Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
J Contam Hydrol ; 265: 104385, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38878553

RESUMO

This study aims to develop a multi-objective quantitative-qualitative reservoir operation model (MOQQROM) by a simulation-optimization approach. However, the main challenge of these models is their computational complexity. The simulation-optimization method used in this study consists of CE-QUAL-W2 as a hydrodynamic and water quality simulation model and a multi-objective firefly algorithm-k nearest neighbor (MOFA-KNN) as an optimization algorithm which is an efficient algorithm to overcome the computational burden in simulation-optimization approaches by decreasing simulation model calls. MOFA-KNN was expanded for this study, and its performance was evaluated in the MOQQROM. Three objectives were considered in this study, including (1) the sum of the squared mass of total dissolved solids (TDS), (2) the sum of the squared temperature difference between reservoir inflow and outflow as water quality objectives, and (3) the vulnerability index as a water quantity objective. Aidoghmoush reservoir was employed as a case study, and the model was investigated under three scenarios, including the normal, wet, and dry years. Results showed the expanded MOFA-KNN reduced the number of original simulation model calls compared to the total number of simulations in MOQQROM by more than 99%, indicating its efficacy in significantly reducing execution time. The three most desired operating policies for meeting each objective were selected for investigation. Results showed that the operation policy with the best value for the second objective could be chosen as a compromise policy to balance the two conflicting goals of improving quality and supplying the demand in normal and wet scenarios. In terms of contamination mass, this policy was, on average, 16% worse than the first policy and 40% better than the third policy in the normal scenario. In the wet scenario, it was, on average, 55% worse than the first policy and 16% better than the third policy. The outflow temperature of this policy was, on average, only 8.35% different from the inflow temperature in the normal scenario and 0.93% different in the wet scenario. The performance of the developed model is satisfactory.


Assuntos
Modelos Teóricos , Qualidade da Água , Abastecimento de Água , Algoritmos , Simulação por Computador
2.
J Environ Manage ; 363: 121309, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38848638

RESUMO

Multiple uncertainties such as water quality processes, streamflow randomness affected by climate change, indicators' interrelation, and socio-economic development have brought significant risks in managing water quantity and quality (WQQ) for river basins. This research developed an integrated simulation-optimization modeling approach (ISMA) to tackle multiple uncertainties simultaneously. This approach combined water quality analysis simulation programming, Markov-Chain, generalized likelihood uncertainty estimation, and interval two-stage left-hand-side chance-constrained joint-probabilistic programming into an integration nonlinear modeling framework. A case study of multiple water intake projects in the Downstream and Delta of Dongjiang River Basin was used to demonstrate the proposed model. Results reveal that ISMA helps predict the trend of water quality changes and quantitatively analyze the interaction between WQQ. As the joint probability level increases, under strict water quality scenario system benefits would increase [3.23, 5.90] × 109 Yuan, comprehensive water scarcity based on quantity and quality would decrease [782.24, 945.82] × 106 m3, with an increase in water allocation and a decrease in pollutant generation. Compared to the deterministic and water quantity model, it allocates water efficiently and quantifies more economic losses and water scarcity. Therefore, this research has significant implications for improving water quality in basins, balancing the benefits and risks of water quality violations, and stabilizing socio-economic development.


Assuntos
Rios , Qualidade da Água , Incerteza , Abastecimento de Água , Modelos Teóricos , Mudança Climática
3.
Sensors (Basel) ; 24(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38474945

RESUMO

Detecting the moisture content of grain accurately and rapidly has important significance for harvesting, transport, storage, processing, and precision agriculture. There are some problems with the slow detection speeds, unstable detection, and low detection accuracy of moisture contents in corn harvesters. In that case, an online moisture detection device was designed, which is based on double capacitors. A new method of capacitance complementation and integration was proposed to eliminate the limitation of single data. The device is composed of a sampling mechanism and a double-capacitor sensor consisting of a flatbed capacitor and a cylindrical capacitor. The optimum structure size of the capacitor plates was determined by simulation optimization. In addition to this, the detection system with software and hardware was developed to estimate the moisture content. Indoor dynamic measurement tests were carried out to analyze the influence of temperature and porosity. Based on the influencing factors and capacitance, a model was established to estimate the moisture content. Finally, the support vector machine (SVM) regressions between the capacitance and moisture content were built up so that the R2 values were more than 0.91. In the stability test, the standard deviation of the stability test was 1.09%, and the maximum relative error of the measurement accuracy test was 1.22%. In the dynamic verification test, the maximum error of the measurement was 4.62%, less than 5%. It provides a measurement method for the accurate, rapid, and stable detection of the moisture content of corn and other grains.

