Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Environ Technol ; : 1-16, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39038436

RESUMO

The reuse of by-products has become increasingly important as a means of minimising the consumption of natural resources and reducing waste disposal. This study examines the potential reuse of steel slag for soil stabilisation, with benefits such as conserving natural resources and mitigating the greenhouse gas emissions associated with the production of conventional stabilising agents. It focuses on evaluating the effect of pozzolanic reactions on the strength and stiffness of both loess silt and silt-bentonite mixtures. The experimental tests included the physical characterisation of granular materials, reactivity tests of the pozzolanicity of soil mixtures, compaction tests, unconfined compression tests, and hydraulic conductivity tests. The impact of the curing period was also analysed to quantify the effects of natural cementation and the development of hydrogels within soil pores on the compacted soil properties. The findings suggest that adding steel slag can significantly increase the strength and the stiffness of compacted loess silts by over 300% and 500%, respectively, after 56 days of curing, substantially reducing the hydraulic conductivity of granular materials, such as the tested silt, as hydrogels partially occupy the pores available for liquid flow. It should be noted that the chemical reactions during hydrogel formation may hinder the free expansion of clay mixtures and release Ca2+ ions, thereby counteracting the expected reduction in hydraulic conductivity when bentonite is added to compacted earthen barriers.

2.
Plants (Basel) ; 13(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38732413

RESUMO

Conobea scoparioides (Plantaginaceae) is an herbaceous plant known as "pataqueira" that grows wild in seasonally wet areas of the Amazon region. It is used for aromatic baths and anti-protozoan remedies by the Brazilian Amazon native people. The main volatile compounds identified in the essential oil of "Pataqueira" were the phenolic monoterpenes thymol and thymol methyl ether and their precursors, the monoterpene hydrocarbons α-phellandrene and p-cymene. A hydrotalcite synthesized from blast-furnace slag exhibited a 3:2 (Mg/Al) molar ratio, and this layered double hydroxide (LDH) was evaluated as a catalyst in converting the main monoterpenes of the "Pataqueira" oil. This action significantly increased the thymol content, from 41% to 95%, associated with the percentual reduction in other main components, such as thymol methyl ether, α-phellandrene, and p-cymene. The LDH reaction showed a strong tendency towards producing hydroxylated derivatives, and its behavior was similar to the hypothetical plant biosynthetic pathway, which leads to the production of the monoterpenes of "Pataqueira" oil. Thymol and its derivatives are potent antiseptics applied in pharmaceutical and hygienic products as antibacterial, antifungal, and antioxidant properties, among others. The present work reports a natural source with a high thymol content in aromatic plants from the Amazon, with evident economic value.

3.
Materials (Basel) ; 17(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38591511

RESUMO

Binders formulated with activated alkali materials to replace Portland cement, which has high polluting potential due to CO2 emissions in its manufacture, have increasingly been developed. The objective of this study is to evaluate the main properties of activated alkali materials (AAM) produced by blast furnace slag, fly ash, and metakaolin. Initially, binders were characterized by their chemical, mineralogical and granulometric composition. Later, specimens were produced, with molarity variation between 4.00 and 5.50, using the binders involved in the research. In preparing the activating solution, sodium hydroxide and silicate were used. The evaluated properties of AAM were consistency, viscosity, water absorption, density, compressive strength (7 days of cure), calorimetry, mineralogical analysis by X-ray diffraction, and morphological analysis by scanning electron microscopy. The results of evaluation in the fresh state demonstrate that metakaolin has the lowest workability indices of the studied AAM. The results observed in the hardened state indicate that the metakaolin activation process is optimized with normal cure and molarity of 4.0 and 4.5 mol/L, obtaining compressive strength results after 7 days of curing of approximately 30 MPa. The fly ash activation process is the least intense among the evaluated binders. This can be seen from the absence of phases formed in the XRD in the compositions containing fly ash as binder. Unlike blast furnace slag and metakaolin, the formation of sodalite, faujasite or tobermorite is not observed. Finally, the blast furnace slag displays more intense reactivity during thermal curing, obtaining compressive strength results after 7 days of curing of around 25 MPa. This is because the material's reaction kinetics are low but can be increased in an alkaline environment, and by the effect of temperature. From these results, it is concluded that each precursor has its own activation mechanism, observed by the techniques used in this research. From the results obtained in this study, it is expected that the alkaline activation process of the types of binders evaluated herein will become a viable alternative for replacing Portland cement, thus contributing to cement technology and other cementitious materials.

4.
Molecules ; 29(2)2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38257307

RESUMO

In this study, we address the ecological challenges posed by automotive battery recycling, a process notorious for its environmental impact due to the buildup of hazardous waste like foundry slag. We propose a relatively cheap and safe solution for lead removal and recovery from samples of this type of slag. The analysis of TCLP extracts revealed non-compliance with international regulations, showing lead concentrations of up to 5.4% primarily in the form of anglesite (PbSO4), as detected by XRF/XRD. We employed deep eutectic solvents (DES) as leaching agents known for their biodegradability and safety in hydrometallurgical processing. Five operational variables were systematically evaluated: sample type, solvent, concentration, temperature, and time. Using a solvent composed of choline chloride and glycerin in a 2:1 molar ratio, we achieved 95% lead dissolution from acidic samples at 90 °C, with agitation at 470 rpm, a pulp concentration of 5%, and a 5 h duration. Furthermore, we successfully recovered 55% of the lead in an optimized solution using an electrowinning cell. This research demonstrates the ability of DES to decontaminate slag, enabling compliance with regulations, the recovery of valuable metals, and new possibilities for the remaining material.

5.
Materials (Basel) ; 16(20)2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37895659

RESUMO

In this study, the effect on the flowability, compressive strength, absorption, sorptivity, and carbonation resistance of concrete with different copper slag (CS) replacement ratios was investigated. For this research, four concrete mixes with different percentages of CS were made (0%, 10%, 20%, and 30% of CS as replacement of cement by volume). In addition, the microstructure was analyzed by X-ray diffraction (XRD), scanning electron microscope (SEM), and thermogravimetric analysis (TG-DTG). The results shows that the incorporation of CS reduces the workability and compressive strength of the mixtures, being more significant in concrete with 30% CS. The carbonation depth of concrete with CS increases monotonically with increasing CS. In addition, the compressive strength of the carbonated (20% and 30% CS) concretes show a loss of compressive strength at 90 days of exposure when compared to their water-cured counterparts. The use of low percentages of CS does not generate a decrease in workability and its mechanical effect is not significant at prolonged ages, so the use of this waste as SCM in percentages close to 10% is a viable alternative to the sustainability of concrete and the management of this residue.

6.
Materials (Basel) ; 16(10)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37241446

RESUMO

Concrete is the most used construction material, needing large quantities of Portland cement. Unfortunately, Ordinary Portland Cement production is one of the main generators of CO2, which pollutes the atmosphere. Today, geopolymers are an emerging building material generated by the chemical activity of inorganic molecules without the Portland Cement addition. The most common alternative cementitious agents used in the cement industry are blast-furnace slag and fly ash. In the present work, the effect of 5 wt.% µ-limestone in mixtures of granulated blast-furnace slag and fly ash activated with sodium hydroxide (NaOH) at different concentrations was studied to evaluate the physical properties in the fresh and hardened states. The effect of µ-limestone was explored through XRD, SEM-EDS, atomic absorption, etc. The addition of µ-limestone increased the compressive strength reported values from 20 to 45 MPa at 28 days. It was found by atomic absorption that the CaCO3 of the µ-limestone dissolved in NaOH, precipitating Ca(OH)2 as the reaction product. SEM-EDS analysis showed a chemical interaction between C-A-S-H- and N-A-S-H-type gels with Ca(OH)2, forming (N, C)A-S-H- and C-(N)-A-S-H-type gels, improving mechanical performance and microstructural properties. The addition of µ-limestone appeared like a promising and cheap alternative for enhancing the properties of low-molarity alkaline cement since it helped exceed the 20 MPa strength recommended by current regulations for conventional cement.

7.
Molecules ; 27(16)2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-36014533

RESUMO

Hybrid alkali-activated cements (HAACs), also known as cements with high percentages of alkali-activated supplementary materials, are alternative cements that combine the advantages of ordinary Portland cement (OPC) and alkali-activated systems. These cements are composed of a minimum of 70% precursor material and a maximum of 30% OPC mixed with an alkaline activator. This article evaluates the corrosion performance of reinforced HAAC concrete based on fly ash (FA) under exposure to chlorides (FA/OPC, 80/20). Its performance is compared with that of a binary alkali-activated cement (AAC) based on FA and granulated blast furnace slag (GBFS) (FA/GBFS, 80/20). The tests performed on the concrete matrix correspond to the compressive strength and permeability to chloride ions. Using accelerated corrosion techniques (impressed voltage) and electrochemical tests after immersion in 3.5% NaCl, the progress of the corrosive process in the reinforcing steel is evaluated. The FA/OPC exhibit a better corrosion performance than the FA/GBFS concrete. At the end of the exposure to chlorides, the FA/OPC hybrid concrete presents the best performance, with a 49% lower corrosion rate than that of the FA/GBFS. Note that according to the polarization curves, the values of the proportionality constant B in the alkaline-activated concretes differ from the values recommended for concrete based on OPC.

8.
Materials (Basel) ; 15(7)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35407755

RESUMO

The deterioration of the refractory lining represents a significant problem for the smooth operation in the ferroalloys industry, particularly in the production of silicomanganese, due to the periodic requirements of substitution of the damaged refractory. Within this context, magnesia refractories are commonly employed in the critical zones of the furnaces used in silicomanganese production since the slag involved in the process has a basic character. The behavior of MgO-ZrO2 ceramic composites with different ZrO2 nanoparticles (0, 1, 3, and 5 wt.%) contents in the presence of silicomanganese slags is proposed in this manuscript. XPS, XRD and SEM-EDX were used to evaluate the properties of the ceramic composite against the silicomanganese slag. The static corrosion test was used to evaluate the corrosion of the refractory. Results suggest that corrosion is controlled by the change in slag viscosity due to the reaction between CaZrO3 and the melted slag. Besides, ZrO2 nanoparticles located at both triple points and grain boundaries act as a barrier for the slag advance within the refractory. The utilization of MgO refractories with ZrO2 nanoparticles can extend the life of furnaces used to produce silicomanganese.

9.
Materials (Basel) ; 14(8)2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33924013

RESUMO

The fresh and rheological properties of alkali mortars activated by blast furnace slag (BFS) were investigated. Consistency tests, squeeze flow, dropping ball, mass density in the hardened state, incorporated air, and water retention were performed. Mortars were produced with the ratio 1:2:0.45 (binder:sand:water), using not only ordinary Portland cement for control but also BFS, varying the sodium content of the activated alkali mortars from 2.5 to 15%. The results obtained permitted understanding that mortars containing 2.5 to 7.5% sodium present a rheological behavior similar to cementitious mortars by the Bingham model. In turn, the activated alkali mortars containing 10 to 15% sodium showed a very significant change in the properties of dynamic viscosity, which is associated with a change in the type of model, starting to behave similar to the Herschel-Bulkley model. Evaluating the properties of incorporated air and water retention, it appears that mortars containing 12.5% and 15% sodium do not have compatible properties, which is related to the occupation of sodium ions in the interstices of the material. Thus, it is concluded that the techniques used were consistent in the rheological characterization of activated alkali mortars.

10.
J Hazard Mater ; 387: 121693, 2020 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-31787399

RESUMO

Reduction of Fe-phases in a slag from the copper smelting process is studied for its use as a catalyst in methanation of carbon oxide (CO). This material contains 36.4 wt% Fe and the main Fe-phases in its fresh and reduced forms were identified and quantified. Chemical analysis and X-ray diffraction (XRD) for crystalline phase detection and determination of Fe dispersion were carried out. Reducibility of Fe-oxides was studied by thermal programmed reduction (TPR) under H2 at 650 and 800 °C using 0.5 and 2 h soak time. In the fresh slag, iron was found to be in the form of Fe3O4 (17.4 wt%) and fayalite, Fe2SiO4 (43.4 wt%). The composition was experimentally determined and verified by stoichiometric balances and thermogravimetric analysis (TGA). Upon reduction at 800 °C and 2 h soak time, 87 % of the Fe-phases were reduced, leaving an activated catalyst with a 35.2 % Fe0, which is the active phase for CO hydrogenation to methane. An expression was derived to determine the Fe0 concentration in the reduced slag based on the composition of the fresh slag and its reduction degree. The catalytic activity of the reduced slag during CO hydrogenation was evaluated in a fixed bed differential reactor. The selectivity to methane, at 300 °C, was 87 %, thus confirming its catalytic activity for the selected reaction.

11.
Materials (Basel) ; 12(12)2019 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-31242565

RESUMO

Developments in the field of materials science are contributing to providing solutions for the recycling of industrial residues to develop new materials. Such approaches generate new products and provide optimal alternatives to the final disposal of different types of industrial wastes. This research focused on identifying and characterizing slag, fly ash, and glass cullet from the Boyacá region in Colombia as raw materials for producing glass-ceramics, with the innovative aspect of the use of these three residues without the addition of nucleating agents to produce the glass-ceramics. To characterize the starting materials, X-ray diffraction (XRD), X-ray fluorescence (XRF), and Scanning Electron Microscopy (SEM) techniques were used. The results were used to evaluate the best conditions to produce mixtures of the three waste components and to determine the specific compositions of glass-ceramics to achieve products with attractive technical properties for potential industrial applications. The proposed mixtures were based on three compositions: Mixture 1, 2, and 3. The materials were obtained through thermal treatment at 1200 °C in a tubular furnace in accordance with the results of a comprehensive characterization using thermal analysis. The microstructure, thermal stability, and structural characteristics of the samples were examined through SEM, differential thermal analysis (DTA), and XRD analyses, which showed that the main crystalline phases were diopside and anorthite, with a small amount of enstatite and gehlenite. The obtained glass-ceramics showed properties of technical significance for structural applications.

12.
Int J Phytoremediation ; 21(9): 857-865, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30919656

RESUMO

Little attention has been paid to the combined use of arbuscular mycorrhizal fungus (AMF) and steel slag (SS) for ameliorating heavy metal polluted soils. A greenhouse pot experiment was conducted to study the effects of SS and AMF-Funneliformis mosseae (Fm), Glomus versiforme (Gv) and Rhizophagus intraradices (Ri) on plant growth and Cd, Pb uptake by maize grown in soils added with 5 mg Cd kg-1 and 300 mg Pb kg-1 soil. The combined usage of AMF and SS (AMF + SS) promoted maize growth, and Gv + SS had the most obvious effect. Meanwhile, single SS addition and AMF + SS decreased Cd, Pb concentrations in maize, and the greater reductions were found in combined utilization, and the lowest Cd, Pb concentrations of maize appeared in Gv + SS. Single SS amendment and AMF + SS enhanced soil pH and decreased soil diethylenetriaminepentaacetic acid (DTPA)-extractable Cd, Pb concentrations. Furthermore, alone and combined usage of AMF and SS increased contents of soil total glomalin. Our research indicated a synergistic effect between AMF and SS on enhancing plant growth and reducing Cd, Pb accumulation in maize, and Gv + SS exerted the most pronounced effect. This work suggests that AMF inoculation in combination with SS addition may be a potential method for not only phytostabilization of Pb-Cd-contaminated soil but maize safety production.


Assuntos
Micorrizas , Poluentes do Solo/análise , Biodegradação Ambiental , Cádmio/análise , Chumbo , Raízes de Plantas , Aço , Zea mays
13.
Environ Monit Assess ; 191(2): 101, 2019 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-30684059

RESUMO

The inadequate transportation of foundry slags during the construction of a mining waste landfill accounted for the presence of slags in the dirt road that connects the working district of Vila Mota to the city of Adrianópolis. The objectives of this work were to assess the lead (Pb) and zinc (Zn) contamination of the dirt. Three samples separated by 2 km were collected along a dirt road (samples: Adrianópolis, Deposit, and Plant). The conducted assays were physico-chemical parameters, pseudototal concentration, three sequential extraction procedures, and bioaccessibility assay. The laboratory data was used as input in the calculation of contamination indices risk assessment code (RAC) and potential ecological risk (Eri). The dirt road presented high concentrations of Pb (mean 1426.5 mg kg-1) and Zn (mean 4964.8 mg kg-1). The BCR SEP (Bureau Community of Reference Sequential Extraction Procedure) method was more adequate in extracting the soluble-exchangeable fraction, and this fraction was correlated with the gastric phase. The bioaccessible fraction is mainly present in the stomach fraction and is transported to the intestinal phase. Using BCR SEP method to calculate the contamination indices, sample Deposit yielded very high risk when calculating RAC and Eri for Pb (72.9% and 639.5, respectively). For Zn, high risk was obtained with RAC and very high risk for Eri (42.5% and 344.2, respectively). The high content of Pb and Zn on the dirt road presents a risk to the population that uses this road, since the soil particles are easily transported, deposited on the dermis, and inhaled.


Assuntos
Monitoramento Ambiental/métodos , Chumbo/análise , Poluentes do Solo/análise , Solo/química , Zinco/análise , Brasil , Cidades , Ecologia , Mineração , Medição de Risco
14.
rev. udca actual. divulg. cient ; 21(2): 385-393, jul.-dic. 2018. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1094741

RESUMO

ABSTRACT Colombian flower growers are faced with economic and social problems, so they are looking for alternatives, which include Proteas, ornamentals that require research that ensures an appropriate, local technical management. One of the Proteas most likely to be involved in this search is the genus Leucadendron. Therefore, this study aimed to establish the best basis for rooting its cuttings. The experimental design was a split plot design with a factorial arrangement. Four substrates were evaluated in combination with two auxins, naphthaleneacetic acid (NAA) and indolebutiric acid (IBA), three doses each, plus a commercial control. Each treatment was repeated three times and the experimental unit consisted of 30 stakes at the first locality and 25 at the second one. The most relevant results showed that vermiculite was the best substrate for rooting cuttings of Leucadendron at both localities. Also, it was identified that IBA is the growth regulator which improved the rooting percentage, the root volume, the stem decreased the percentage of losses.


RESUMEN Los cultivadores colombianos de flores tradicionales están confrontados con problemas, tanto económicos como sociales, por lo que están buscando alternativas, que incluyen a las Proteas, ornamentales que requieren investigación, que asegura un manejo técnico. Una de las Proteas con más posibilidad de estar involucrado en este desarrollo es el género Leucadendron. El diseño experimental empleado fue un diseño de parcelas, divididas con arreglo factorial. Así, que el objetivo de este estudio fue establecer la base para el enraizamiento de las estacas. En combinación con dos auxinas, ácido 1-naftalenacético (ANA) y ácido indolbutírico (AIB), tres dosis de cada una y el control comercial, se evaluaron cuatro sustratos. Cada tratamiento, se repitió tres veces y cada unidad experimental consistió en 30 estacas, para la primera localidad y de 25, para la segunda. Los resultados más relevantes mostraron que el mejor sustrato para el enraizamiento de estacas de Leucadendron fue la vermiculita, en ambas localidades. También, se identificó que AIB es el regulador de crecimiento que mejoró el porcentaje de enraizamiento, el volumen de raíces, la longitud del tallo disminuyó el porcentaje de pérdidas.

15.
Environ Geochem Health ; 40(5): 1699-1712, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27629409

RESUMO

The laterite Ni ore smelting operations in Niquelândia and Barro Alto (Goiás State, Brazil) have produced large amounts of fine-grained smelting wastes, which have been stockpiled on dumps and in settling ponds. We investigated granulated slag dusts (n = 5) and fly ash samples (n = 4) with a special focus on their leaching behaviour in deionised water and on the in vitro bioaccessibility in a simulated gastric fluid, to assess the potential exposure risk for humans. Bulk chemical analyses indicated that both wastes contained significant amounts of contaminants: up to 2.6 wt% Ni, 7580 mg/kg Cr, and 508 mg/kg Co. In only one fly ash sample, after 24 h of leaching in deionised water, the concentrations of leached Ni exceeded the limit for hazardous waste according to EU legislation, whereas the other dusts were classified as inert wastes. Bioaccessible fractions (BAF) of the major contaminants (Ni, Co, and Cr) were quite low for the slag dusts and accounted for less than 2 % of total concentrations. In contrast, BAF values were significantly higher for fly ash materials, which reached 13 % for Ni and 19 % for Co. Daily intakes via oral exposure, calculated for an adult (70 kg, dust ingestion rate of 50 mg/day), exceeded neither the tolerable daily intake (TDI) nor the background exposure limits for all of the studied contaminants. Only if a higher ingestion rate is assumed (e.g. 100 mg dust per day for workers in the smelter), the TDI limit for Ni recently defined by European Food Safety Authority (196 µg/day) was exceeded (324 µg/day) for one fly ash sample. Our data indicate that there is only a limited risk to human health related to the ingestion of dust materials generated by laterite Ni ore smelting operations if appropriate safety measures are adopted at the waste disposal sites and within the smelter facility.


Assuntos
Cinza de Carvão/análise , Poeira/análise , Exposição Ambiental , Resíduos Perigosos/análise , Compostos Inorgânicos/administração & dosagem , Metalurgia , Níquel/análise , Administração Oral , Brasil , Cromo/análise , Cobalto/análise , Suco Gástrico , Humanos , Resíduos Industriais , Modelos Biológicos , Eliminação de Resíduos/métodos
16.
Environ Sci Pollut Res Int ; 25(7): 6414-6428, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29249029

RESUMO

A SSW/Al-Cu formed from an industrial solid waste and Al-Cu Nps are utilized for the removal of fluoride from aqueous solutions. The SSW/Al-Cu was obtained by a chemical reduction method. The SSW/Al-Cu was characterized by TEM, SEM, FT-IR, XRD, BET, and pHzpc techniques. The Nps were formed as bimetallic oxides and deposited in the form of spheroidal particles forming agglomerations. The sizes of these particles range from 1 to 3 nm. The surface area and average pore width of SSW/Al-Cu were 2.99 m2/g and 17.09 nm, respectively. The adsorption kinetics were better described using the second-order model, pointing to chemical adsorption with an equilibrium time of 540 min. The thermodynamic parameters obtained here confirm the spontaneous and endothermic nature of the process. The percentage of fluoride removal was 89.5% using the four-bladed disk turbine, and computational fluid dynamics (CFD) modeling demonstrated that using the four-bladed disk turbine helped improve the fluoride removal process. The maximum adsorption capacity was 3.99 mg/g. The Langmuir-Freundlich model best describes the adsorption process, which occurred by a combination of mechanisms, such as electrostatic interactions between the ions involved in the process. This study proves that the chemical modification of this waste solid created an efficient bimetallic nanomaterial for fluoride removal. Furthermore, the method of preparation of these nanocomposites is quite scalable.


Assuntos
Alumínio , Cobre , Fluoretos/análise , Resíduos Industriais/análise , Nanocompostos/química , Óxidos , Resíduos Sólidos/análise , Aço/química , Poluentes Químicos da Água/análise , Adsorção , Cinética , Tamanho da Partícula , Propriedades de Superfície , Purificação da Água/métodos
17.
Environ Sci Pollut Res Int ; 24(32): 25034-25046, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28920151

RESUMO

Metallurgical slag was used for the simultaneous removal of high concentrations of arsenite and arsenate from laboratory solutions and severely contaminated groundwater. Apart from demonstrating the high efficiency of arsenic removal in presence of competing species, the work aims to explore the physicochemical mechanisms of the process by means of microscopy observation and a detailed statistical analysis of existing kinetic and isotherm equations. Fitting was performed by non-linear least squares using weighted residuals; ANOVA and bootstrap methods were used to compare the models. Literature suggests that the metal oxides in the slag are efficient adsorbents of As(III) and (V). However, the low surface area of the slag precludes adsorption; SEM observation provide evidence of a mechanism of co-precipitation of lixiviated cations with contaminant anions. The reaction kinetics provide essential information on the interaction between the contaminants, particularly on the common ion effect in groundwater. The Fritz-Schlünder isotherm allows modelling the saturation effect at low slag doses. The efficiency of the process is demonstrated by an arsenic removal of 99% in groundwater using 4-g slag/L, resulting in an effluent with 0.01 mg As/L, which is below Mexican and international standards for drinking water.


Assuntos
Arseniatos/química , Arsenitos/química , Precipitação Química , Água Subterrânea/análise , Poluentes Químicos da Água/química , Purificação da Água/métodos , Adsorção , Ânions/química , Água Subterrânea/química , Resíduos Industriais/análise , Metalurgia
18.
J Environ Manage ; 196: 607-613, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28355593

RESUMO

The present work focuses on assessing the viability of applying blasted copper slag, produced during abrasive blasting, as fine aggregate for Portland cement concrete manufacturing, resulting in an alternative and safe disposal method. Leaching assays showed no toxicity for this material. Concrete mixtures were produced, with high aggregate replacement ratios, varying from 0% to 100%. Axial compressive strength, diametrical compressive strength, elastic modulus, physical indexes and durability were evaluated. Assays showed a significant improvement in workability, with the increase in substitution of fine aggregate. With 80% of replacement, the concrete presented lower levels of water absorption capacity. Axial compressive strength and diametrical compressive strength decreased, with the increase of residue replacement content. The greatest reductions of compressive strength were found when the replacement was over 40%. For tensile strength by diametrical compression, the greatest reduction occurred for the concrete with 80% of replacement. After the accelerated aging, results of mechanic properties showed a small reduction of the concrete with blasted copper slag performance, when compared with the reference mixture. Results indicated that the blasted copper slag is a technically viable material for application as fine aggregate for concrete mixtures.


Assuntos
Materiais de Construção , Cobre , Força Compressiva , Água
19.
Materials (Basel) ; 9(3)2016 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-28773294

RESUMO

Microstructural and mechanical properties of alkali activated binders based on blends of Colombian granulated blast furnace slag (GBFS) and fly ash (FA) were investigated. The synthesis of alkali activated binders was conducted at 85 °C for 24 h with different slag/fly ash ratios (100:0, 80:20, 60:40, 40:60, 20:80, and 0:100). Mineralogical and microstructural characterization was carried out by means of X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM/EDX) and Nuclear magnetic resonance (NMR). Mechanical properties were evaluated through the compressive strength, modulus of elasticity and Poisson's ratio. The results show that two different reaction products were detected in the slag/fly ash mixtures, a calcium silicate hydrate with Al in its structure (C-A-S-H gel) and a sodium aluminosilicate hydrate (N-A-S-H gel) with higher number of polymerized species and low content in Ca. It was found that with the increase of the amount of added slag, the amount of C-A-S-H gel increased and the amount of N-A-S-H gel decreased. The matrix was more dense and compact with almost absence of pores. The predominance of slag affected positively the compressive strength, Young's modulus and Poisson's ratio, with 80% slag and 20% fly ash concrete being the best mechanical performance blend.

20.
Waste Manag Res ; 34(2): 107-12, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26634879

RESUMO

The utilisation of steelmaking slag as recycled aggregate for concretes is a widely investigated solution for mitigating the expenditure and environmental impacts of its storage. The Brazilian steel industry is investing in research and slag reprocessing practices, aiming to reuse most of its metallic fraction and properly allocate the non-metallic fraction, saving energy and reducing mining impacts. Research results demonstrate the technical and environmental feasibility of steel slag aggregates for civil construction. However, it is essential to evaluate whether the processing of the slag is economically feasible for this purpose. Economic analysis of the processing of steel slag was conducted through simulation - Monte Carlo method - in which it is possible to determine the risks and uncertainties inherent to the project. The costs that comprise the proposed project, from design through construction and operation itself, were estimated at US$2.8 million. The result of the simulation indicates economic feasibility of the project with 98% certainty, and an estimated profit of around 42%.


Assuntos
Materiais de Construção/análise , Resíduos Industriais/análise , Aço/análise , Gerenciamento de Resíduos/métodos , Brasil , Metalurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA