Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Stress Chaperones ; 27(3): 295-304, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35420390

RESUMO

In yeast, the Slt2(Mpk1) stress-activated protein kinase directs the activation of two transcription factors, Rlm1 and Swi4/Swi6, in response to cell wall stress. Rlm1 is activated through a phosphorylation by Slt2, whereas the Swi4/Swi6 activation is noncatalytic and triggered by the binding of phosphorylated forms of both Slt2 and a catalytically inactive pseudokinase (Mlp1). Previous studies have delineated a role for the molecular chaperone Hsp90 in the activation of Slt2, but the involvement of Hsp90 in these events of catalytic versus non-catalytic cell integrity signaling has remained elusive. In cells lacking Mlp1, the Hsp90 inhibitor radicicol was found to inhibit the Slt2-mediated catalytic activation of Rlm1, but not the noncatalytic activation of Swi4/Swi6. Mutation of residues in the TEY motif of the Slt2 activation loop strongly impacted both Hsp90 binding and Rlm1-mediated transcription. In contrast, many of these same mutations had only modest effects on Swi4/6 (Slt2-mediated, non-catalytic) transcription, although one that blocked both the Slt2:Hsp90 interaction and Rlm1-mediated transcription (E191G) triggered a hyperactivation of Swi4/6. Taken together, our results cement the importance of the Slt2 activation loop for both the binding of Hsp90 by Slt2 and the catalytic activation of cell integrity signaling.


Assuntos
Proteínas de Choque Térmico HSP90 , Proteínas Quinases Ativadas por Mitógeno , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo
2.
Cell Rep ; 37(13): 110149, 2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34965436

RESUMO

The eukaryotic TORC1 kinase assimilates diverse environmental cues, including growth factors and nutrients, to control growth by tuning anabolic and catabolic processes. In yeast, TORC1 stimulates protein synthesis in response to abundant nutrients primarily through its proximal effector kinase Sch9. Conversely, TORC1 inhibition following nutrient limitation unlocks various distally controlled kinases (e.g., Atg1, Gcn2, Npr1, Rim15, Slt2/Mpk1, and Yak1), which cooperate through poorly defined circuits to orchestrate the quiescence program. To better define the signaling landscape of the latter kinases, we use in vivo quantitative phosphoproteomics. Through pinpointing known and uncharted Npr1, Rim15, Slt2/Mpk1, and Yak1 effectors, our study examines the architecture of the distally controlled TORC1 kinase network. Accordingly, this is built on a combination of discrete, convergent, and multilayered feedback regulatory mechanisms, which likely ensure homeostatic control of and/or robust responses by TORC1 and its effector kinases under fluctuating nutritional conditions.


Assuntos
Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Alvo Mecanístico do Complexo 1 de Rapamicina/farmacologia , Fosfoproteínas/metabolismo , Proteínas Quinases/química , Proteoma/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteoma/análise , Saccharomyces cerevisiae/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...