Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.084
Filtrar
1.
Redox Biol ; 73: 103203, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38823208

RESUMO

Vascular smooth muscle cells (VSMCs), known for their remarkable lifelong phenotypic plasticity, play a pivotal role in vascular pathologies through their ability to transition between different phenotypes. Our group discovered that the deficiency of the mitochondrial protein Poldip2 induces VSMC differentiation both in vivo and in vitro. Further comprehensive biochemical investigations revealed Poldip2's specific interaction with the mitochondrial ATPase caseinolytic protease chaperone subunit X (CLPX), which is the regulatory subunit for the caseinolytic protease proteolytic subunit (ClpP) that forms part of the ClpXP complex - a proteasome-like protease evolutionarily conserved from bacteria to humans. This interaction limits the protease's activity, and reduced Poldip2 levels lead to ClpXP complex activation. This finding prompted the hypothesis that ClpXP complex activity within the mitochondria may regulate the VSMC phenotype. Employing gain-of-function and loss-of-function strategies, we demonstrated that ClpXP activity significantly influences the VSMC phenotype. Notably, both genetic and pharmacological activation of ClpXP inhibits VSMC plasticity and fosters a quiescent, differentiated, and anti-inflammatory VSMC phenotype. The pharmacological activation of ClpP using TIC10, currently in phase III clinical trials for cancer, successfully replicates this phenotype both in vitro and in vivo and markedly reduces aneurysm development in a mouse model of elastase-induced aortic aneurysms. Our mechanistic exploration indicates that ClpP activation regulates the VSMC phenotype by modifying the cellular NAD+/NADH ratio and activating Sirtuin 1. Our findings reveal the crucial role of mitochondrial proteostasis in the regulation of the VSMC phenotype and propose the ClpP protease as a novel, actionable target for manipulating the VSMC phenotype.

2.
Arch Physiol Biochem ; : 1-9, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38712991

RESUMO

INTRODUCTION: Sirtuin1 (SIRT1) plays a crucial role in the pathophysiology of non-alcoholic fatty liver disease. We investigated the mechanistic role of galbanic acid (Gal) as a regulator of SIRT1 in silico and in vitro. METHODS: HepG2 cells were treated with Gal in the presence or absence of EX-527, a SIRT1-specific inhibitor, for 24 h. Sirtuin1 gene and protein expression were measured by RT-PCR and Western blotting, respectively. It has been docked to the allosteric reign of SIRT1 (PDB ID: 4ZZJ) to study the effect of Gal on SIRT1, and then the protein and complex molecular dynamic (MD) simulations had been studied in 100 ns. RESULTS: The semi-quantitative results of Oil red (p < .03) and TG level (p < .009) showed a significant reduction in lipid accumulation by treatment with Gal. Also, a significant increase was observed in the gene and protein expression of SIRT1 (p < .05). MD studies have shown that the average root mean square deviation (RMSD) was about 0.51 Å for protein structure and 0.66 Å for the complex. The average of radius of gyration (Rg) is 2.33 and 2.32 Å for protein and complex, respectively, and the pattern of root mean square fluctuation (RMSF) was almost similar. CONCLUSION: Computational studies show that Gal can be a great candidate to use as a SIRT1 ligand because it does not interfere with the structure of the protein, and other experimental studies showed that Gal treatment with SIRT1 inhibitor increases fat accumulation in HepG2 cells.

3.
Pflugers Arch ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38772920

RESUMO

Phosphate homeostasis is vital for many biological processes and disruptions in circulating levels can be detrimental. While the mechanisms behind FGF23 regulation have been regularly studied, the role of extracellular phosphate sensing and its impact on fibroblast growth factor 23 (FGF23) expression remains unclear. This study aimed to investigate the involvement of reactive oxygen species (ROS), silent information regulator 1 (SIRT1), and Hairy and Enhancer of Split-1 (HES1) in regulating FGF23 in FGF23 expressing MC3T3-E1 cells. MC3T3-E1 cells treated with ß-glycerophosphate (BGP) resulted in increased Fgf23 expression. Inhibition of ROS formation by inhibition of NADPH oxidase, which is essential for ROS production, did not affect this response to BGP, suggesting ROS is not involved in this process. Moreover, treatment with tert-butyl hydroperoxide (TBHP), a ROS-inducing agent, did not increase Fgf23 expression. This suggests that ROS machinery is not involved in FGF23 stimulation as previously suggested. Nonetheless, inhibition of SIRT1 using Ex527 eliminated the Fgf23 response to BGP, indicating its involvement in FGF23 regulation after BGP treatment. Indeed, activation of SIRT1 using SRT1720 increased Fgf23 expression. Moreover, transcription factor Hes1 was upregulated by BGP treatment, which was diminished when cells were treated with Ex527 implying it is also regulated through SIRT1. These findings suggest the existence of an upstream SIRT1-HES1 axis in the regulation of FGF23 by phosphate, though we were unable to find a role for ROS in this process. Further research should provide insights into phosphate homeostasis and potential therapeutic targets for phosphate-related disorders.

4.
Cardiovasc Res ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38739545

RESUMO

BACKGROUND: Obesity and type 2 diabetes (T2D) are major risk factors for cardiovascular diseases (CVD). Dysregulated pro-apoptotic ceramide synthesis reduces ß-cell insulin secretion, thereby promoting hyperglycemic states which may manifest as T2D. Pro-apoptotic ceramides modulate insulin sensitivity and glucose tolerance while being linked to poor cardiovascular outcomes. Sirtuin-1 (SIRT1) is a NAD + - dependent deacetylase that protects against pancreatic ß-cell dysfunction; however, systemic levels are decreased in obese T2D mice and may promote pro-apoptotic ceramide synthesis and hyperglycemia. Herein, we aimed to assess the effects of restoring circulating SIRT1 levels to prevent metabolic imbalance in obese and diabetic mice. METHODS AND RESULTS: Circulating SIRT1 levels were reduced in obese diabetic mice (db/db) as compared to age-matched non-diabetic db/+ controls. Restoration of SIRT1 plasma levels with recombinant murine SIRT1 for 4-weeks prevented body weight gain, improved glucose tolerance, insulin sensitivity and vascular function in mice models of obesity and T2D. Untargeted lipidomics revealed that SIRT1 restored insulin-secretory function of ß-cells by reducing synthesis and accumulation of pro-apoptotic ceramides. Molecular mechanisms involved direct binding to and deacetylation of Toll-like receptor 4 (TLR4) by SIRT1 in ß-cells thereby decreasing the rate limiting enzymes of sphingolipid synthesis SPTLC1/2 via AKT/NF-κB. Among T2D patients, those with high baseline plasma levels of SIRT1 prior to metabolic surgery displayed restored ß-cell function (HOMA2- ß) and were more likely to have T2D remission during follow-up. CONCLUSION: Acetylation of TLR4 promotes ß-cell dysfunction via ceramide synthesis in T2D, which is blunted by systemic SIRT1 replenishment. Hence, restoration of systemic SIRT1 may provide a novel therapeutic strategy to counteract toxic ceramide synthesis and mitigate cardiovascular complications of T2D.

5.
J Biomed Sci ; 31(1): 49, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38735943

RESUMO

BACKGROUND: The impact of global overconsumption of simple sugars on bone health, which peaks in adolescence/early adulthood and correlates with osteoporosis (OP) and fracture risk decades, is unclear. Mesenchymal stromal/stem cells (MSCs) are the progenitors of osteoblasts/bone-forming cells, and known to decrease their osteogenic differentiation capacity with age. Alarmingly, while there is correlative evidence that adolescents consuming greatest amounts of simple sugars have the lowest bone mass, there is no mechanistic understanding on the causality of this correlation. METHODS: Bioinformatics analyses for energetics pathways involved during MSC differentiation using human cell information was performed. In vitro dissection of normal versus high glucose (HG) conditions on osteo-/adipo-lineage commitment and mitochondrial function was assessed using multi-sources of non-senescent human and murine MSCs; for in vivo validation, young mice was fed normal or HG-added water with subsequent analyses of bone marrow CD45- MSCs. RESULTS: Bioinformatics analyses revealed mitochondrial and glucose-related metabolic pathways as integral to MSC osteo-/adipo-lineage commitment. Functionally, in vitro HG alone without differentiation induction decreased both MSC mitochondrial activity and osteogenesis while enhancing adipogenesis by 8 h' time due to depletion of nicotinamide adenine dinucleotide (NAD+), a vital mitochondrial co-enzyme and co-factor to Sirtuin (SIRT) 1, a longevity gene also involved in osteogenesis. In vivo, HG intake in young mice depleted MSC NAD+, with oral NAD+ precursor supplementation rapidly reversing both mitochondrial decline and osteo-/adipo-commitment in a SIRT1-dependent fashion within 1 ~ 5 days. CONCLUSIONS: We found a surprisingly rapid impact of excessive glucose, a single dietary factor, on MSC SIRT1 function and osteogenesis in youthful settings, and the crucial role of NAD+-a single molecule-on both MSC mitochondrial function and lineage commitment. These findings have strong implications on future global OP and disability risks in light of current worldwide overconsumption of simple sugars.


Assuntos
Glucose , Células-Tronco Mesenquimais , Mitocôndrias , NAD , Osteogênese , Sirtuína 1 , Células-Tronco Mesenquimais/metabolismo , Sirtuína 1/metabolismo , Sirtuína 1/genética , Osteogênese/fisiologia , Camundongos , Humanos , Animais , Mitocôndrias/metabolismo , Glucose/metabolismo , NAD/metabolismo , Diferenciação Celular
6.
Mol Biol Rep ; 51(1): 690, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38796575

RESUMO

INTRODUCTION: Methamphetamine (METH) is an addictive psychostimulant with deleterious effects on the central nervous system. Chronic use of METH in high doses impairs cognition, attention and executive functions, but the underlying mechanisms are still unclear. Sirtuin 1 (SIRT1) is a post-translational regulator that is downregulated following METH neurotoxicity. Melatonin is a neuroprotective hormone that enhances mitochondrial metabolism. Here, we evaluated the effect of melatonin on METH-induced attention deficits disorder and the involvement of the miR-181/SIRT1 axis in melatonin neuroprotection. METHODS AND RESULTS: METH at a dose of 5 mg/kg was injected for 21 consecutive days. The animals were assigned to receive either melatonin or the vehicle after METH injections. Attention levels were evaluated with abject-based attention test. In the prefrontal cortex, the expression levels of miR-181a-5p, SIRT1, p53 and CCAR2, as well as the mtDNA copy numbers were evaluated using qRT-PCR and western blotting. The outcomes revealed that melatonin treatment following METH injections improved METH-induced attention deficits. METH toxicity can be associated with changes in the miR-181/SIRT1 axis, elevated levels of p53 and COXII, and decreased levels of mtDNA in the prefrontal cortex of adult rats. Interestingly, administration of melatonin can improve the expression of these molecules and reduces the toxic effects of METH. CONCLUSION: Melatonin ameliorated the neurotoxicity of METH in the prefrontal cortex and the miR-181/SIRT1 axis is involve in the protective effects of melatonin. However, melatonin can be potentially administrated to improve attention impairment in METH use disorders.


Assuntos
Melatonina , Metanfetamina , MicroRNAs , Córtex Pré-Frontal , Sirtuína 1 , Melatonina/farmacologia , Metanfetamina/toxicidade , Metanfetamina/efeitos adversos , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/efeitos dos fármacos , Animais , Sirtuína 1/metabolismo , Sirtuína 1/genética , MicroRNAs/metabolismo , MicroRNAs/genética , Masculino , Ratos , Fármacos Neuroprotetores/farmacologia , Atenção/efeitos dos fármacos , Ratos Wistar , Estimulantes do Sistema Nervoso Central/farmacologia
7.
Autophagy ; : 1-20, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38726830

RESUMO

The Atg8-family proteins (MAP1LC3/LC3A, LC3B, LC3C, GABARAP, GABARAPL1 and GABARAPL2) play a pivotal role in macroautophagy/autophagy through their ability to help form autophagosomes. Although autophagosomes form in the cytoplasm, nuclear levels of the Atg8-family proteins are significant. Recently, the nuclear/cytoplasmic shuttling of LC3B was shown to require deacetylation of two Lys residues (K49 and K51 in LC3B), which are conserved in Atg8-family proteins. To exit the nucleus, deacetylated LC3B must bind TP53INP2/DOR (tumor protein p53 inducible nuclear protein 2) through interaction with the LC3-interacting region (LIR) of TP53INP2 (TP53INP2LIR). To examine their selectivity for TP53INP2 and the role of the conserved Lys residues in Atg8-family proteins, we prepared the six human Atg8-family proteins and acetylated variants of LC3A and GABARAP for biophysical and structural characterization of their interactions with the TP53INP2LIR. Isothermal titration calorimetry (ITC) experiments demonstrate that this LIR binds preferentially to GABARAP subfamily proteins, and that only acetylation of the second Lys residue reduces binding to GABARAP and LC3A. Crystal structures of complexes with GABARAP and LC3A (acetylated and deacetylated) define a ß-sheet in the TP53INP2LIR that determines the GABARAP selectivity and establishes the importance of acetylation at the second Lys. The in vitro results were confirmed in cells using acetyl-mimetic variants of GABARAP and LC3A to examine nuclear/cytoplasmic shuttling and colocalization with TP53INP2. Together, the results demonstrate that TP53INP2 shows selectivity to the GABARAP subfamily and acetylation at the second Lys of GABARAP and LC3A disrupts key interactions with TP53INP2 required for their nuclear/cytoplasmic shuttling.

8.
Heliyon ; 10(10): e30984, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38803993

RESUMO

Aims and objectives: Astragaloside IV (AS-IV) has been found to possess anti-oxidative, anti-inflammatory, and anti-apoptotic properties, but its effect on atrial fibrosis is yet to be determined. This research investigates the protective role of AS-IV in angiotensin II (Ang II)-induced atrial fibrosis and atrial fibrillation (AF). Methods: C57BL/6 male mice aged 8-10 weeks (n = 40) were subcutaneously administered Ang II (2.0 mg/kg/day) or saline, with AS-IV (80 mg/kg) intraperitoneally administered 2 h before Ang II infusion for 4 weeks. Biochemical, histological, and morphological analyses were carried out. Using transesophageal burst pacing, AF was generated in vivo. Results: Here, we report that AS-IV treatment inhibited Ang II-induced AF development in mice (58 ± 5.86 vs 15.13 ± 2.16 %, p < 0.001). Ang II + AS-IV therapy was effective in reducing the atrial fibrotic area and decreasing the increase in smooth muscle alpha-actin (α-SMA)-positive myofibroblasts brought on by Ang II treatment (fibrotic area: 26.25 ± 3.81 vs 8.62 ± 1.83 %, p < 0.001 and α-SMA: 65.62 ± 10.63 vs 17.25 ± 1.78 %, p < 0.001). The reactive oxygen species (ROS) production was reduced by pretreatment with Ang II + AS-IV (9.20 ± 0.92 vs 2.63 ± 0.22 %/sec, p < 0.001). In addition, Ang II + AS-IV treatment suppressed oxidative stress in Ang II-induced atrial fibrosis (malondialdehyde: 701.78 ± 85.01 vs 504.07 ± 25.62 pmol/mg protein, p < 0.001; superoxide dismutase: 13.82 ± 1.25 vs 29.54 ± 2.45 U/mg protein, p < 0.001 and catalase: 11.43 ± 1.19 vs 20.83 ± 3.29 U/mg protein, p < 0.001, respectively). Moreover, Ang II + AS-IV decreased the expression of α-SMA, collagen III and collagen I (3.32 ± 0.53 vs 1.41 ± 0.20 fold, p < 0.001; 3.41 ± 0.55 vs 1.48 ± 0.18 fold, p < 0.001; 2.34 ± 0.55 vs 0.99 ± 0.17 fold, p < 0.001, respectively) while increasing the protein expression of sirtuin 1 (SIRT1), peroxisome proliferator-activated receptor-gamma coactivator-1 alpha (PGC-1α), and fibronectin type III domain-containing protein 5 (FNDC5) in Ang II-treated mice (0.22 ± 0.02 vs 0.57 ± 0.08 fold, p < 0.001; 0.28 ± 0.04 vs 0.72 ± 0.05 fold, p < 0.001; 0.38 ± 0.03 vs 0.68 ± 0.06 fold, p < 0.001, respectively). Conclusion: Our data led us to speculate that AS-IV may protect against Ang II-induced atrial fibrosis and AF via upregulation of the SIRT1/PGC-1α/FNDC5 pathway.