4.
Heliyon ; 10(3): e24920, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38322904

RESUMO

This study focuses on the optimization of consequence management actions in the urban water distribution network. The EPANET simulation model is employed in combination with the multi-objective modified seagull optimization algorithm (MOMSOA) based on archives for a more efficient optimization process. Two objective functions are developed: minimizing reactive activities (cost reduction) and minimizing consumed pollution mass. The utilization of shut-off valves and hydrants for isolating the network and discharging pollution is explored. Without consequence management, 84.5 kg of pollution is consumed. With 18 reactive activities, pollution consumption was reduced to 59.8 kg. Also, to compare the proposed method with other algorithms, the interaction curve between reactive activities and the amount of pollutant mass consumed was obtained using other methods, including MOSOA, NSGA-II, MOPSO, and MOSMA. According to the obtained curve, the proposed method performed better in reducing the mass of consumed pollution. Extracting optimal activities using MOMSOA and a maximum of 18 activities takes about 80 min. The MOMSOA with archive technique significantly shortens this time for real-time consequence management. The proposed approach demonstrates that increasing the archive population decreases the extraction time of interaction curves between objectives by up to 60 %. A small archive capacity slightly increases the time required to extract optimal activities due to searching for similar solutions. However, utilizing the archive capacity enables real-time optimization and consequence management in the network.

5.
Environ Monit Assess ; 196(2): 132, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38200367

RESUMO

In the optimal design of groundwater pollution monitoring network (GPMN), the uncertainty of the simulation model always affects the reliability of the monitoring network design when applying simulation-optimization methods. To address this issue, in the present study, we focused on the uncertainty of the pollution source intensity and hydraulic conductivity. In particular, we utilized simulation-optimization and Monte Carlo methods to determine the optimal layout scheme for monitoring wells under these uncertainty conditions. However, there is often a substantial computational load incurred due to multiple calls to the simulation model. Hence, we employed a back-propagation neural network (BPNN) to develop a surrogate model, which could substantially reduce the computational load. We considered the dynamic pollution plume migration process in the optimal design of the GPMN. Consequently, we formulated a long-term GPMN optimization model under uncertainty conditions with the aim of maximizing the pollution monitoring accuracy for each yearly period. The spatial moment method was used to measure the approximation degree between the pollution plume interpolated for the monitoring network and the actual plume, which could effectively evaluate the superior monitoring accuracy. Traditional methods are easily trapped in local optima when solving the optimization model. To overcome this limitation, we used the grey wolf optimizer (GWO) algorithm. The GWO algorithm has been found to be effective in avoiding local optima and in exploring the search space more effectively, especially when dealing with complex optimization problems. A hypothetical example was designed for evaluating the effectiveness of our method. The results indicated that the BPNN surrogate model could effectively fit the input-output relationship from the simulation model, as well as significantly reduce the computational load. The GWO algorithm effectively solved the optimization model and improved the solution accuracy. The pollution plume distribution in each monitoring yearly period could be accurately characterized by the optimized monitoring network. Thus, combining the simulation-optimization method with the Monte Carlo method effectively addressed the optimal monitoring network design problem under uncertainty.


Assuntos
Monitoramento Ambiental , Água Subterrânea , Reprodutibilidade dos Testes , Incerteza , Redes Neurais de Computação , Algoritmos
6.
Healthcare (Basel) ; 11(20)2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37893787

RESUMO

Using a discrete-event simulation (DES) model, the current disaster plan regarding the allocation of multiple injured patients from a mass casualty incident was evaluated for an acute specialty hospital in Vienna, Austria. With the current resources available, the results showed that the number of severely injured patients currently assigned might have to wait longer than the medically justifiable limit for lifesaving surgery. Furthermore, policy scenarios of increasing staff and/or equipment did not lead to a sufficient improvement of this outcome measure. However, the mean target waiting time for critical treatment of moderately injured patients could be met under all policy scenarios. Using simulation-optimization, an optimal staff-mix could be found for an illustrative policy scenario. In addition, a multiple regression model of simulated staff-mix policy scenarios identified staff categories (number of radiologists and rotation physicians) with the highest impact on waiting time and survival. In the short term, the current hospital disaster plan should consider reducing the number of severely injured patients to be treated. In the long term, we would recommend expanding hospital capacity-in terms of both structural and human resources as well as improving regional disaster planning. Policymakers should also consider the limitations of this study when applying these insights to different areas or circumstances.

7.
Environ Sci Pollut Res Int ; 30(53): 114535-114555, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37861835

RESUMO

The scientific layout design of the groundwater pollution monitoring network (GPMN) can provide high quality groundwater monitoring data, which is essential for the timely detection and remediation of groundwater pollution. The simulation optimization approach was effective in obtaining the optimal design of the GPMN. The ant colony optimization (ACO) algorithm is an effective method for solving optimization models. However, the parameters used in the conventional ACO algorithm are empirically adopted with fixed values, which may affect the global searchability and convergence speed. Therefore, a parameter-iterative updating strategy-based ant colony optimization (PIUSACO) algorithm was proposed to solve this problem. For the GPMN optimal design problem, a simulation-optimization framework using PIUSACO algorithm was applied in a municipal waste landfill in BaiCheng city in China. Moreover, to reduce the computational load of the design process while considering the uncertainty of aquifer parameters and pollution sources, a genetic algorithm-support vector regression (GA-SVR) method was proposed to develop the surrogate model for the numerical model. The results showed that the layout scheme obtained using the PIUSACO algorithm had a significantly higher detection rate than ACO algorithm and random layout schemes, indicating that the designed layout scheme based on the PIUSACO algorithm can detect the groundwater pollution occurrence timely. The comparison of the iteration processes of the PIUSACO and conventional ACO algorithms shows that the global searching ability is improved and the convergence speed is accelerated significantly using the iteration updating strategy of crucial parameters. This study demonstrates the feasibility of the PIUSACO algorithm for the optimal layout design of the GPMN for the timely detection of groundwater pollution.


Assuntos
Água Subterrânea , Algoritmos , Simulação por Computador , Poluição Ambiental , China
8.
Environ Sci Pollut Res Int ; 30(32): 78933-78947, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37277589

RESUMO

Groundwater contaminant source identification (GCSI) has practical significance for groundwater remediation and liability. However, when applying the simulation-optimization method to precisely solve GCSI, the optimization model inevitably encounters the problems of high-dimensional unknown variables to identify, which might increase the nonlinearity. In particular, to solve such optimization models, the well-known heuristic optimization algorithms might fall into a local optimum, resulting in low accuracy of inverse results. For this reason, this paper proposes a novel optimization algorithm, namely, the flying foxes optimization (FFO) to solve the optimization model. We perform simultaneous identification of the release history of groundwater pollution sources and hydraulic conductivity and compare the results with those of the traditional genetic algorithm. In addition, to alleviate the massive computational load caused by the frequent invocation of the simulation model when solving the optimization model, we utilized the multilayer perception (MLP) to establish a surrogate model of the simulation model and compared it with the method of backpropagation algorithm (BP). The results show that the average relative error of the results of FFO is 2.12%, significantly outperforming the genetic algorithm (GA); the surrogate model of MLP can replace the simulation model for calculation with fitting accuracy of more than 0.999, which is better than the commonly used surrogate model of BP.


Assuntos
Quirópteros , Água Subterrânea , Animais , Modelos Teóricos , Simulação por Computador , Algoritmos , Redes Neurais de Computação
9.
Neural Comput Appl ; 35(3): 2059-2076, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35221540

RESUMO

Drinking water safety is a safety issue that the whole society attaches great importance to currently. For sudden water pollution accidents, it is necessary to trace the water pollution source in real time to determine the pollution source's characteristic information and provide technical support to emergency management departments for decision making. The problems of water pollution's real-time traceability are as follows: non-uniqueness and dynamic real time of pollution sources. Aiming at these two difficulties, an intelligent traceability algorithm based on dynamic multi-mode optimization was designed and proposed in the work. As a multi-mode optimization problem, pollution traceability could have multiple similar optimal solutions. Firstly, the new algorithm divided the population reasonably through the optimal subpopulation division strategy, which made the nodes' distribution in a single subpopulation more similar and conducive to local optimization. Then, a similar peak penalty strategy was used to eliminate similar solutions and reduce the non-unique solutions' number, since real-time traceability required higher algorithm convergence than traditional offline traceability and dynamic problems with parameter changes, historical information preservation, and adaptive initialization strategies could make reasonable use of the algorithm's historical knowledge to improve the population space and increase the population convergence rate when the problem changed. The experimental results showed the proposed new algorithm's effectiveness in solving problems-accurately tracing the source of pollution, and obtain corresponding characteristic information in a short time.

10.
Evol Comput ; 31(1): 31-51, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35943729

RESUMO

In the traffic light scheduling problem, the evaluation of candidate solutions requires the simulation of a process under various (traffic) scenarios. Thus, good solutions should not only achieve good objective function values, but they must be robust (low variance) across all different scenarios. Previous work has shown that combining IRACE with evolutionary operators is effective for this task due to the power of evolutionary operators in numerical optimization. In this article, we further explore the hybridization of evolutionary operators and the elitist iterated racing of IRACE for the simulation-optimization of traffic light programs. We review previous works from the literature to find the evolutionary operators performing the best when facing this problem to propose new hybrid algorithms. We evaluate our approach over a realistic case study derived from the traffic network of Málaga (Spain) with 275 traffic lights that should be scheduled optimally. The experimental analysis reveals that the hybrid algorithm comprising IRACE plus differential evolution offers statistically better results than the other algorithms when the budget of simulations is low. In contrast, IRACE performs better than the hybrids for a high simulations budget, although the optimization time is much longer.


Assuntos
Algoritmos , Hibridização Genética , Simulação por Computador , Hibridização de Ácido Nucleico , Espanha
11.
Environ Monit Assess ; 195(1): 100, 2022 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-36369307

RESUMO

Seawater intrusion is one of the causes of groundwater quality degradation in coastal zones. This phenomenon is intensified by overexploitation of coastal aquifers. In this paper, optimal management strategies have been determined to prevent the advance of seawater using a parallel simulation-optimization decision model. This model has been applied to a real case study of Ajabshir aquifer located in Urmia Lake basin, Iran, for a 20-year planning horizon (2015-2034). Four categorizes of new sustainability indices (indices of protection, reliability, vulnerability, and aquifer area with a groundwater problem) as the objective functions have been examined for the first time. The developed management problems based on these four categories have been solved under two different conditions of groundwater elevation and salinity concentration. The results of 20-year period simulations indicate that by changing the extraction pattern in different regions of the aquifer (as the decision variables) based on the solution of management problems, the largest decrease in net recharge (0.065 million cubic meters) occurs in the second half of the hydrologic year (October to March) compared to the continued condition in which all factors are similar to 2014. The contribution of using indices in this study can help the local water managers to identify the high-risk areas for better planning and other coastal settings.


Assuntos
Monitoramento Ambiental , Água Subterrânea , Reprodutibilidade dos Testes , Monitoramento Ambiental/métodos , Água do Mar , Hidrologia , Salinidade
12.
J Environ Manage ; 323: 116135, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36095986

RESUMO

Environmental degradation in the form of water shortage and uncertainty has severely affected the food systems across the globe. Especially in India, which is dominated by rain-fed farmers, the need for sustainable water resource and its management at farm level is imperative for farming livelihoods and food security of the country. Rainwater harvesting in on-farm reservoirs (OFR) can enable crop diversification, year round cropping and seasonal vegetable cultivation in rain-fed farming systems in India. However appropriate sizing of OFR remains a serious concern especially for small and marginal farmers with limited land holdings. In this study, a novel and comprehensive simulation-optimization model was developed to determine the optimal size and utilization of OFR. The simulation consisted of water balance of soil and OFR using hydrological analysis for last 28 years, through which supplement irrigation needs and, rainwater harvesting potential was estimated. Optimal use of available water in OFR was designed using a multi-stage process wherein the model generated, compared and screened appropriate vegetable plans for Rabi cultivation. The model was simulated for different OFR sizes and the optimal size was chosen based on its economic feasibility. To demonstrate the model, a case study was simulated wherein high supplement irrigation was estimated, indicating a severe limitation in rain-fed farming. A minimum OFR size of 9.9% of the total land was required. With an increase in OFR sizes, the profits increased however, the growth rate declined as the cropping area was reduced. An OFR size of 15.5% of total land was found to be optimal which gave benefit-cost ratio and payback period of 2.4 and 6.8 years respectively. Trends in cultivation plans for different sizes of OFR was observed wherein for small OFR sizes, the model generated fewer options of cultivation plans and preferred crops with high water productivity over crops with high profitability. The proposed model is generic and applicable at multiple scales and scenarios. The model could be used by environmental decision makers, farm managers, policy makers and researchers to determine the feasibility of any water resource intervention using an ecosystem centric approach when multiple scenarios of cultivation are possible.


Assuntos
Ecossistema , Abastecimento de Água , Agricultura , Chuva , Solo , Água
13.
Water Res ; 224: 119036, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36115158

RESUMO

Deep insights into the receiving waters responses to optimal spatial allocation of LID-BMPs are considered extremely important. This study addressed the urgent need to incorporate receiving waters responses into the spatial allocation optimization of LID-BMPs and demonstrated the efficiency of the approach to guide watershed management. The integration of an overland-river coupling model and the NSGA-III algorithm resulted in the proposal of a general simulation-optimization framework for the optimal layout of LID-BMPs. The coupled model was swapped out for the surrogates to increase computational efficiency. When 40.71%, 36.06%, and 61.80% reductions in runoff volume, flood volume, and TP concentration are achieved, the newly proposed framework can save 34.44% and 16.31% cost compared to the approach that does not consider receiving waters responses and refined spatial allocation, respectively. Results indicate that the incorporation of receiving waters responses and refined spatial allocation are essential for the optimal design of LID-BMPs. This new framework offers the potential for more cost-effective high-cost solutions. The results of spatial optimization are significantly influenced by imperviousness.


Assuntos
Algoritmos , Rios , Simulação por Computador , Análise Custo-Benefício
14.
Environ Monit Assess ; 194(9): 664, 2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-35951152

RESUMO

Increasing pollution in the environment, particularly for groundwater, has been an issue of great concern for decades. Thus, proper management strategies need to be adopted for reclamation of such polluted groundwater aquifers. Success of these reclamation strategy relies on the precision with which the pollution source characteristics (location of sources, release flux histories, and the starting times of pollutant sources) are identified. In clandestine scenarios of groundwater pollution where neither the location nor starting times of pollutant sources are known, it is impossible to decide where to install a monitoring well. Therefore, an optimally designed pollutant data monitoring plan is needed to reduce the time and cost of monitoring and simultaneously achieve greater accuracy in identification of source characteristics. To address this issue, a principal component analysis (PCA)-based methodology is proposed to design an efficient well network for identifying unknown characteristics of pollutant sources (UCPS). PCA is applied to reduce the dimensionality of a dataset comprising a large number of interrelated variables, thus reducing the uncertainty due to ambivalent source characteristics.


Assuntos
Poluentes Ambientais , Água Subterrânea , Poluentes Químicos da Água , Monitoramento Ambiental/métodos , Poluição Ambiental , Modelos Teóricos , Poluentes Químicos da Água/análise
15.
Sensors (Basel) ; 22(15)2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35957427

RESUMO

As the conventional voltage and current (VI) probes widely used in plasma diagnostics have separate voltage and current sensors, crosstalk between the sensors leads to degradation of measurement linearity, which is related to practical accuracy. Here, we propose a VI probe with a floating toroidal coil that plays both roles of a voltage and current sensor and is thus free from crosstalk. The operation principle and optimization conditions of the VI probe are demonstrated and established via three-dimensional electromagnetic wave simulation. Based on the optimization results, the proposed VI probe is fabricated and calibrated for the root-mean-square (RMS) voltage and current with a high-voltage probe and a vector network analyzer. Then, it is evaluated through a comparison with a commercial VI probe, with the results demonstrating that the fabricated VI probe achieved a slightly higher linearity than the commercial probe: R2 of 0.9967 and 0.9938 for RMS voltage and current, respectively. The proposed VI probe is believed to be applicable to plasma diagnostics as well as process monitoring with higher accuracy.

16.
MethodsX ; 9: 101765, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35813164

RESUMO

The interaction between surficial shallow aquifers of poorer quality and semi-confined water-supply aquifers poses a potential risk for degradation of the water supply. Groundwater engineers and hydrogeologists use groundwater models to synthesize field data, conceptualize hydrological processes, and improve understanding of the groundwater system to support informed decision-making. Models for decision-making, called management models, aid in the efficient planning and sustainable management of groundwater systems. Management models search for the best or least-cost management strategy satisfying hydrologic and environmental regulations. In management models, a simulation model is linked or coupled with an optimization formulation. Widely used optimization formulations are linear, non-linear, quadratic, dynamic, and global search models. Management models are applied but are not limited to maximizing withdrawals, minimizing drawdown, pumping costs, and saltwater intrusion, and determining the best locations for production wells. This paper theoretically presents the development of groundwater wellfield management strategies and the corresponding modeling framework for each strategy's evaluation. Depending on the strategy, the modeling effort applies deterministic (simulation) and stochastic (simulation-optimization) techniques. The goals of the optimization strategies are to protect wells from potential contaminant sources, identify optimal future well installation sites, mitigate risks, and extend the life of wells that may face water contamination issues.•Several management strategies are formulated addressing well depth, seasonal pumping operation, and mapping no-drilling or red zones for new well installation.•Modeling methodologies are laid down that apply thousands of numerical simulations for each strategy to simulate and evaluate recurring patterns of contaminant movement.•The simulation model integrates MODFLOW and MODPATH to simulate 3D groundwater flow and advective contaminant movement, respectively and is transferred via FloPy to couple with the optimization/decision model using a custom Python script.

17.
Environ Sci Pollut Res Int ; 29(60): 90081-90097, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35861899

RESUMO

The location and release history of groundwater contaminant sources (GCSs) are usually unknown after groundwater contamination is detected, thereby greatly hindering the design of contamination remediation schemes and contamination risk assessments. Many previous studies have used prior information such as the observed contaminant concentrations (OCC) to obtain information of GCSs, and various methods have been proposed for identifying GCSs, including simulation optimization (S/O) and ensemble Kalman filter (EnKF) methods. For the first time, the present study compared the suitability of the S/O and EnKF methods for GCSs identification based on two case studies by specifically considering the calculation time and effectiveness of GCS identification. The results showed that EnKF could reduce the calculation time required by more than 62% compared with S/O. However, the time saved did not compensate for the poor accuracy of the GCSs identification results. When the simulated contaminant concentrations (SCC) were used for GCSs identification, the MRE of the identification results with the S/O and EnKF methods were 2.79% and 5.09% in case one, respectively, and were 4.75% and 6.72% in case two. When the OCC were used for GCSs identification, the MRE of the identification results with the S/O and EnKF methods were 27.77% and 110.74% in case one, respectively, and 27.53% and 60.61% in case two. The identification results obtained using the EnKF method were not credible and the superior performance of the S/O method was obvious, thereby indicating that the EnKF method is much less suitable for actual GCSs identification compared with the S/O method.

18.
Appl Intell (Dordr) ; 52(12): 13729-13762, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35677730

RESUMO

Millions of affected people and thousands of victims are consequences of earthquakes, every year. Therefore, it is necessary to prepare a proper preparedness and response planning. The objectives of this paper are i) minimizing the expected value of the total costs of relief supply chain, ii) minimizing the maximum number of unsatisfied demands for relief staff and iii) minimizing the total probability of unsuccessful evacuation in routes. In this paper, a scenario based stochastic multi-objective location-allocation-routing model is proposed for a real humanitarian relief logistics problem which focused on both pre- and post-disaster situations in presence of uncertainty. To cope with demand uncertainty, a simulation approach is used. The proposed model integrates these two phases simultaneously. Then, both strategic and operational decisions (pre-disaster and post-disaster), fairness in the evacuation, and relief item distribution including commodities and relief workers, victim evacuation including injured people, corpses and homeless people are also considered simultaneously in this paper. The presented model is solved utilizing the Epsilon-constraint method for small- and medium-scale problems and using three metaheuristic algorithms for the large-scale problem (case study). Empirical results illustrate that the model can be used to locate the shelters and relief distribution centers, determine appropriate routes and allocate resources in uncertain and real-life disaster situations.

19.
Front Robot AI ; 9: 799893, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35494543

RESUMO

The rise of deep learning has caused a paradigm shift in robotics research, favoring methods that require large amounts of data. Unfortunately, it is prohibitively expensive to generate such data sets on a physical platform. Therefore, state-of-the-art approaches learn in simulation where data generation is fast as well as inexpensive and subsequently transfer the knowledge to the real robot (sim-to-real). Despite becoming increasingly realistic, all simulators are by construction based on models, hence inevitably imperfect. This raises the question of how simulators can be modified to facilitate learning robot control policies and overcome the mismatch between simulation and reality, often called the "reality gap." We provide a comprehensive review of sim-to-real research for robotics, focusing on a technique named "domain randomization" which is a method for learning from randomized simulations.

20.
Stud Health Technol Inform ; 294: 88-92, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35612022

RESUMO

Emergency department is a key component of the health system where the management of crowding situations is crucial to the well-being of patients. This study proposes a new machine learning methodology and a queuing network model to measure and optimize crowding through a congestion indicator, which indicates a real-time level saturation.


Assuntos
Aglomeração , Serviço Hospitalar de Emergência , Humanos , Aprendizado de Máquina , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA