Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.093
Filtrar
1.
World J Gastroenterol ; 30(23): 2931-2933, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38946877

RESUMO

In this editorial we comment on the article published in a recent issue of the World Journal of Gastroenterology. Acute liver failure (ALF) is a critical condition characterized by rapid hepatocellular injury and organ dysfunction, and it often necessitates liver transplant to ensure patient survival. Recent research has elucidated the involvement of distinct cell death pathways, namely ferroptosis and pyroptosis, in the pathogenesis of ALF. Ferroptosis is driven by iron-dependent lipid peroxidation, whereas pyroptosis is an inflammatory form of cell death; both pathways contribute to hepatocyte death and exacerbate tissue damage. This comprehensive review explores the interplay between ferroptosis and pyroptosis in ALF, highlighting the role of key regulators such as silent information regulator sirtuin 1. Insights from clinical and preclinical studies provide valuable perspectives on the dysregulation of cell death pathways in ALF and the therapeutic potential of targeting these pathways. Collaboration across multiple disciplines is essential for translating the experimental insights into effective treatments for this life-threatening condition.


Assuntos
Ferroptose , Falência Hepática Aguda , Piroptose , Animais , Humanos , Hepatócitos/metabolismo , Ferro/metabolismo , Peroxidação de Lipídeos , Fígado/metabolismo , Fígado/patologia , Falência Hepática Aguda/metabolismo , Falência Hepática Aguda/terapia , Transplante de Fígado , Transdução de Sinais , Sirtuína 1/metabolismo
2.
Front Vet Sci ; 11: 1355560, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962708

RESUMO

Introduction: The prevalence of age-related diseases, including obesity (a lipid metabolism disorder), increases with the increase in a dog's lifespan. Most of age-related diseases are associated with oxidative stress by excessive production of reactive oxygen species (ROS) from impaired mitochondrial functions. Safe and effective supplements with antioxidative and anti-inflammatory activities are required to prevent obesity and associated complications. Shiitake mushroom exhibit various functions including antioxidant activity. We investigated the effect of shiitake powder supplementation in healthy dogs. Methods: Shiitake powder was supplemented at a dose of 800 mg/kg body weight/day for 4 weeks. The dose was set as 0.60-0.65 mg/kg/day of eritadenine, a hypocholesterolemic factor. Results: The body weight and body condition score of the dogs did not change after shiitake supplementation. In contrast, plasma total cholesterol concentrations decreased and superoxide dismutase activity and leukocyte sirtuin1 mRNA expression increased significantly in the dogs that received the supplement. Discussion: Oral administration of shiitake powder increased antioxidative activity. The supplement may be useful in ameliorating the signs of age-related diseases, including obesity, in dogs.

3.
Physiol Rep ; 12(13): e16103, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38946587

RESUMO

Cancer cachexia is a multifactorial syndrome associated with advanced cancer that contributes to mortality. Cachexia is characterized by loss of body weight and muscle atrophy. Increased skeletal muscle mitochondrial reactive oxygen species (ROS) is a contributing factor to loss of muscle mass in cachectic patients. Mice inoculated with Lewis lung carcinoma (LLC) cells lose weight, muscle mass, and have lower muscle sirtuin-1 (sirt1) expression. Nicotinic acid (NA) is a precursor to nicotinamide dinucleotide (NAD+) which is exhausted in cachectic muscle and is a direct activator of sirt1. Mice lost body and muscle weight and exhibited reduced skeletal muscle sirt1 expression after inoculation with LLC cells. C2C12 myotubes treated with LLC-conditioned media (LCM) had lower myotube diameter. We treated C2C12 myotubes with LCM for 24 h with or without NA for 24 h. C2C12 myotubes treated with NA maintained myotube diameter, sirt1 expression, and had lower mitochondrial superoxide. We then used a sirt1-specific small molecule activator SRT1720 to increase sirt1 activity. C2C12 myotubes treated with SRT1720 maintained myotube diameter, prevented loss of sirt1 expression, and attenuated mitochondrial superoxide production. Our data provides evidence that NA may be beneficial in combating cancer cachexia by maintaining sirt1 expression and decreasing mitochondrial superoxide production.


Assuntos
Caquexia , Fibras Musculares Esqueléticas , Estresse Oxidativo , Sirtuína 1 , Animais , Caquexia/etiologia , Caquexia/metabolismo , Caquexia/patologia , Caquexia/prevenção & controle , Sirtuína 1/metabolismo , Sirtuína 1/genética , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/patologia , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Carcinoma Pulmonar de Lewis/metabolismo , Carcinoma Pulmonar de Lewis/patologia , Carcinoma Pulmonar de Lewis/complicações , Masculino , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Mitocôndrias Musculares/metabolismo , Mitocôndrias Musculares/efeitos dos fármacos , Mitocôndrias Musculares/patologia , Linhagem Celular , Niacina/farmacologia , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
4.
Int J Mol Med ; 54(2)2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38940352

RESUMO

Following the publication of this paper, it was drawn to the Editor's attention by a concerned reader that certain of the immunochemistry data shown in Figs. 4K and 7G were strikingly similar to data appearing in different form in other research articles written by different authors at different research institutes that had either already been published, or were submitted for publication at around the same time. Owing to the fact that contentious data in the above article had already been published elsewhere prior to its submission to International Journal of Molecular Medicine, the Editor has decided that this paper should be retracted from the Journal. The authors were asked for an explanation to account for these concerns, but the Editorial Office did not receive a satisfactory reply. The Editor apologizes to the readership for any inconvenience caused. [International Journal of Molecular Medicine 44: 89­102, 2019; DOI: 10.3892/ijmm.2019.4185].

5.
World J Gastroenterol ; 30(20): 2709-2725, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38855154

RESUMO

BACKGROUND: Constipation, a highly prevalent functional gastrointestinal disorder, induces a significant burden on the quality of patients' life and is associated with substantial healthcare expenditures. Therefore, identifying efficient therapeutic modalities for constipation is of paramount importance. Oxidative stress is a pivotal contributor to colonic dysmotility and is the underlying pathology responsible for constipation symptoms. Consequently, we postulate that hydrogen therapy, an emerging and promising intervention, can serve as a safe and efficacious treatment for constipation. AIM: To determine whether hydrogen-rich water (HRW) alleviates constipation and its potential mechanism. METHODS: Constipation models were established by orally loperamide to Sprague-Dawley rats. Rats freely consumed HRW, and were recorded their 24 h total stool weight, fecal water content, and charcoal propulsion rate. Fecal samples were subjected to 16S rDNA gene sequencing. Serum non-targeted metabolomic analysis, malondialdehyde, and superoxide dismutase levels were determined. Colonic tissues were stained with hematoxylin and eosin, Alcian blue-periodic acid-Schiff, reactive oxygen species (ROS) immunofluorescence, and immunohistochemistry for cell growth factor receptor kit (c-kit), PGP 9.5, sirtuin1 (SIRT1), nuclear factor-erythroid-2-related factor 2 (Nrf2), and heme oxygenase-1 (HO-1). Quantitative real-time PCR and western blot analysis were conducted to determine the expression level of SIRT1, Nrf2 and HO-1. A rescue experiment was conducted by intraperitoneally injecting the SIRT1 inhibitor, EX527, into constipated rats. NCM460 cells were induced with H2O2 and treated with the metabolites to evaluate ROS and SIRT1 expression. RESULTS: HRW alleviated constipation symptoms by improving the total amount of stool over 24 h, fecal water content, charcoal propulsion rate, thickness of the intestinal mucus layer, c-kit expression, and the number of intestinal neurons. HRW modulated intestinal microbiota imbalance and abnormalities in serum metabolism. HRW could also reduce intestinal oxidative stress through the SIRT1/Nrf2/HO-1 signaling pathway. This regulatory effect on oxidative stress was confirmed via an intraperitoneal injection of a SIRT1 inhibitor to constipated rats. The serum metabolites, ß-leucine (ß-Leu) and traumatic acid, were also found to attenuate H2O2-induced oxidative stress in NCM460 cells by up-regulating SIRT1. CONCLUSION: HRW attenuates constipation-associated intestinal oxidative stress via SIRT1/Nrf2/HO-1 signaling pathway, modulating gut microbiota and serum metabolites. ß-Leu and traumatic acid are potential metabolites that upregulate SIRT1 expression and reduce oxidative stress.


Assuntos
Colo , Constipação Intestinal , Hidrogênio , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Transdução de Sinais , Sirtuína 1 , Animais , Humanos , Masculino , Ratos , Colo/efeitos dos fármacos , Colo/metabolismo , Colo/patologia , Constipação Intestinal/metabolismo , Constipação Intestinal/tratamento farmacológico , Modelos Animais de Doenças , Fezes/química , Heme Oxigenase (Desciclizante)/metabolismo , Heme Oxigenase-1/metabolismo , Hidrogênio/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Sirtuína 1/metabolismo , Água/metabolismo
6.
Biomed Pharmacother ; 177: 116917, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38908209

RESUMO

Sarcopenia is an aging-related skeletal disease characterized by decreased muscle mass, strength, and physical function, severely affecting the quality of life (QoL) of the elderly population. Sirtuin 1 (SIRT1), as a nicotinamide adenine dinucleotide (NAD+)-dependent histone deacetylases, has been reported to participate in various aging-related signaling pathways and exert protective effect on many human diseases. SIRT1 functioned as an important role in the occurrence and progression of sarcopenia through regulating key pathways related to protein homeostasis, apoptosis, mitochondrial dysfunction, insulin resistance and autophagy in skeletal muscle, including SIRT1/Forkhead Box O (FoxO), AMP-activated protein kinase (AMPK)/SIRT1/nuclear factor κB (NF-κB), SIRT1/p53, AMPK/SIRT1/peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α), and SIRT1/live kinase B1 (LKB1)/AMPK pathways. However, the specific mechanisms of these processes have not been fully illuminated. Currently, several SIRT1-mediated interventions on sarcopenia have been preliminarily developed, such as SIRT1 activator polyphenolic compounds, exercising and calorie restriction. In this review, we summarized the predominant mechanisms of SIRT1 involved in sarcopenia and therapeutic modalities targeting the SIRT1 signaling pathways for the prevention and prognosis of sarcopenia.

7.
Redox Biol ; 73: 103203, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823208

RESUMO

Vascular smooth muscle cells (VSMCs), known for their remarkable lifelong phenotypic plasticity, play a pivotal role in vascular pathologies through their ability to transition between different phenotypes. Our group discovered that the deficiency of the mitochondrial protein Poldip2 induces VSMC differentiation both in vivo and in vitro. Further comprehensive biochemical investigations revealed Poldip2's specific interaction with the mitochondrial ATPase caseinolytic protease chaperone subunit X (CLPX), which is the regulatory subunit for the caseinolytic protease proteolytic subunit (ClpP) that forms part of the ClpXP complex - a proteasome-like protease evolutionarily conserved from bacteria to humans. This interaction limits the protease's activity, and reduced Poldip2 levels lead to ClpXP complex activation. This finding prompted the hypothesis that ClpXP complex activity within the mitochondria may regulate the VSMC phenotype. Employing gain-of-function and loss-of-function strategies, we demonstrated that ClpXP activity significantly influences the VSMC phenotype. Notably, both genetic and pharmacological activation of ClpXP inhibits VSMC plasticity and fosters a quiescent, differentiated, and anti-inflammatory VSMC phenotype. The pharmacological activation of ClpP using TIC10, currently in phase III clinical trials for cancer, successfully replicates this phenotype both in vitro and in vivo and markedly reduces aneurysm development in a mouse model of elastase-induced aortic aneurysms. Our mechanistic exploration indicates that ClpP activation regulates the VSMC phenotype by modifying the cellular NAD+/NADH ratio and activating Sirtuin 1. Our findings reveal the crucial role of mitochondrial proteostasis in the regulation of the VSMC phenotype and propose the ClpP protease as a novel, actionable target for manipulating the VSMC phenotype.


Assuntos
Endopeptidase Clp , Mitocôndrias , Músculo Liso Vascular , Miócitos de Músculo Liso , Fenótipo , Sirtuína 1 , Animais , Humanos , Camundongos , Diferenciação Celular , Endopeptidase Clp/metabolismo , Endopeptidase Clp/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/metabolismo , Sirtuína 1/metabolismo , Sirtuína 1/genética
8.
Biochem Biophys Rep ; 39: 101746, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38910870

RESUMO

Dermal fibroblasts play a crucial role in skin structure and function by producing hyaluronic acid. Piceatannol (PIC), a polyphenol abundant in passion fruit seeds, has been reported to activate sirtuin 1 (SIRT1). Clinical trials have demonstrated that PIC intake improves skin moisture and maintains skin elasticity, yet the underlying mechanism remains unclear. This study aimed to investigate the effects of PIC on hyaluronic acid biosynthesis and the involvement of SIRT1 in this process. Human dermal fibroblast Hs68 cells were stimulated with PIC, and the expression levels of HAS2 and HYAL2, key enzymes in hyaluronic acid biosynthesis, as well as SIRT1 expression, were assessed using quantitative real-time PCR. Additionally, the role of SIRT1 in the hyaluronic acid biosynthesis pathway during PIC stimulation was examined using a SIRT1 inhibitor. The results demonstrated that PIC increased HAS2 expression while decreasing HYAL2 expression in human dermal fibroblasts. Furthermore, PIC enhanced SIRT1 expression, and pre-treatment with a SIRT1 inhibitor mitigated PIC-induced upregulation of HAS2, suggesting that PIC promotes hyaluronic acid synthesis by inducing SIRT1. These findings suggest that PIC could serve as a beneficial food ingredient, enhancing skin structure and function by promoting hyaluronic acid biosynthesis via SIRT1 induction.

9.
J Diabetes Metab Disord ; 23(1): 1081-1091, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38932833

RESUMO

Purpose: Considering inhibition of pre-adipocyte cells differentiation in adipose tissue fibrosis, we aimed to explore whether Sirt1 and Hif-1α in pre-adipocytes have a significant effect on fibrotic gene expression. Methods: 3T3-L1 pre-adipocytes were transfected with SIRT1-specific siRNA, confirmed by real-time polymerase chain reaction (RT-PCR) and western blotting. Additionally, cells were treated with varying concentrations of resveratrol and sirtinol as the activator and inhibitor of Sirt1, respectively. Involvement of Hif-1α was evaluated by treatment with echinomycin. Subsequently, we assessed the gene and protein expressions related to fibrosis in the extracellular matrix of adipose tissue, including collagen VI (Col VI), lysyl oxidase (Lox), matrix metalloproteinase-2 (Mmp-2), Mmp-9, and osteopontin (Opn) in pre-adipocytes through RT-PCR and western blot. Results: The current study demonstrated that Sirt1 knockdown and reduced enzyme activity significantly increased the expression of Col VI, Lox, Mmp-2, Mmp-9, and Opn genes in the treated 3T3-L1 cells compared to the control group. Interestingly, resveratrol significantly decreased the gene expression related to the fibrosis pathway. Inhibition of Hif-1α by echinomycin led to a significant reduction in Col VI, Mmp-2, and Mmp-9 gene expression in the treated group compared to the control. Conclusion: This study highlights that down-regulation of Sirt1 might be a predisposing factor in the emergence of adipose tissue fibrosis by enhancing the expression of extracellular matrix (ECM) components. Activation of Sirt1, similar to suppressing of Hif-1α in pre-adipocytes may be a beneficial approach for attenuating fibrotic gene expression. Supplementary Information: The online version contains supplementary material available at 10.1007/s40200-024-01389-4.

10.
Int Immunopharmacol ; 137: 112468, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38906004

RESUMO

Prolonged or excessive oxidative stress can lead to premature cellular and body aging. Mannan-binding lectin (MBL) is synthesized by the liver and plays an important role in innate immunity, anti-inflammation, and anti-oxidation, and has a positive impact on health and longevity. To date, few studies investigated the role of MBL in attenuating oxidative stress-induced senescence. In this study, we evaluated the role of MBL in oxidative stress-induced premature aging and explored its underlying mechanism in C57BL/6 mice and mouse embryonic fibroblasts (NIH/3T3). First, we established an oxidative premature senescence model induced by D-galactose in C57BL/6 mice. We found that MBL-deficient mice had a marked aging-like appearance, reduced learning and spatial exploration abilities, severe liver pathological damage, and significantly upregulated expression of Senescence-associated proteins (p53 and p21), inflammatory kinesins (IL-1ß and IL-6), and the senescence ß-galactosidase (SA-ß-Gal) positive rate as compared with WT mice. In the H2O2-induced oxidative senescence model of NIH/3T3 cells, consistent results were obtained after MBL intervention. In addition, MBL effectively inhibited G1 phase arrest, ROS levels, DNA damage, and mitochondrial dysfunction in premature senescent cells. Mechanistically, we found that oxidative stress inhibited the nicotinamide adenine dinucleotide (NAD+)/ silent information regulator 1 (Sirt1) signaling pathway, while MBL activated the NAD+/Sirt1 signaling pathway inhibited by oxidative stress. In addition, MBL could activate the NAD+/Sirt1 pathway by upregulating NAMPT, which in turn inhibited p38 phosphorylation by activating the NAD+/Sirt1 pathway. In conclusion, MBL inhibits oxidative aging, which may facilitate the development of therapeutics to delay oxidative aging.


Assuntos
Senescência Celular , Galactose , Lectina de Ligação a Manose , Camundongos Endogâmicos C57BL , NAD , Estresse Oxidativo , Transdução de Sinais , Sirtuína 1 , Animais , Sirtuína 1/metabolismo , Sirtuína 1/genética , Estresse Oxidativo/efeitos dos fármacos , Camundongos , Senescência Celular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Células NIH 3T3 , NAD/metabolismo , Lectina de Ligação a Manose/metabolismo , Lectina de Ligação a Manose/genética , Camundongos Knockout , Peróxido de Hidrogênio/metabolismo , Masculino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo
11.
Arch Physiol Biochem ; : 1-9, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38712991

RESUMO

INTRODUCTION: Sirtuin1 (SIRT1) plays a crucial role in the pathophysiology of non-alcoholic fatty liver disease. We investigated the mechanistic role of galbanic acid (Gal) as a regulator of SIRT1 in silico and in vitro. METHODS: HepG2 cells were treated with Gal in the presence or absence of EX-527, a SIRT1-specific inhibitor, for 24 h. Sirtuin1 gene and protein expression were measured by RT-PCR and Western blotting, respectively. It has been docked to the allosteric reign of SIRT1 (PDB ID: 4ZZJ) to study the effect of Gal on SIRT1, and then the protein and complex molecular dynamic (MD) simulations had been studied in 100 ns. RESULTS: The semi-quantitative results of Oil red (p < .03) and TG level (p < .009) showed a significant reduction in lipid accumulation by treatment with Gal. Also, a significant increase was observed in the gene and protein expression of SIRT1 (p < .05). MD studies have shown that the average root mean square deviation (RMSD) was about 0.51 Å for protein structure and 0.66 Å for the complex. The average of radius of gyration (Rg) is 2.33 and 2.32 Å for protein and complex, respectively, and the pattern of root mean square fluctuation (RMSF) was almost similar. CONCLUSION: Computational studies show that Gal can be a great candidate to use as a SIRT1 ligand because it does not interfere with the structure of the protein, and other experimental studies showed that Gal treatment with SIRT1 inhibitor increases fat accumulation in HepG2 cells.

12.
J Biomed Sci ; 31(1): 49, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38735943

RESUMO

BACKGROUND: The impact of global overconsumption of simple sugars on bone health, which peaks in adolescence/early adulthood and correlates with osteoporosis (OP) and fracture risk decades, is unclear. Mesenchymal stromal/stem cells (MSCs) are the progenitors of osteoblasts/bone-forming cells, and known to decrease their osteogenic differentiation capacity with age. Alarmingly, while there is correlative evidence that adolescents consuming greatest amounts of simple sugars have the lowest bone mass, there is no mechanistic understanding on the causality of this correlation. METHODS: Bioinformatics analyses for energetics pathways involved during MSC differentiation using human cell information was performed. In vitro dissection of normal versus high glucose (HG) conditions on osteo-/adipo-lineage commitment and mitochondrial function was assessed using multi-sources of non-senescent human and murine MSCs; for in vivo validation, young mice was fed normal or HG-added water with subsequent analyses of bone marrow CD45- MSCs. RESULTS: Bioinformatics analyses revealed mitochondrial and glucose-related metabolic pathways as integral to MSC osteo-/adipo-lineage commitment. Functionally, in vitro HG alone without differentiation induction decreased both MSC mitochondrial activity and osteogenesis while enhancing adipogenesis by 8 h' time due to depletion of nicotinamide adenine dinucleotide (NAD+), a vital mitochondrial co-enzyme and co-factor to Sirtuin (SIRT) 1, a longevity gene also involved in osteogenesis. In vivo, HG intake in young mice depleted MSC NAD+, with oral NAD+ precursor supplementation rapidly reversing both mitochondrial decline and osteo-/adipo-commitment in a SIRT1-dependent fashion within 1 ~ 5 days. CONCLUSIONS: We found a surprisingly rapid impact of excessive glucose, a single dietary factor, on MSC SIRT1 function and osteogenesis in youthful settings, and the crucial role of NAD+-a single molecule-on both MSC mitochondrial function and lineage commitment. These findings have strong implications on future global OP and disability risks in light of current worldwide overconsumption of simple sugars.


Assuntos
Glucose , Células-Tronco Mesenquimais , Mitocôndrias , NAD , Osteogênese , Sirtuína 1 , Células-Tronco Mesenquimais/metabolismo , Sirtuína 1/metabolismo , Sirtuína 1/genética , Osteogênese/fisiologia , Camundongos , Humanos , Animais , Mitocôndrias/metabolismo , Glucose/metabolismo , NAD/metabolismo , Diferenciação Celular
13.
Heliyon ; 10(10): e30984, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38803993

RESUMO

Aims and objectives: Astragaloside IV (AS-IV) has been found to possess anti-oxidative, anti-inflammatory, and anti-apoptotic properties, but its effect on atrial fibrosis is yet to be determined. This research investigates the protective role of AS-IV in angiotensin II (Ang II)-induced atrial fibrosis and atrial fibrillation (AF). Methods: C57BL/6 male mice aged 8-10 weeks (n = 40) were subcutaneously administered Ang II (2.0 mg/kg/day) or saline, with AS-IV (80 mg/kg) intraperitoneally administered 2 h before Ang II infusion for 4 weeks. Biochemical, histological, and morphological analyses were carried out. Using transesophageal burst pacing, AF was generated in vivo. Results: Here, we report that AS-IV treatment inhibited Ang II-induced AF development in mice (58 ± 5.86 vs 15.13 ± 2.16 %, p < 0.001). Ang II + AS-IV therapy was effective in reducing the atrial fibrotic area and decreasing the increase in smooth muscle alpha-actin (α-SMA)-positive myofibroblasts brought on by Ang II treatment (fibrotic area: 26.25 ± 3.81 vs 8.62 ± 1.83 %, p < 0.001 and α-SMA: 65.62 ± 10.63 vs 17.25 ± 1.78 %, p < 0.001). The reactive oxygen species (ROS) production was reduced by pretreatment with Ang II + AS-IV (9.20 ± 0.92 vs 2.63 ± 0.22 %/sec, p < 0.001). In addition, Ang II + AS-IV treatment suppressed oxidative stress in Ang II-induced atrial fibrosis (malondialdehyde: 701.78 ± 85.01 vs 504.07 ± 25.62 pmol/mg protein, p < 0.001; superoxide dismutase: 13.82 ± 1.25 vs 29.54 ± 2.45 U/mg protein, p < 0.001 and catalase: 11.43 ± 1.19 vs 20.83 ± 3.29 U/mg protein, p < 0.001, respectively). Moreover, Ang II + AS-IV decreased the expression of α-SMA, collagen III and collagen I (3.32 ± 0.53 vs 1.41 ± 0.20 fold, p < 0.001; 3.41 ± 0.55 vs 1.48 ± 0.18 fold, p < 0.001; 2.34 ± 0.55 vs 0.99 ± 0.17 fold, p < 0.001, respectively) while increasing the protein expression of sirtuin 1 (SIRT1), peroxisome proliferator-activated receptor-gamma coactivator-1 alpha (PGC-1α), and fibronectin type III domain-containing protein 5 (FNDC5) in Ang II-treated mice (0.22 ± 0.02 vs 0.57 ± 0.08 fold, p < 0.001; 0.28 ± 0.04 vs 0.72 ± 0.05 fold, p < 0.001; 0.38 ± 0.03 vs 0.68 ± 0.06 fold, p < 0.001, respectively). Conclusion: Our data led us to speculate that AS-IV may protect against Ang II-induced atrial fibrosis and AF via upregulation of the SIRT1/PGC-1α/FNDC5 pathway.

14.
Autophagy ; : 1-20, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38726830

RESUMO

The Atg8-family proteins (MAP1LC3/LC3A, LC3B, LC3C, GABARAP, GABARAPL1 and GABARAPL2) play a pivotal role in macroautophagy/autophagy through their ability to help form autophagosomes. Although autophagosomes form in the cytoplasm, nuclear levels of the Atg8-family proteins are significant. Recently, the nuclear/cytoplasmic shuttling of LC3B was shown to require deacetylation of two Lys residues (K49 and K51 in LC3B), which are conserved in Atg8-family proteins. To exit the nucleus, deacetylated LC3B must bind TP53INP2/DOR (tumor protein p53 inducible nuclear protein 2) through interaction with the LC3-interacting region (LIR) of TP53INP2 (TP53INP2LIR). To examine their selectivity for TP53INP2 and the role of the conserved Lys residues in Atg8-family proteins, we prepared the six human Atg8-family proteins and acetylated variants of LC3A and GABARAP for biophysical and structural characterization of their interactions with the TP53INP2LIR. Isothermal titration calorimetry (ITC) experiments demonstrate that this LIR binds preferentially to GABARAP subfamily proteins, and that only acetylation of the second Lys residue reduces binding to GABARAP and LC3A. Crystal structures of complexes with GABARAP and LC3A (acetylated and deacetylated) define a ß-sheet in the TP53INP2LIR that determines the GABARAP selectivity and establishes the importance of acetylation at the second Lys. The in vitro results were confirmed in cells using acetyl-mimetic variants of GABARAP and LC3A to examine nuclear/cytoplasmic shuttling and colocalization with TP53INP2. Together, the results demonstrate that TP53INP2 shows selectivity to the GABARAP subfamily and acetylation at the second Lys of GABARAP and LC3A disrupts key interactions with TP53INP2 required for their nuclear/cytoplasmic shuttling.

15.
Mol Biol Rep ; 51(1): 690, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38796575

RESUMO

INTRODUCTION: Methamphetamine (METH) is an addictive psychostimulant with deleterious effects on the central nervous system. Chronic use of METH in high doses impairs cognition, attention and executive functions, but the underlying mechanisms are still unclear. Sirtuin 1 (SIRT1) is a post-translational regulator that is downregulated following METH neurotoxicity. Melatonin is a neuroprotective hormone that enhances mitochondrial metabolism. Here, we evaluated the effect of melatonin on METH-induced attention deficits disorder and the involvement of the miR-181/SIRT1 axis in melatonin neuroprotection. METHODS AND RESULTS: METH at a dose of 5 mg/kg was injected for 21 consecutive days. The animals were assigned to receive either melatonin or the vehicle after METH injections. Attention levels were evaluated with abject-based attention test. In the prefrontal cortex, the expression levels of miR-181a-5p, SIRT1, p53 and CCAR2, as well as the mtDNA copy numbers were evaluated using qRT-PCR and western blotting. The outcomes revealed that melatonin treatment following METH injections improved METH-induced attention deficits. METH toxicity can be associated with changes in the miR-181/SIRT1 axis, elevated levels of p53 and COXII, and decreased levels of mtDNA in the prefrontal cortex of adult rats. Interestingly, administration of melatonin can improve the expression of these molecules and reduces the toxic effects of METH. CONCLUSION: Melatonin ameliorated the neurotoxicity of METH in the prefrontal cortex and the miR-181/SIRT1 axis is involve in the protective effects of melatonin. However, melatonin can be potentially administrated to improve attention impairment in METH use disorders.


Assuntos
Melatonina , Metanfetamina , MicroRNAs , Córtex Pré-Frontal , Sirtuína 1 , Melatonina/farmacologia , Metanfetamina/toxicidade , Metanfetamina/efeitos adversos , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/efeitos dos fármacos , Animais , Sirtuína 1/metabolismo , Sirtuína 1/genética , MicroRNAs/metabolismo , MicroRNAs/genética , Masculino , Ratos , Fármacos Neuroprotetores/farmacologia , Atenção/efeitos dos fármacos , Ratos Wistar , Estimulantes do Sistema Nervoso Central/farmacologia
16.
Cardiovasc Res ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38739545

RESUMO

BACKGROUND: Obesity and type 2 diabetes (T2D) are major risk factors for cardiovascular diseases (CVD). Dysregulated pro-apoptotic ceramide synthesis reduces ß-cell insulin secretion, thereby promoting hyperglycemic states which may manifest as T2D. Pro-apoptotic ceramides modulate insulin sensitivity and glucose tolerance while being linked to poor cardiovascular outcomes. Sirtuin-1 (SIRT1) is a NAD + - dependent deacetylase that protects against pancreatic ß-cell dysfunction; however, systemic levels are decreased in obese T2D mice and may promote pro-apoptotic ceramide synthesis and hyperglycemia. Herein, we aimed to assess the effects of restoring circulating SIRT1 levels to prevent metabolic imbalance in obese and diabetic mice. METHODS AND RESULTS: Circulating SIRT1 levels were reduced in obese diabetic mice (db/db) as compared to age-matched non-diabetic db/+ controls. Restoration of SIRT1 plasma levels with recombinant murine SIRT1 for 4-weeks prevented body weight gain, improved glucose tolerance, insulin sensitivity and vascular function in mice models of obesity and T2D. Untargeted lipidomics revealed that SIRT1 restored insulin-secretory function of ß-cells by reducing synthesis and accumulation of pro-apoptotic ceramides. Molecular mechanisms involved direct binding to and deacetylation of Toll-like receptor 4 (TLR4) by SIRT1 in ß-cells thereby decreasing the rate limiting enzymes of sphingolipid synthesis SPTLC1/2 via AKT/NF-κB. Among T2D patients, those with high baseline plasma levels of SIRT1 prior to metabolic surgery displayed restored ß-cell function (HOMA2- ß) and were more likely to have T2D remission during follow-up. CONCLUSION: Acetylation of TLR4 promotes ß-cell dysfunction via ceramide synthesis in T2D, which is blunted by systemic SIRT1 replenishment. Hence, restoration of systemic SIRT1 may provide a novel therapeutic strategy to counteract toxic ceramide synthesis and mitigate cardiovascular complications of T2D.

17.
Pflugers Arch ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38772920

RESUMO

Phosphate homeostasis is vital for many biological processes and disruptions in circulating levels can be detrimental. While the mechanisms behind FGF23 regulation have been regularly studied, the role of extracellular phosphate sensing and its impact on fibroblast growth factor 23 (FGF23) expression remains unclear. This study aimed to investigate the involvement of reactive oxygen species (ROS), silent information regulator 1 (SIRT1), and Hairy and Enhancer of Split-1 (HES1) in regulating FGF23 in FGF23 expressing MC3T3-E1 cells. MC3T3-E1 cells treated with ß-glycerophosphate (BGP) resulted in increased Fgf23 expression. Inhibition of ROS formation by inhibition of NADPH oxidase, which is essential for ROS production, did not affect this response to BGP, suggesting ROS is not involved in this process. Moreover, treatment with tert-butyl hydroperoxide (TBHP), a ROS-inducing agent, did not increase Fgf23 expression. This suggests that ROS machinery is not involved in FGF23 stimulation as previously suggested. Nonetheless, inhibition of SIRT1 using Ex527 eliminated the Fgf23 response to BGP, indicating its involvement in FGF23 regulation after BGP treatment. Indeed, activation of SIRT1 using SRT1720 increased Fgf23 expression. Moreover, transcription factor Hes1 was upregulated by BGP treatment, which was diminished when cells were treated with Ex527 implying it is also regulated through SIRT1. These findings suggest the existence of an upstream SIRT1-HES1 axis in the regulation of FGF23 by phosphate, though we were unable to find a role for ROS in this process. Further research should provide insights into phosphate homeostasis and potential therapeutic targets for phosphate-related disorders.

18.
Clin Exp Nephrol ; 28(7): 599-607, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38587753

RESUMO

The time for diabetic nephropathy (DN) to progress from mild to severe is long. Thus, methods to continuously repress DN are required to exert long-lasting effects mediated through epigenetic regulation. In this study, we demonstrated the ability of nicotinamide adenine dinucleotide (NAD) and its metabolites to reduce albuminuria through Sirt1- or Nampt-dependent epigenetic regulation. We previously reported that proximal tubular Sirt1 was lowered before glomerular Sirt1. Repressed glomerular Sirt1 was found to epigenetically elevate Claudin-1. In addition, we reported that proximal tubular Nampt deficiency epigenetically augmented TIMP-1 levels in Sirt6-mediated pathways, leading to type-IV collagen deposition and diabetic fibrosis. Altogether, we propose that the Sirt1/Claudin-1 axis may be crucial in the onset of albuminuria at the early stages of DN and that the Nampt/Sirt6/TIMP-1 axis promotes diabetic fibrosis in the middle to late stages of DN. Finally, administration of NMN, an NAD precursor, epigenetically potentiates the regression of the onset of DN to maintain Sirt1 and repress Claudin-1 in podocytes, suggesting the potential use of NAD metabolites as epigenetic medications for DN.


Assuntos
Albuminúria , Claudina-1 , Nefropatias Diabéticas , Epigênese Genética , NAD , Sirtuína 1 , Inibidor Tecidual de Metaloproteinase-1 , Animais , Humanos , Albuminúria/genética , Claudina-1/genética , Claudina-1/metabolismo , Citocinas/metabolismo , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , Fibrose , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NAD/metabolismo , Mononucleotídeo de Nicotinamida/farmacologia , Nicotinamida Fosforribosiltransferase/genética , Nicotinamida Fosforribosiltransferase/metabolismo , Podócitos/metabolismo , Sirtuína 1/metabolismo , Sirtuína 1/genética , Sirtuínas/genética , Sirtuínas/metabolismo , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Inibidor Tecidual de Metaloproteinase-1/genética
19.
World J Gastroenterol ; 30(11): 1588-1608, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38617450

RESUMO

BACKGROUND: Acute liver failure (ALF) has a high mortality with widespread hepatocyte death involving ferroptosis and pyroptosis. The silent information regulator sirtuin 1 (SIRT1)-mediated deacetylation affects multiple biological processes, including cellular senescence, apoptosis, sugar and lipid metabolism, oxidative stress, and inflammation. AIM: To investigate the association between ferroptosis and pyroptosis and the upstream regulatory mechanisms. METHODS: This study included 30 patients with ALF and 30 healthy individuals who underwent serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) testing. C57BL/6 mice were also intraperitoneally pretreated with SIRT1, p53, or glutathione peroxidase 4 (GPX4) inducers and inhibitors and injected with lipopolysaccharide (LPS)/D-galactosamine (D-GalN) to induce ALF. Gasdermin D (GSDMD)-/- mice were used as an experimental group. Histological changes in liver tissue were monitored by hematoxylin and eosin staining. ALT, AST, glutathione, reactive oxygen species, and iron levels were measured using commercial kits. Ferroptosis- and pyroptosis-related protein and mRNA expression was detected by western blot and quantitative real-time polymerase chain reaction. SIRT1, p53, and GSDMD were assessed by immunofluorescence analysis. RESULTS: Serum AST and ALT levels were elevated in patients with ALF. SIRT1, solute carrier family 7a member 11 (SLC7A11), and GPX4 protein expression was decreased and acetylated p5, p53, GSDMD, and acyl-CoA synthetase long-chain family member 4 (ACSL4) protein levels were elevated in human ALF liver tissue. In the p53 and ferroptosis inhibitor-treated and GSDMD-/- groups, serum interleukin (IL)-1ß, tumour necrosis factor alpha, IL-6, IL-2 and C-C motif ligand 2 levels were decreased and hepatic impairment was mitigated. In mice with GSDMD knockout, p53 was reduced, GPX4 was increased, and ferroptotic events (depletion of SLC7A11, elevation of ACSL4, and iron accumulation) were detected. In vitro, knockdown of p53 and overexpression of GPX4 reduced AST and ALT levels, the cytostatic rate, and GSDMD expression, restoring SLC7A11 depletion. Moreover, SIRT1 agonist and overexpression of SIRT1 alleviated acute liver injury and decreased iron deposition compared with results in the model group, accompanied by reduced p53, GSDMD, and ACSL4, and increased SLC7A11 and GPX4. Inactivation of SIRT1 exacerbated ferroptotic and pyroptotic cell death and aggravated liver injury in LPS/D-GalN-induced in vitro and in vivo models. CONCLUSION: SIRT1 activation attenuates LPS/D-GalN-induced ferroptosis and pyroptosis by inhibiting the p53/GPX4/GSDMD signaling pathway in ALF.


Assuntos
Falência Hepática Aguda , Sirtuína 1 , Animais , Humanos , Camundongos , Gasderminas , Ferro , Lipopolissacarídeos , Falência Hepática Aguda/induzido quimicamente , Camundongos Endogâmicos C57BL , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Sirtuína 1/genética , Proteína Supressora de Tumor p53
20.
Folia Histochem Cytobiol ; 62(1): 13-24, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38563049

RESUMO

INTRODUCTION: During sepsis, the kidney is one of the most vulnerable organs. Sepsis-associated acute kidney injury (S-AKI) is hallmarked by renal inflammation, apoptosis, and oxidative injury. Ginsenoside Rg1 (Rg1) is a natural product that possesses abundant pharmacological actions and protects against many sepsis-related diseases. Nevertheless, its role and related mechanism in S-AKI remain to be determined. MATERIALS AND METHODS: S-AKI was induced using lipopolysaccharide (LPS, 10 mg/kg) via a single intraperitoneal injection. Rg1 (200 mg/kg) was intraperitoneally administered for 3 consecutive days before LPS treatment. For histopathological examination, murine kidney tissues were stained with hematoxylin and eosin. Tubular injury score was calculated to evaluate kidney injury. Serum creatinine and BUN levels were measured for assessing renal dysfunction. The levels and activities of oxidative stress markers (MDA, 4-HNE, PC, GSH, SOD, and CAT) in renal tissue were measured by corresponding kits. Renal cell apoptosis was detected by TUNEL staining. The protein levels of apoptosis-related markers (Bcl-2, Bax, and Cleaved caspase-3), proinflammatory factors, SIRT1, IκBα, p-NF-κB p65, and NF-κB p65 in kidneys were determined using western blotting. Immunofluorescence staining was employed to assess p-NF-κB p65 expression in renal tissues. RESULTS: LPS-induced injury of kidneys and renal dysfunction in mice were ameliorated by Rg1. Rg1 also impeded LPS-evoked renal cell apoptosis in kidneys. Moreover, Rg1 attenuated LPS-triggered inflammation and oxidative stress in kidneys by inhibiting proinflammatory cytokine release, enhancing antioxidant levels and activities, and reducing lipid peroxidation. However, all these protective effects of Rg1 in LPS-induced AKI mice were reversed by EX527, an inhibitor of sirtuin 1 (SIRT1). Mechanistically, Rg1 upregulated SIRT1 protein expression, increased SIRT1 activity, and inactivated NF-κB signaling in the kidney of LPS-induced AKI mice, which was also reversed by EX527. CONCLUSIONS: Rg1 ameliorates LPS-induced kidney injury and suppresses renal inflammation, apoptosis, and oxidative stress in mice via regulating the SIRT1/NF-κB signaling.


Assuntos
Injúria Renal Aguda , Ginsenosídeos , Sepse , Animais , Camundongos , NF-kappa B/metabolismo , NF-kappa B/farmacologia , NF-kappa B/uso terapêutico , Lipopolissacarídeos/toxicidade , Sirtuína 1/metabolismo , Sirtuína 1/farmacologia , Sirtuína 1/uso terapêutico , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Sepse/induzido quimicamente , Sepse/complicações , Sepse/tratamento farmacológico , Apoptose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...