9.
Clin Exp Nephrol ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587753

RESUMO

The time for diabetic nephropathy (DN) to progress from mild to severe is long. Thus, methods to continuously repress DN are required to exert long-lasting effects mediated through epigenetic regulation. In this study, we demonstrated the ability of nicotinamide adenine dinucleotide (NAD) and its metabolites to reduce albuminuria through Sirt1- or Nampt-dependent epigenetic regulation. We previously reported that proximal tubular Sirt1 was lowered before glomerular Sirt1. Repressed glomerular Sirt1 was found to epigenetically elevate Claudin-1. In addition, we reported that proximal tubular Nampt deficiency epigenetically augmented TIMP-1 levels in Sirt6-mediated pathways, leading to type-IV collagen deposition and diabetic fibrosis. Altogether, we propose that the Sirt1/Claudin-1 axis may be crucial in the onset of albuminuria at the early stages of DN and that the Nampt/Sirt6/TIMP-1 axis promotes diabetic fibrosis in the middle to late stages of DN. Finally, administration of NMN, an NAD precursor, epigenetically potentiates the regression of the onset of DN to maintain Sirt1 and repress Claudin-1 in podocytes, suggesting the potential use of NAD metabolites as epigenetic medications for DN.

10.
PeerJ ; 12: e17094, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38563003

RESUMO

Liver disease is a common and serious threat to human health. The progression of liver diseases is influenced by many physiologic processes, including oxidative stress, inflammation, bile acid metabolism, and autophagy. Various factors lead to the dysfunction of these processes and basing on the different pathogeny, pathology, clinical manifestation, and pathogenesis, liver diseases are grouped into different categories. Specifically, Sirtuin1 (SIRT1), a member of the sirtuin protein family, has been extensively studied in the context of liver injury in recent years and are confirmed the significant role in liver disease. SIRT1 has been found to play a critical role in regulating key processes in liver injury. Further, SIRT1 seems to cause divers outcomes in different types of liver diseases. Recent studies have showed some therapeutic strategies involving modulating SIRT1, which may bring a novel therapeutic target. To elucidate the mechanisms underlying the role of sirtuin1 in liver injury and its potentiality as a therapeutic target, this review outlines the key signaling pathways associated with sirtuin1 and liver injury, and discusses recent advances in therapeutic strategies targeting sirtuin1 in liver diseases.


Assuntos
Hepatopatias , Sirtuína 1 , Humanos , Sirtuína 1/genética , Hepatopatias/terapia , Inflamação , Transdução de Sinais
11.
World J Gastroenterol ; 30(11): 1588-1608, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38617450

RESUMO

BACKGROUND: Acute liver failure (ALF) has a high mortality with widespread hepatocyte death involving ferroptosis and pyroptosis. The silent information regulator sirtuin 1 (SIRT1)-mediated deacetylation affects multiple biological processes, including cellular senescence, apoptosis, sugar and lipid metabolism, oxidative stress, and inflammation. AIM: To investigate the association between ferroptosis and pyroptosis and the upstream regulatory mechanisms. METHODS: This study included 30 patients with ALF and 30 healthy individuals who underwent serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) testing. C57BL/6 mice were also intraperitoneally pretreated with SIRT1, p53, or glutathione peroxidase 4 (GPX4) inducers and inhibitors and injected with lipopolysaccharide (LPS)/D-galactosamine (D-GalN) to induce ALF. Gasdermin D (GSDMD)-/- mice were used as an experimental group. Histological changes in liver tissue were monitored by hematoxylin and eosin staining. ALT, AST, glutathione, reactive oxygen species, and iron levels were measured using commercial kits. Ferroptosis- and pyroptosis-related protein and mRNA expression was detected by western blot and quantitative real-time polymerase chain reaction. SIRT1, p53, and GSDMD were assessed by immunofluorescence analysis. RESULTS: Serum AST and ALT levels were elevated in patients with ALF. SIRT1, solute carrier family 7a member 11 (SLC7A11), and GPX4 protein expression was decreased and acetylated p5, p53, GSDMD, and acyl-CoA synthetase long-chain family member 4 (ACSL4) protein levels were elevated in human ALF liver tissue. In the p53 and ferroptosis inhibitor-treated and GSDMD-/- groups, serum interleukin (IL)-1ß, tumour necrosis factor alpha, IL-6, IL-2 and C-C motif ligand 2 levels were decreased and hepatic impairment was mitigated. In mice with GSDMD knockout, p53 was reduced, GPX4 was increased, and ferroptotic events (depletion of SLC7A11, elevation of ACSL4, and iron accumulation) were detected. In vitro, knockdown of p53 and overexpression of GPX4 reduced AST and ALT levels, the cytostatic rate, and GSDMD expression, restoring SLC7A11 depletion. Moreover, SIRT1 agonist and overexpression of SIRT1 alleviated acute liver injury and decreased iron deposition compared with results in the model group, accompanied by reduced p53, GSDMD, and ACSL4, and increased SLC7A11 and GPX4. Inactivation of SIRT1 exacerbated ferroptotic and pyroptotic cell death and aggravated liver injury in LPS/D-GalN-induced in vitro and in vivo models. CONCLUSION: SIRT1 activation attenuates LPS/D-GalN-induced ferroptosis and pyroptosis by inhibiting the p53/GPX4/GSDMD signaling pathway in ALF.


Assuntos
Falência Hepática Aguda , Sirtuína 1 , Animais , Humanos , Camundongos , Gasderminas , Ferro , Lipopolissacarídeos , Falência Hepática Aguda/induzido quimicamente , Camundongos Endogâmicos C57BL , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Sirtuína 1/genética , Proteína Supressora de Tumor p53
12.
Folia Histochem Cytobiol ; 62(1): 13-24, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38563049

RESUMO

INTRODUCTION: During sepsis, the kidney is one of the most vulnerable organs. Sepsis-associated acute kidney injury (S-AKI) is hallmarked by renal inflammation, apoptosis, and oxidative injury. Ginsenoside Rg1 (Rg1) is a natural product that possesses abundant pharmacological actions and protects against many sepsis-related diseases. Nevertheless, its role and related mechanism in S-AKI remain to be determined. MATERIALS AND METHODS: S-AKI was induced using lipopolysaccharide (LPS, 10 mg/kg) via a single intraperitoneal injection. Rg1 (200 mg/kg) was intraperitoneally administered for 3 consecutive days before LPS treatment. For histopathological examination, murine kidney tissues were stained with hematoxylin and eosin. Tubular injury score was calculated to evaluate kidney injury. Serum creatinine and BUN levels were measured for assessing renal dysfunction. The levels and activities of oxidative stress markers (MDA, 4-HNE, PC, GSH, SOD, and CAT) in renal tissue were measured by corresponding kits. Renal cell apoptosis was detected by TUNEL staining. The protein levels of apoptosis-related markers (Bcl-2, Bax, and Cleaved caspase-3), proinflammatory factors, SIRT1, IκBα, p-NF-κB p65, and NF-κB p65 in kidneys were determined using western blotting. Immunofluorescence staining was employed to assess p-NF-κB p65 expression in renal tissues. RESULTS: LPS-induced injury of kidneys and renal dysfunction in mice were ameliorated by Rg1. Rg1 also impeded LPS-evoked renal cell apoptosis in kidneys. Moreover, Rg1 attenuated LPS-triggered inflammation and oxidative stress in kidneys by inhibiting proinflammatory cytokine release, enhancing antioxidant levels and activities, and reducing lipid peroxidation. However, all these protective effects of Rg1 in LPS-induced AKI mice were reversed by EX527, an inhibitor of sirtuin 1 (SIRT1). Mechanistically, Rg1 upregulated SIRT1 protein expression, increased SIRT1 activity, and inactivated NF-κB signaling in the kidney of LPS-induced AKI mice, which was also reversed by EX527. CONCLUSIONS: Rg1 ameliorates LPS-induced kidney injury and suppresses renal inflammation, apoptosis, and oxidative stress in mice via regulating the SIRT1/NF-κB signaling.


Assuntos
Injúria Renal Aguda , Ginsenosídeos , Sepse , Animais , Camundongos , NF-kappa B/metabolismo , NF-kappa B/farmacologia , NF-kappa B/uso terapêutico , Lipopolissacarídeos/toxicidade , Sirtuína 1/metabolismo , Sirtuína 1/farmacologia , Sirtuína 1/uso terapêutico , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Sepse/induzido quimicamente , Sepse/complicações , Sepse/tratamento farmacológico , Apoptose
13.
Elife ; 122024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38567911

RESUMO

The antibiotic heliomycin (resistomycin), which is generated from Streptomyces resistomycificus, has multiple activities, including anticancer effects. Heliomycin was first described in the 1960s, but its clinical applications have been hindered by extremely low solubility. A series of 4-aminomethyl derivatives of heliomycin were synthesized to increase water solubility; studies showed that they had anti-proliferative effects, but the drug targets remained unknown. In this study, we conducted cellular thermal shift assays (CETSA) and molecular docking simulations to identify and validate that heliomycin and its water-soluble derivative, 4-(dimethylaminomethyl)heliomycin (designated compound 4-dmH) engaged and targeted with sirtuin-1 (SIRT1) in p53-functional SAS and p53-mutated HSC-3 oral cancer cells. We further addressed the cellular outcome of SIRT1 inhibition by these compounds and found that, in addition to SIRT1, the water-soluble 4-dmH preferentially targeted a tumor-associated NADH oxidase (tNOX, ENOX2). The direct binding of 4-dmH to tNOX decreased the oxidation of NADH to NAD+ which diminished NAD+-dependent SIRT1 deacetylase activity, ultimately inducing apoptosis and significant cytotoxicity in both cell types, as opposed to the parental heliomycin-induced autophagy. We also observed that tNOX and SIRT1 were both upregulated in tumor tissues of oral cancer patients compared to adjacent normal tissues, suggesting their clinical relevance. Finally, the better therapeutic efficacy of 4-dmH was confirmed in tumor-bearing mice, which showed greater tNOX and SIRT1 downregulation and tumor volume reduction when treated with 4-dmH compared to heliomycin. Taken together, our in vitro and in vivo findings suggest that the multifaceted properties of water-soluble 4-dmH enable it to offer superior antitumor value compared to parental heliomycin, and indicated that it functions through targeting the tNOX-NAD+-SIRT1 axis to induce apoptosis in oral cancer cells.


Assuntos
Neoplasias Bucais , Compostos Policíclicos , Sirtuína 1 , Humanos , Animais , Camundongos , Sirtuína 1/metabolismo , Linhagem Celular Tumoral , NAD/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Simulação de Acoplamento Molecular , Apoptose , Neoplasias Bucais/tratamento farmacológico
14.
Acta Neuropathol Commun ; 12(1): 62, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637827

RESUMO

BACKGROUND: Helsmoortel-Van der Aa syndrome is a neurodevelopmental disorder in which patients present with autism, intellectual disability, and frequent extra-neurological features such as feeding and gastrointestinal problems, visual impairments, and cardiac abnormalities. All patients exhibit heterozygous de novo nonsense or frameshift stop mutations in the Activity-Dependent Neuroprotective Protein (ADNP) gene, accounting for a prevalence of 0.2% of all autism cases worldwide. ADNP fulfills an essential chromatin remodeling function during brain development. In this study, we investigated the cerebellum of a died 6-year-old male patient with the c.1676dupA/p.His559Glnfs*3 ADNP mutation. RESULTS: The clinical presentation of the patient was representative of the Helsmoortel-Van der Aa syndrome. During his lifespan, he underwent two liver transplantations after which the child died because of multiple organ failure. An autopsy was performed, and various tissue samples were taken for further analysis. We performed a molecular characterization of the cerebellum, a brain region involved in motor coordination, known for its highest ADNP expression and compared it to an age-matched control subject. Importantly, epigenome-wide analysis of the ADNP cerebellum identified CpG methylation differences and expression of multiple pathways causing neurodevelopmental delay. Interestingly, transcription factor motif enrichment analysis of differentially methylated genes showed that the ADNP binding motif was the most significantly enriched. RNA sequencing of the autopsy brain further identified downregulation of the WNT signaling pathway and autophagy defects as possible causes of neurodevelopmental delay. Ultimately, label-free quantification mass spectrometry identified differentially expressed proteins involved in mitochondrial stress and sirtuin signaling pathways amongst others. Protein-protein interaction analysis further revealed a network including chromatin remodelers (ADNP, SMARCC2, HDAC2 and YY1), autophagy-related proteins (LAMP1, BECN1 and LC3) as well as a key histone deacetylating enzyme SIRT1, involved in mitochondrial energy metabolism. The protein interaction of ADNP with SIRT1 was further biochemically validated through the microtubule-end binding proteins EB1/EB3 by direct co-immunoprecipitation in mouse cerebellum, suggesting important mito-epigenetic crosstalk between chromatin remodeling and mitochondrial energy metabolism linked to autophagy stress responses. This is further supported by mitochondrial activity assays and stainings in patient-derived fibroblasts which suggest mitochondrial dysfunctions in the ADNP deficient human brain. CONCLUSION: This study forms the baseline clinical and molecular characterization of an ADNP autopsy cerebellum, providing novel insights in the disease mechanisms of the Helsmoortel-Van der Aa syndrome. By combining multi-omic and biochemical approaches, we identified a novel SIRT1-EB1/EB3-ADNP protein complex which may contribute to autophagic flux alterations and impaired mitochondrial metabolism in the Helsmoortel-Van der Aa syndrome and holds promise as a new therapeutic target.


Assuntos
Transtorno Autístico , Deficiência Intelectual , Masculino , Criança , Animais , Camundongos , Humanos , Deficiência Intelectual/genética , Transtorno Autístico/genética , Sirtuína 1/genética , Sirtuína 1/metabolismo , Genes Mitocondriais , Proteínas de Homeodomínio/genética , Cerebelo/metabolismo , Autopsia , Metilação , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
15.
Talanta ; 274: 125975, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38599114

RESUMO

Sirtuin1 (SIRT1), an NAD+-dependent histone deacetylase, plays a crucial role in regulating molecular signaling pathways. Recently, inhibition of SIRT1 rather than its activation shows the therapeutic potential for central nervous system disorder, however, the discovered SIRT1 inhibitors remains limited. In this work, a dual recognition-based strategy was developed to screen SIRT1 inhibitors from natural resources in situ. This approach utilized a Ni-modified metal-organic framework (Ni@Tyr@UiO-66-NH2) along with cell lysate containing an engineered His-tagged SIRT1 protein, eliminating the need for purified proteins, pure compounds, and protein immobilization. The high-performance Ni@Tyr@UiO-66-NH2 was synthesized by modifying the surface of UiO-66-NH2 with Ni2+ ions to specifically capture His-tagged SIRT1 while persevering its enzyme activity. By employing dual recognition, in which Ni@Tyr@UiO-66-NH2 recognized SIRT1 and SIRT1 recognized its ligands, the process of identifying SIRT1 inhibitors from complex matrix was vastly streamlined. The developed method allowed the efficient discovery of 16 natural SIRT1 inhibitors from Chinese herbs. Among them, 6 compounds were fully characterized, and suffruticosol A was found to have an excellent IC50 value of 0.95 ±â€¯0.12 µM. Overall, an innovative dual recognition-based strategy was proposed to efficiently identify SIRT1 inhibitors in this study, offering scientific clues for the development of drugs targeting CNS disorders.


Assuntos
Medicamentos de Ervas Chinesas , Estruturas Metalorgânicas , Níquel , Sirtuína 1 , Sirtuína 1/antagonistas & inibidores , Sirtuína 1/metabolismo , Níquel/química , Estruturas Metalorgânicas/química , Humanos , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Avaliação Pré-Clínica de Medicamentos
16.
World J Stem Cells ; 16(2): 163-175, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38455103

RESUMO

BACKGROUND: In vitro expansion to increase numbers of hematopoietic stem cells (HSCs) in cord blood could improve clinical efficacy of this vital resource. Nicotinamide (NAM) can promote HSC expansion ex vivo, but its effect on hematopoietic stem and progenitor cells (HSPCs, CD34+CD38) and functional subtypes of HSCs - short-term repopulating HSCs (ST-HSCs, CD34+CD38CD45RACD49f+) and long-term repopulating HSCs (LT-HSCs, CD34+CD38CD45RACD49f+CD90+) is not yet known. As a sirtuin 1 (SIRT1) inhibitor, NAM participates in regulating cell adhesion, polarity, migration, proliferation, and differentiation. However, SIRT1 exhibits dual effects by promoting or inhibiting differentiation in different tissues or cells. We propose that the concentration of NAM may influence proliferation, differentiation, and SIRT1 signaling of HSCs. AIM: To evaluate the effects and underlying mechanisms of action of different concentrations of NAM on HSC proliferation and differentiation. METHODS: CD34+ cells were purified from umbilical cord blood using MacsCD34 beads, and cultured for 10-12 d in a serum-free medium supplemented with cytokines, with different concentrations of NAM added according to experimental requirements. Flow cytometry was used to detect phenotype, cell cycle distribution, and apoptosis of the cultured cells. Real-time polymerase chain reaction was used to detect the transcription levels of target genes encoding stemness-related factors, chemokines, components of hypoxia pathways, and antioxidant enzymes. Dichloro-dihydro-fluorescein diacetate probes were used to evaluate intracellular production of reactive oxygen species (ROS). Determination of the effect of different culture conditions on the balance of cytokine by cytometric bead array. RESULTS: Compared with the control group, the proportion and expansion folds of HSPCs (CD34+CD38) incubated with 5 mmol/L or 10 mmol/L NAM were significantly increased (all P < 0.05). The ST-HSCs ratio and fold expansion of the 5 mmol/L NAM group were significantly higher than those of the control and 10 mmol/L NAM groups (all P < 0.001), whereas the LT-HSCs ratio and fold expansion of the 10 mmol/L NAM group were significantly higher than those of the other two groups (all P < 0.05). When the NAM concentration was > 10 mmol/L, cell viability significantly decreased. In addition, compared with the 5 mmol/L NAM group, the proportion of apoptotic cells in the 10 mmol/L NAM group increased and the proportion of cells in S and G2 phase decreased. Compared with the 5 mmol/L NAM group, the HSCs incubated with 10 mmol/L NAM exhibited significantly inhibited SIRT1 expression, increased intracellular ROS content, and downregulated expression of genes encoding antioxidant enzymes (superoxide dismutase 1, peroxiredoxin 1). CONCLUSION: Low concentrations (5 mmol/L) of NAM can better regulate the balance between proliferation and differentiation, thereby promoting expansion of HSCs. These findings allow adjustment of NAM concentrations according to expansion needs.

17.
Nutrients ; 16(5)2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38474770

RESUMO

Sepsis, a leading cause of death worldwide, is a harmful inflammatory condition that is primarily caused by an endotoxin released by Gram-negative bacteria. Effective targeted therapeutic strategies for sepsis are lacking. In this study, using an in vitro and in vivo mouse model, we demonstrated that CM1, a derivative of the natural polyphenol chrysin, exerts an anti-inflammatory effect by inducing the expression of the ubiquitin-editing protein TNFAIP3 and the NAD-dependent deacetylase sirtuin 1 (SIRT1). Interestingly, CM1 attenuated the Toll-like receptor 4 (TLR4)-induced production of inflammatory cytokines by inhibiting the extracellular-signal-regulated kinase (ERK)/MAPK and nuclear factor kappa B (NF-κB) signalling pathways. In addition, CM1 induced the expression of TNFAIP3 and SIRT1 on TLR4-stimulated primary macrophages; however, the anti-inflammatory effect of CM1 was abolished by the siRNA-mediated silencing of TNFAPI3 or by the genetic or pharmacologic inhibition of SIRT1. Importantly, intravenous administration of CM1 resulted in decreased susceptibility to endotoxin-induced sepsis, thereby attenuating the production of pro-inflammatory cytokines and neutrophil infiltration into the lung compared to control mice. Collectively, these findings demonstrate that CM1 has therapeutic potential for diverse inflammatory diseases, including sepsis.


Assuntos
Flavonoides , Sepse , Choque Séptico , Camundongos , Animais , Sirtuína 1/metabolismo , Receptor 4 Toll-Like/metabolismo , Lipopolissacarídeos/farmacologia , NF-kappa B/metabolismo , Choque Séptico/tratamento farmacológico , Endotoxinas , Citocinas/metabolismo , Sepse/tratamento farmacológico , Anti-Inflamatórios/uso terapêutico
18.
Drug Des Devel Ther ; 18: 819-827, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38511202

RESUMO

Introduction: Sirtuins (SIRTs) comprise a group of histone deacetylase enzymes crucial for regulating metabolic pathways and contributing significantly to various disease mechanisms. Sirtuin 1 (SIRT1), among the seven known mammalian homologs, is extensively investigated and understood, playing a key role in neurodegenerative disorders and cancer. This study focuses on potential as a therapeutic target for conditions such as Parkinson's disease (PD), Huntington's disease (HD), and Alzheimer's disease (AD). Methods: Utilizing positron emission tomography (PET) as a noninvasive molecular imaging modality, we aimed to expedite the validation of a promising sirtuin 1 inhibitor for clinical trials. However, the absence of a validated sirtuin 1 PET radiotracer impedes clinical translation. We present the development of [11C]1, and 11C-labeled benzoxazine-based derivative, as a lead imaging probe. The radiosynthesis of [11C]1 resulted in a radiochemical yield of 31 ± 4%. Results: Baseline studies demonstrated that [11C]1 exhibited excellent blood-brain barrier (BBB) penetration capability, with uniform accumulation throughout various brain regions. Self-blocking studies revealed that introducing an unlabeled compound 1, effectively blocking sirtuin 1, led to a substantial reduction in whole-brain uptake, emphasizing the in vivo specificity of [11C]1 for sirtuin 1. Discussion: The development of [11C]1 provides a valuable tool for noninvasive imaging investigations in rodent models with aberrant sirtuin 1 expression. This novel radiotracer holds promise for advancing our understanding of sirtuin 1's role in disease mechanisms and may facilitate the validation of sirtuin 1 inhibitors in clinical trials.


Assuntos
Benzoxazinas , Radioisótopos de Carbono , Sirtuína 1 , Animais , Sirtuína 1/metabolismo , Benzoxazinas/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Neuroimagem/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Mamíferos/metabolismo
19.
Pharmacol Res ; 202: 107141, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38490314

RESUMO

Osteoarthritis (OA) is a degenerative disease characterised by articular cartilage destruction, and its complex aetiology contributes to suboptimal clinical treatment outcomes. A close association exists between glucose metabolism dysregulation and OA pathogenesis. Owing to the unique environment of low oxygen and glucose concentrations, chondrocytes rely heavily on their glycolytic capacity, exhibiting distinct spatiotemporal differences. However, under pathological stimulation, chondrocytes undergo excessive glycolytic activity while mitochondrial respiration and other branches of glucose metabolism are compromised. This metabolic change induces cartilage degeneration by reprogramming the inflammatory responses. Sirtuins, a highly conserved family of nicotinamide adenine dinucleotide (NAD+)-dependent deacetylases, regulate glucose metabolism in response to energy fluctuations in different cellular compartments,alleviating metabolic stress. SIRT1, the most extensively studied sirtuin, participates in maintaining glucose homeostasis in almost all key metabolic tissues. While actively contributing to the OA progression and displaying diverse biological effects in cartilage protection, SIRT1's role in regulating glucose metabolism in chondrocytes has not received sufficient attention. This review focuses on discussing the beneficial role of SIRT1 in OA progression from a metabolic regulation perspective based on elucidating the primary characteristics of chondrocyte glucose metabolism. We also summarise the potential mechanisms and therapeutic strategies targeting SIRT1 in chondrocytes to guide clinical practice and explore novel therapeutic directions.


Assuntos
Glucose , Osteoartrite , Sirtuína 1 , Animais , Humanos , Cartilagem Articular/patologia , Glucose/metabolismo , Osteoartrite/metabolismo , Sirtuína 1/metabolismo , Sirtuínas/metabolismo
20.
Front Endocrinol (Lausanne) ; 15: 1356612, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38529393

RESUMO

Introduction: Sirtuin 1 (SIRT1) is known to be involved in sensing cellular energy levels and regulating energy metabolism. This study aimed to evaluate fasting serum SIRT1 levels in healthy children, and to analyse the influence of age, sex, puberty, body weight, height, and diet on its concentration. Methods: 47 healthy children aged 4-14 with weight and height within normal range and no chronic disease were included into the study. Fasting serum SIRT1 concentrations were estimated by Enzyme Linked Immunosorbent Assay (ELISA). Results: Results showed that serum SIRT1 concentrations in healthy children did not differ with respect to sex, age, height, weight and puberty. Whereas, it appeared that a higher frequency of fruits, vegetables and dairy products consumption was associated with an increase in serum SIRT1 levels. Discussion: Studying SIRT1 in the context of children's health may have implications for a broader understanding of growth processes, pubertal development, metabolic disorders and nutrition.


Assuntos
Puberdade , Sirtuína 1 , Criança , Humanos , Índice de Massa Corporal , Peso Corporal , Jejum , Puberdade/fisiologia , Pré-Escolar , Adolescente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...