detector with a 95% efficiency in peak wavelength, and silver-coated mirrors to develop an imaging spectrometer for detecting soil organic matter (SOM). The designed system meets the spectral resolution of 10 nm in the 360-850 nm range and achieves a swath of 100 km and a spatial resolution of 100 m at an orbital height of 648.2 km. This study also uses the basic structure of Offner with fewer components in the design and sets the mirrors of the Offner structure to have the same sphere, which can achieve the rapid adjustment of the co-standard. This study performs a theoretical analysis of the developed Offner imaging spectrometer based on the classical Rowland circular structure, with a 21.8 mm slit length; simulates its capacity for suppressing the +2nd-order diffraction stray light with the filter; and analyzes the imaging quality after meeting the tolerance requirements, which is combined with the surface shape characteristics of the high-efficiency grating. After this test, the grating has a diffraction efficiency above 50%, and the silver-coated mirrors have a reflection value above 95% on average. Finally, the laboratory tests show that the SNR over the waveband exceeds 300 and reaches 800 at 550 nm, which is higher than some current instruments in orbit for soil observation. The proposed imaging spectrometer has a spectral resolution of 10 nm, and its modulation transfer function (MTF) is greater than 0.23 at the Nyquist frequency, making it suitable for remote sensing observation of SOM change rate. The manufacture of such a high-efficiency broadband grating and the development of the proposed instrument with high energy transmission efficiency can provide a feasible technical solution for observing faint targets with a high SNR.

8.
Front Physiol ; 15: 1394431, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38854630

RESUMO

Objective: To evaluate the effectiveness of 3D NerveVIEW sequence with gadolinium contrast on the visualization of pelvic nerves and their branches compared to that without contrast. Methods: Participants were scanned twice using 3D NerveVIEW sequence with and without gadolinium contrast to acquire pelvic nerve images. The signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and contrast ratio of the nerves were calculated and compared to determine the quality of images. To subjectively assess, using a 3-point scale, branch nerves critical to therapeutic decision-making, including the pelvic splanchnic nerve and pelvic plexus, the superior gluteal nerve, and the pudendal nerve. Results: In the 32 eligible participants after using contrast, the CNRs of the images of nerve-to-bone and nerve-to-vessel significantly increased (p < 0.05). The CR of the images with contrast of all nerve-to-surrounding tissues (i.e., bone, muscle, blood vessels, and fat) were also found significantly higher (p < 0.05). The assessment of observers also shows higher scores for images with contrast compared to images without contrast. Conclusion: The 3D NerveVIEW sequence combined with gadolinium contrast improved vascular suppression, increased the contrast between pelvic nerves and surrounding tissue, and enhanced the visualization of nerves and their branches. This study may be helpful for the technically challenging preoperative planning of pelvic diseases surgery.

9.
ACS Appl Mater Interfaces ; 16(27): 35400-35409, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38917455

RESUMO

A series of dual-band photomultiplication (PM)-type organic photodetectors (OPDs) were fabricated by employing a donor(s)/acceptor (100:1, wt/wt) mixed layer and an ultrathin Y6 layer as the active layers, as well as by using PNDIT-F3N as an interfacial layer near the indium tin oxide (ITO) electrode. The dual-band PM-type OPDs exhibit the response range of 330-650 nm under forward bias and the response range of 650-850 nm under reverse bias. The tunable spectral response range of dual-band PM-type OPDs under forward or reverse bias can be explained well from the trapped electron distribution near the electrodes. The dark current density (JD) of the dual-band PM-type OPDs can be efficiently suppressed by employing PNDIT-F3N as the anode interfacial layer and the special active layers with hole-only transport characteristics. The light current density (JL) of the dual-band PM-type OPDs can be slightly increased by incorporating wide-bandgap polymer P-TPDs with relatively large hole mobility (µh) in the active layers. The signal-to-noise ratios of the optimized dual-band PM-type OPDs reach 100,980 under -50 V bias and white light illumination with an intensity of 1.0 mW·cm-2, benefiting from the ultralow JD by employing wide-bandgap PNDIT-F3N as the anode interfacial buffer layer and the increased JL by incorporating appropriate P-TPD in the active layers.

10.
ISA Trans ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38910090

RESUMO

Similarity-based prediction methods utilize degradation trend analysis based on degradation indicators (DIs). These methods are gaining prominence in industrial predictive maintenance because they effectively address prognostics for machines with unknown failure mechanisms. However, current studies often neglect the discrepancies in degradation trends when constructing DIs from multi-sensor data and lack automatic normalization of operating regimes during feature fusion. In this study, a feature fusion methodology based on a signal-to-noise ratio metric that leverages slow feature analysis (SFA) is proposed. This customized metric utilizes SFA to quantify degradation trend discrepancies of constructed DIs, while automatically filtering out the effects of multiple operating regimes during feature fusion. The effectiveness and superiority of the proposed method are demonstrated using publicly available aero-engine and rolling bearing datasets.

11.
Sensors (Basel) ; 24(11)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38894072

RESUMO

The large amount of sampled data in coherent phase-sensitive optical time-domain reflectometry (Φ-OTDR) brings heavy data transmission, processing, and storage burdens. By using the comparator combined with undersampling, we achieve simultaneous reduction of sampling rate and sampling resolution in hardware, thus greatly decreasing the sampled data volume. But this way will inevitably cause the deterioration of detection signal-to-noise ratio (SNR) due to the quantization noise's dramatic increase. To address this problem, denoising the demodulated phase signals using compressed sensing, which exploits the sparsity of spectrally sparse vibration, is proposed, thereby effectively enhancing the detection SNR. In experiments, the comparator with a sampling parameter of 62.5 MS/s and 1 bit successfully captures the 80 MHz beat signal, where the sampled data volume per second is only 7.45 MB. Then, when the piezoelectric transducer's driving voltage is 1 Vpp, 300 mVpp, and 100 mVpp respectively, the SNRs of the reconstructed 200 Hz sinusoidal signals are respectively enhanced by 23.7 dB, 26.1 dB, and 28.7 dB by using compressed sensing. Moreover, multi-frequency vibrations can also be accurately reconstructed with a high SNR. Therefore, the proposed technique can effectively enhance the system's performance while greatly reducing its hardware burden.

12.
Quant Imaging Med Surg ; 14(6): 4031-4040, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38846286

RESUMO

Background: The rapid increase in the use of radiodiagnostic examinations in China, especially computed tomography (CT) scans, has led to these examinations being the largest artificial source of per capita effective dose (ED). This study conducted a retrospective analysis of the correlation between image quality, ED, and body composition in 540 cases that underwent thyroid, chest, or abdominal CT scans. The aim of this analysis was to evaluate the correlation between the parameters of CT scans and body composition in common positions of CT examination (thyroid, chest, and abdomen) and ultimately inform potential measures for reducing radiation exposure. Methods: This study included 540 patients admitted to Fudan University Shanghai Cancer Center from January 2015 to December 2019 who underwent both thyroid or chest or abdominal CT scan and body composition examination. Average CT values and standard deviation (SD) values were collected for the homogeneous areas of the thyroid, chest, or abdomen, and the average CT values and SD values of adjacent subcutaneous fat tissue were measured in the same region of interest (ROI). All data were measured three times, and the average was taken to calculate the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) for each area. The dose-length product (DLP) was recorded, and the ED was calculated with the following: formula ED = k × DLP. Dual-energy X-ray was used to determine body composition and obtain indicators such as percentage of spinal and thigh muscle. Pearson correlation coefficient was used to analyze the correlations between body composition indicators, height, weight, body mass index (BMI), and ED. Results: The correlation coefficients between the SNR of abdominal CT scan and weight, BMI, and body surface area (BSA) were -0.470 (P=0.001), -0.485 (P=0.001), and -0.437 (P=0.002), representing a moderate correlation strength with statistically significant differences. The correlation coefficients between the ED of chest CT scans and weight, BMI, spinal fat percentage, and BSA were 0.488 (P=0.001), 0.473 (P=0.002), 0.422 (P=0.001), and 0.461 (P=0.003), respectively, indicating a moderate correlation strength with statistical differences. There was a weak statistically significant correlation between the SNR, CNR, and ED of the other scans with each physical and body composition index (P=0.023). Conclusions: There were varying degrees of correlation between CT image quality and ED and physical and body composition indices, which may inform novel solutions for reducing radiation exposure.

13.
Quant Imaging Med Surg ; 14(5): 3655-3664, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38720833

RESUMO

Background: Although previous studies have shown that the injection of contrast agents can improve image quality, the specific impact of this on T2-weighted fat-suppressed (T2 FS) and diffusion-weighted imaging (DWI) sequences in the diagnosis of breast cancer remains incompletely understood. In particular, there is insufficient research on how contrast agents affect the signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and apparent diffusion coefficient (ADC) values within these sequences, and how these changes influence the diagnosis of benign and malignant breast tumors. Methods: Breast magnetic resonance images (MRI) were obtained from 178 consecutive patients on a 3T scanner. The SNR and CNR of lesions on T2 FS sequence were calculated before and after contrast agent injection and compared. Differences between pre- and post-contrast ADC in identifying different tumor types were compared using the Kruskal-Wallis H-test and the paired comparison test. The accuracy of ADC values between pre- and post-contrast in distinguishing benign and malignant breast masses was assessed using receiver operating characteristic (ROC) curves. Results: The SNR and CNR of T2 FS sequence increased after contrast injection, and especially for invasive cancer and benign tumor, the increase was significant. For DWI, there was a slight increase or decrease of ADC values after contrast injection, but the ADC values before and after contrast had a similar effect in identifying different types of tumors. In the ROC curve analysis for assessing benign and malignant breast tumors, the area under the curve (AUC) before and after contrast showed similar results. Conclusions: Contrast agent injection can improve the SNR and CNR of T2 FS sequence, thus providing higher quality images for the diagnosis of breast lesions. Furthermore, injection of contrast agent had little effect on the ability of ADC values to identify different types of lesions and both ADC values before and after the contrast agent were able to distinguish between benign and malignant tumors with almost the same accuracy.

14.
Sensors (Basel) ; 24(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38732829

RESUMO

In 3D microsphere tracking, unlike in-plane motion that can be measured directly by a microscope, axial displacements are resolved by optical interference or a diffraction model. As a result, the axial results are affected by the environmental noise. The immunity to environmental noise increases with measurement accuracy and the signal-to-noise ratio (SNR). In compound digital holography microscopy (CDHM)-based measurements, precise identification of the tracking marker is critical to ensuring measurement precision. The reconstruction centering method (RCM) was proposed to suppress the drawbacks caused by installation errors and, at the same time, improve the correct identification of the tracking marker. The reconstructed center is considered to be the center of the microsphere, rather than the center of imaging in conventional digital holographic microscopy. This method was verified by simulation of rays tracing through microspheres and axial moving experiments. The axial displacements of silica microspheres with diameters of 5 µm and 10 µm were tested by CDHM in combination with the RCM. As a result, the SNR of the proposed method was improved by around 30%. In addition, the method was successfully applied to axial displacement measurements of overlapped microspheres with a resolution of 2 nm.

15.
Sensors (Basel) ; 24(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38732838

RESUMO

Currently, the visual detection of a target's shock flow field through background schlieren technology is a novel detection system. However, there are very few studies on the long-distance background schlieren imaging mechanism and its application in system design in the field of target detection. This paper proposes a design optimization method for space-based BOS detection system metrics. By establishing sensitivity evaluation models and image signal-to-noise ratio evaluation models for BOS detection systems, the influence of the different flight parameters and key parameters of BOS systems (detection spectral bands and spatial resolution) on target detection efficiency is explored. Furthermore, an optimization method based on the image signal-to-noise ratio of the BOS system and the overall metrics for specific scenarios are provided. The simulation results demonstrate that under satellite background images and speckle background images, the system metrics can detect and identify the schlieren of high-speed targets, with better applicability to disordered and complex real background images. This research contributes to advancing the development of high-speed target detection technology based on BOS.

16.
Psychometrika ; 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806853

RESUMO

Mediation analysis plays an important role in understanding causal processes in social and behavioral sciences. While path analysis with composite scores was criticized to yield biased parameter estimates when variables contain measurement errors, recent literature has pointed out that the population values of parameters of latent-variable models are determined by the subjectively assigned scales of the latent variables. Thus, conclusions in existing studies comparing structural equation modeling (SEM) and path analysis with weighted composites (PAWC) on the accuracy and precision of the estimates of the indirect effect in mediation analysis have little validity. Instead of comparing the size on estimates of the indirect effect between SEM and PAWC, this article compares parameter estimates by signal-to-noise ratio (SNR), which does not depend on the metrics of the latent variables once the anchors of the latent variables are determined. Results show that PAWC yields greater SNR than SEM in estimating and testing the indirect effect even when measurement errors exist. In particular, path analysis via factor scores almost always yields greater SNRs than SEM. Mediation analysis with equally weighted composites (EWCs) also more likely yields greater SNRs than SEM. Consequently, PAWC is statistically more efficient and more powerful than SEM in conducting mediation analysis in empirical research. The article also further studies conditions that cause SEM to have smaller SNRs, and results indicate that the advantage of PAWC becomes more obvious when there is a strong relationship between the predictor and the mediator, whereas the size of the prediction error in the mediator adversely affects the performance of the PAWC methodology. Results of a real-data example also support the conclusions.

17.
NMR Biomed ; : e5168, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38716493

RESUMO

The increasing signal-to-noise ratio (SNR) is the main reason to use ultrahigh field MRI. Here, we investigate the dependence of the SNR on the magnetic field strength, especially for small animal applications, where small surface coils are used and coil noise cannot be ignored. Measurements were performed at five field strengths from 3 to 14.1 T, using 2.2-cm surface coils with an identical coil design for transmit and receive on two water samples with and without salt. SNR was measured in a series of spoiled gradient echo images with varying flip angle and corrected for saturation based on a series of flip angle and T1 measurements. Furthermore, the noise figure of the receive chain was determined and eliminated to remove instrument dependence. Finally, the coil sensitivity was determined based on the principle of reciprocity to obtain a measure for ultimate SNR. Before coil sensitivity correction, the SNR increase in nonconductive samples is highly supralinear with B0 1.6-2.7, depending on distance to the coil, while in the conductive sample, the growth is smaller, being around linear close to the surface coil and increasing up to a B0 2.0 dependence when moving away from the coil. After sensitivity correction, the SNR increase is independent of loading with B0 2.1. This study confirms the supralinear increase of SNR with increasing field strengths. Compared with most human measurements with larger coil sizes, smaller surface coils, as mainly used in animal studies, have a higher contribution of coil noise and thus a different behavior of SNR at high fields.

18.
Ultramicroscopy ; 263: 113997, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38820993

RESUMO

High-resolution electron microscopy is a well-suited tool for characterizing the nanoscale structure of materials. However, the interaction of the sample and the high-energy electrons of the beam can often have a detrimental impact on the sample structure. This effect can only be alleviated by decreasing the number of electrons to which the sample is exposed but will come at the cost of a decreased signal-to-noise ratio in the resulting image. Images with low signal to noise ratios are often challenging to interpret as parts of the sample with a low interaction with the electron beam are reproduced with very low contrast. Here we suggest simple measures as alternatives to the conventional signal-to-noise ratio and investigate how these can be used to predict the interpretability of the electron microscopy images. We test the models on a sample consisting of gold nanoparticles supported on a cerium dioxide substrate. The models are evaluated based on series of images acquired at varying electron dose.

19.
J Imaging ; 10(5)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38786569

RESUMO

Image quality assessment of magnetic resonance imaging (MRI) data is an important factor not only for conventional diagnosis and protocol optimization but also for fairness, trustworthiness, and robustness of artificial intelligence (AI) applications, especially on large heterogeneous datasets. Information on image quality in multi-centric studies is important to complement the contribution profile from each data node along with quantity information, especially when large variability is expected, and certain acceptance criteria apply. The main goal of this work was to present a tool enabling users to assess image quality based on both subjective criteria as well as objective image quality metrics used to support the decision on image quality based on evidence. The evaluation can be performed on both conventional and dynamic MRI acquisition protocols, while the latter is also checked longitudinally across dynamic series. The assessment provides an overall image quality score and information on the types of artifacts and degrading factors as well as a number of objective metrics for automated evaluation across series (BRISQUE score, Total Variation, PSNR, SSIM, FSIM, MS-SSIM). Moreover, the user can define specific regions of interest (ROIs) to calculate the regional signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR), thus individualizing the quality output to specific use cases, such as tissue-specific contrast or regional noise quantification.

20.
J Imaging ; 10(5)2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38786578

RESUMO

Vector quantization (VQ) is a block coding method that is famous for its high compression ratio and simple encoder and decoder implementation. Linde-Buzo-Gray (LBG) is a renowned technique for VQ that uses a clustering-based approach for finding the optimum codebook. Numerous algorithms, such as Particle Swarm Optimization (PSO), the Cuckoo search algorithm (CS), bat algorithm, and firefly algorithm (FA), are used for codebook design. These algorithms are primarily focused on improving the image quality in terms of the PSNR and SSIM but use exhaustive searching to find the optimum codebook, which causes the computational time to be very high. In our study, our algorithm enhances LBG by minimizing the computational complexity by reducing the total number of comparisons among the codebook and training vectors using a match function. The input image is taken as a training vector at the encoder side, which is initialized with the random selection of the vectors from the input image. Rescaling using bilinear interpolation through the nearest neighborhood method is performed to reduce the comparison of the codebook with the training vector. The compressed image is first downsized by the encoder, which is then upscaled at the decoder side during decompression. Based on the results, it is demonstrated that the proposed method reduces the computational complexity by 50.2% compared to LBG and above 97% compared to the other LBG-based algorithms. Moreover, a 20% reduction in the memory size is also obtained, with no significant loss in the image quality compared to the LBG algorithm.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA