Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 209
Filtrar
1.
HardwareX ; 18: e00531, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38699198

RESUMO

Coastal seas are under increasing pressure from extreme weather events and sea level rise, resulting in impacts such as changing hydrodynamic conditions, coastal erosion, and marine heat waves. To monitor changes in coastal marine habitats, such as reefs and macrophytes meadows, which add to the resilience of our coasts, consistent, medium- to long-term seafloor observations are needed. This project aims to deliver repeated, high-frequency sonar surveys on a stationary seabed mooring of a specific target area over a period of up to several months. A new stand-alone subsea system, the Sonarlogger, based on a battery pack, low-power logger and a high-resolution scanning sonar, was developed. It allows for long-term deployments with a customisable battery pack, WI-FI download and configurable sleep state. The system has been tested for over 130 days in dynamic coastal environments off the Belgian coast. Combined with auxiliary sensors, such as for measuring currents, waves and turbidity, this system enables comprehensive studies of morphologic changes and changing benthic ecosystems. Moreover, this system has the capacity to provide measurements of coastal environments during storms, where conventional systems may fall short, providing insights into event-based changes of the seafloor.

2.
Sensors (Basel) ; 24(9)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38733049

RESUMO

Remote passive sonar detection with low-frequency band spectral lines has attracted much attention, while complex low-frequency non-Gaussian impulsive noisy environments would strongly affect the detection performance. This is a challenging problem in weak signal detection, especially for the high false alarm rate caused by heavy-tailed impulsive noise. In this paper, a novel matched stochastic resonance (MSR)-based weak signal detection model is established, and two MSR-based detectors named MSR-PED and MSR-PSNR are proposed based on a theoretical analysis of the MSR output response. Comprehensive detection performance analyses in both Gasussian and non-Gaussian impulsive noise conditions are presented, which revealed the superior performance of our proposed detector under non-Gasussian impulsive noise. Numerical analysis and application verification have revealed the superior detection performance with the proposed MSR-PSNR detector compared with energy-based detection methods, which can break through the high false alarm rate problem caused by heavy-tailed impulsive noise. For a typical non-Gasussian impulsive noise assumption with α=1.5, the proposed MSR-PED and MSR-PSNR can achieve approximately 16 dB and 22 dB improvements, respectively, in the detection performance compared to the classical PED method. For stronger, non-Gaussian impulsive noise conditions corresponding to α=1, the improvement in detection performance can be more significant. Our proposed MSR-PSNR methods can overcome the challenging problem of a high false alarm rate caused by heavy-tailed impulsive noise. This work can lay a solid foundation for breaking through the challenges of underwater passive sonar detection under non-Gaussian impulsive background noise, and can provide important guidance for future research work.

3.
Heliyon ; 10(7): e28681, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38586386

RESUMO

Sonar sound datasets are of significant importance in the domains of underwater surveillance and marine research as they enable experts to discern intricate patterns within the depths of the water. Nevertheless, the task of classifying sonar sound datasets continues to pose significant challenges. In this study, we present a novel approach aimed at enhancing the precision and efficacy of sonar sound dataset classification. The integration of deep long-short-term memory (DLSTM) and convolutional neural networks (CNNs) models is employed in order to capitalize on their respective advantages while also utilizing distinctive feature engineering techniques to achieve the most favorable outcomes. Although DLSTM networks have demonstrated effectiveness in tasks involving sequence classification, attaining their optimal performance necessitates careful adjustment of hyperparameters. While traditional methods such as grid and random search are effective, they frequently encounter challenges related to computational inefficiencies. This study aims to investigate the unexplored capabilities of the fuzzy slime mould optimizer (FUZ-SMO) in the context of LSTM hyperparameter tuning, with the objective of addressing the existing research gap in this area. Drawing inspiration from the adaptive behavior exhibited by slime moulds, the FUZ-SMO proposes a novel approach to optimization. The amalgamated model, which combines CNN, LSTM, fuzzy, and SMO, exhibits a notable improvement in classification accuracy, outperforming conventional LSTM architectures by a margin of 2.142%. This model not only demonstrates accelerated convergence milestones but also displays significant resilience against overfitting tendencies.

4.
Entropy (Basel) ; 26(4)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38667871

RESUMO

In this paper, we propose the zero-correlation-zone (ZCZ) of radius r on two-dimensional m×n sonar sequences and define the (m,n,r) ZCZ sonar sequences. We also define some new optimality of an (m,n,r) ZCZ sonar sequence which has the largest r for given m and n. Because of the ZCZ for perfect autocorrelation, we are able to relax the distinct difference property of the conventional sonar sequences, and hence, the autocorrelation of ZCZ sonar sequences outside ZCZ may not be upper bounded by 1. We may sometimes require such an ideal autocorrelation outside ZCZ, and we define ZCZ-DD sonar sequences, indicating that it has an additional distinct difference (DD) property. We first derive an upper bound on the ZCZ radius r in terms of m and n≥m. We next propose some constructions for (m,n,r) ZCZ sonar sequences, which leads to some very good constructive lower bound on r. Furthermore, this construction suggests that for m and r, the parameter n can be as large as possible indefinitely. We present some exhaustive search results on the existence of (m,n,r) ZCZ sonar sequences for some small values of r. For ZCZ-DD sonar sequences, we prove that some variations of Costas arrays construct some ZCZ-DD sonar sequences with ZCZ radius r=2. We also provide some exhaustive search results on the existence of (m,n,r) ZCZ-DD sonar sequences. Lots of open problems are listed at the end.

5.
Math Biosci Eng ; 21(1): 1321-1341, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38303467

RESUMO

Fish stock assessment is crucial for sustainable marine fisheries management in rangeland ecosystems. To address the challenges posed by the overfishing of offshore fish species and facilitate comprehensive deep-sea resource evaluation, this paper introduces an improved fish sonar image detection algorithm based on the you only look once algorithm, version 5 (YOLOv5). Sonar image noise often results in blurred targets and indistinct features, thereby reducing the precision of object detection. Thus, a C3N module is incorporated into the neck component, where depth-separable convolution and an inverse bottleneck layer structure are integrated to lessen feature information loss during downsampling and forward propagation. Furthermore, lowercase shallow feature layer is introduced in the network prediction layer to enhance feature extraction for pixels larger than $ 4 \times 4 $. Additionally, normalized weighted distance based on a Gaussian distribution is combined with Intersection over Union (IoU) during gradient descent to improve small target detection and mitigate the IoU's scale sensitivity. Finally, traditional non-maximum suppression (NMS) is replaced with soft-NMS, reducing missed detections due to occlusion and overlapping fish targets that are common in sonar datasets. Experiments show that the improved model surpasses the original model and YOLOv3 with gains in precision, recall and mean average precision of 2.3%, 4.7% and 2.7%, respectively, and 2.5%, 6.3% and 6.7%, respectively. These findings confirm the method's effectiveness in raising sonar image detection accuracy, which is consistent with model comparisons. Given Unmanned Underwater Vehicle advancements, this method holds the potential to support fish culture decision-making and facilitate fish stock resource assessment.

6.
Data Brief ; 53: 110132, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38384311

RESUMO

Unmanned vehicles have become increasingly popular in the underwater domain in the last decade, as they provide better operation reliability by minimizing human involvement in most tasks. Perception of the environment is crucial for safety and other tasks, such as guidance and trajectory control, mainly when operating underwater. Mine detection is one of the riskiest operations since it involves systems that can easily damage vehicles and endanger human lives if manned. Automating mine detection from side-scan sonar images enhances safety while reducing false negatives. The collected dataset contains 1170 real sonar images taken between 2010 and 2021 using a Teledyne Marine Gavia Autonomous Underwater Vehicle (AUV), which includes enough information to classify its content objects as NOn-Mine-like BOttom Objects (NOMBO) and MIne-Like COntacts (MILCO). The dataset is annotated and can be quickly deployed for object detection, classification, or image segmentation tasks. Collecting a dataset of this type requires a significant amount of time and cost, which increases its rarity and relevance to research and industrial development.

7.
Sensors (Basel) ; 24(4)2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38400454

RESUMO

Differences between conventional sonar and Multiple-Input Multiple-Output (MIMO) sonar systems arise in achieving high angular and range resolution. MIMO sonar uses Matched Filtering (MF) with well-correlated transmitted signals to enhance spatial resolution by obtaining virtual arrays. However, imperfect correlation characteristics yield high sidelobe values, which hinder accurate target localization in underwater imagery. To address this, a Compressed Sensing (CS) method is proposed by reconstructing echo signals to suppress correlation noise between orthogonal waveforms. A shifted dictionary matrix and a deterministic Discrete Fourier Transform (DFT) measurement matrix are used to multiply received echo signals to yield compressed measurements. A sparse recovery algorithm is applied to optimize signal reconstruction before joint transmit-receive beamforming forms a 2D sonar image in the angle-range domain. Numerical simulations and lake experimental results confirm the effectiveness of the proposed method, by obtaining a lower sidelobe sonar image under sub-Nyquist sampling rates as compared with other approaches.

8.
Sensors (Basel) ; 24(2)2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38276357

RESUMO

Sonar imaging technology is widely used in the field of marine and underwater monitoring because sound waves can be transmitted in elastic media, such as the atmosphere and seawater, without much interference. In underwater object detection, due to the unique characteristics of the monitored sonar image, and since the target in an image is often accompanied by its own shadow, we can use the relative relationship between the shadow and the target for detection. To make use of shadow-information-aided detection and realize accurate real-time detection in sonar images, we put forward a network based on a lightweight module. By using the attention mechanism with a global receptive field, the network can make the target pay attention to the shadow information in the global environment, and because of its exquisite design, the computational time of the network is greatly reduced. Specifically, we design a ShuffleBlock model adapted to Hourglass to make the backbone network lighter. The concept of CNN dimension reduction is applied to MHSA to make it more efficient while paying attention to global features. Finally, CenterNet's unreasonable distribution method of positive and negative samples is improved. Simulation experiments were carried out using the proposed sonar object detection dataset. The experimental results further verify that our improved model has obvious advantages over many existing conventional deep learning models. Moreover, the real-time monitoring performance of our proposed model is more conducive to the implementation in the field of ocean monitoring.

9.
Diagnostics (Basel) ; 14(1)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38201418

RESUMO

Artificial intelligence (AI) has emerged as a transformative force in various sectors, including medicine and healthcare. Large language models like ChatGPT showcase AI's potential by generating human-like text through prompts. ChatGPT's adaptability holds promise for reshaping medical practices, improving patient care, and enhancing interactions among healthcare professionals, patients, and data. In pandemic management, ChatGPT rapidly disseminates vital information. It serves as a virtual assistant in surgical consultations, aids dental practices, simplifies medical education, and aids in disease diagnosis. A total of 82 papers were categorised into eight major areas, which are G1: treatment and medicine, G2: buildings and equipment, G3: parts of the human body and areas of the disease, G4: patients, G5: citizens, G6: cellular imaging, radiology, pulse and medical images, G7: doctors and nurses, and G8: tools, devices and administration. Balancing AI's role with human judgment remains a challenge. A systematic literature review using the PRISMA approach explored AI's transformative potential in healthcare, highlighting ChatGPT's versatile applications, limitations, motivation, and challenges. In conclusion, ChatGPT's diverse medical applications demonstrate its potential for innovation, serving as a valuable resource for students, academics, and researchers in healthcare. Additionally, this study serves as a guide, assisting students, academics, and researchers in the field of medicine and healthcare alike.

10.
Bioinspir Biomim ; 19(2)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38241718

RESUMO

This paper presents a novel approach to enhance the discrimination capacity of multi-scattered point objects in bat bio-sonar. A broadband interferometer mathematical model is developed, incorporating both distance and azimuth information, to simulate the transmitted and received signals of bats. The Fourier transform is employed to simulate the preprocessing step of bat information for feature extraction. Furthermore, the bat bio-sonar model based on convolutional neural network (BS-CNN) is constructed to compensate for the limitations of conventional machine learning and CNN networks, including three strategies: Mix-up data enhancement, joint feature and hybrid atrous convolution module. The proposed BS-CNN model emulates the perceptual nerves of the bat brain for distance-azimuth discrimination and compares with four conventional classifiers to assess its discrimination efficacy. Experimental results demonstrate that the overall discrimination accuracy of the BS-CNN model is 93.4%, surpassing conventional CNN networks and machine learning methods by at least 5.9%. This improvement validates the efficacy of the BS-CNN bionic model in enhancing the discrimination accuracy in bat bio-sonar and offers valuable references for radar and sonar target classification.


Assuntos
Quirópteros , Ecolocação , Animais , Ecolocação/fisiologia , Quirópteros/fisiologia , Biônica , Som , Percepção de Distância
11.
Ecol Evol ; 13(12): e10796, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38089897

RESUMO

Lactation is the most energy-demanding event in mammals' reproduction. In pinnipeds, females are the only food providers to the young and have developed numerous behavioral and physiological lactation strategies, from capital-breeding to income-breeding. Lactating females' fine-scale foraging strategy, and precise understanding of how females supplement their pup's needs as well as their own are important to understand the species' ecology and energetic balance. Polar pinnipeds, inhabiting extreme environments, are sensitive to climate change and variability, understanding their constraints and foraging strategy during lactation is therefore important. In 2019, three sonar tags were deployed on lactating Weddell seals in Terre Adélie (East Antarctica) for 7 days, to study fine-scale predator-prey interactions. Feeding activity was mostly benthic, reduced, central-placed, and spatially limited. Females spent most of their time hauled-out. A total of 331 prey capture attempts (PrCAs) were recorded using triaxial acceleration data, with 125 prey identified on echograms (5 cm, acoustic size). All PrCAs occurred on the seafloor, shallower than usual records (mean depth of 88 m, vs 280 m after their molt). We also found that they only fed in three of the five identified dive shapes, during the ascent or throughout the dive. Half of the prey were reactive to the seal's approach, either leaving the seafloor, or escaping just above the seafloor, suggesting that the seals hunt by chasing them from the seabed. Seals continuously scanned the area during the approach phase, evoking opportunistic foraging. Our results provide additional evidence that Weddell seal forage during lactation, displaying a mix of capital-breeding and income-breeding strategies during this period of physiological stress. This work sheds light on previously unexplored aspects of their foraging behavior, such as shallow water environments, targeting benthic prey, generally focusing on single prey rather than schools, and evidence of visual scanning through observed head movements.

12.
R Soc Open Sci ; 10(12): 231775, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38094262

RESUMO

The effect of active sonars on marine mammal behaviour is a topic of considerable interest and scientific investigation. Some whales, including the largest species (blue whales, Balaenoptera musculus), can be impacted by mid-frequency (1-10 kHz) military sonars. Here we apply complementary experimental methods to provide the first experimentally controlled measurements of behavioural responses to military sonar and similar stimuli for a related endangered species, fin whales (Balaenoptera physalus). Analytical methods include: (i) principal component analysis paired with generalized additive mixed models; (ii) hidden Markov models; and (iii) structured expert elicitation using response severity metrics. These approaches provide complementary perspectives on the nature of potential changes within and across individuals. Behavioural changes were detected in five of 15 whales during controlled exposure experiments using mid-frequency active sonar or pseudorandom noise of similar frequency, duration and source and received level. No changes were detected during six control (no noise) sequences. Overall responses were more limited in occurrence, severity and duration than in blue whales and were less dependent upon contextual aspects of exposure and more contingent upon exposure received level. Quantifying the factors influencing marine mammal responses to sonar is critical in assessing and mitigating future impacts.

13.
Sensors (Basel) ; 23(17)2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37687939

RESUMO

The utilization of multibeam sonar systems has significantly facilitated the acquisition of underwater bathymetric data. However, efficiently processing vast amounts of multibeam point cloud data remains a challenge, particularly in terms of rejecting massive outliers. This paper proposes a novel solution by implementing a cone model filtering method for multibeam bathymetric point cloud data filtering. Initially, statistical analysis is employed to remove large-scale outliers from the raw point cloud data in order to enhance its resistance to variance for subsequent processing. Subsequently, virtual grids and voxel down-sampling are introduced to determine the angles and vertices of the model within each grid. Finally, the point cloud data was inverted, and the custom parameters were redefined to facilitate bi-directional data filtering. Experimental results demonstrate that compared to the commonly used filtering method the proposed method in this paper effectively removes outliers while minimizing excessive filtering, with minimal differences in standard deviations from human-computer interactive filtering. Furthermore, it yields a 3.57% improvement in accuracy compared to the Combined Uncertainty and Bathymetry Estimator method. These findings suggest that the newly proposed method is comparatively more effective and stable, exhibiting great potential for mitigating excessive filtering in areas with complex terrain.

14.
Sensors (Basel) ; 23(14)2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37514869

RESUMO

Acoustic and optical sensing modalities represent two of the primary sensing methods within underwater environments, and both have been researched extensively in previous works. Acoustic sensing is the premier method due to its high transmissivity in water and its relative immunity to environmental factors such as water clarity. Optical sensing is, however, valuable for many operational and inspection tasks and is readily understood by human operators. In this work, we quantify and compare the operational characteristics and environmental effects of turbidity and illumination on two commercial-off-the-shelf sensors and an additional augmented optical method, including: a high-frequency, forward-looking inspection sonar, a stereo camera with built-in stereo depth estimation, and color imaging, where a laser has been added for distance triangulation. The sensors have been compared in a controlled underwater environment with known target objects to ascertain quantitative operation performance, and it is shown that optical stereo depth estimation and laser triangulation operate satisfactorily at low and medium turbidites up to a distance of approximately one meter, with an error below 2 cm and 12 cm, respectively; acoustic measurements are almost completely unaffected up to two meters under high turbidity, with an error below 5 cm. Moreover, the stereo vision algorithm is slightly more robust than laser-line triangulation across turbidity and lighting conditions. Future work will concern the improvement of the stereo reconstruction and laser triangulation by algorithm enhancement and the fusion of the two sensing modalities.

15.
Environ Sci Technol ; 57(46): 18162-18171, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37319331

RESUMO

Disposal of industrial and hazardous waste in the ocean was a pervasive global practice in the 20th century. Uncertainty in the quantity, location, and contents of dumped materials underscores ongoing risks to marine ecosystems and human health. This study presents an analysis of a wide-area side-scan sonar survey conducted with autonomous underwater vehicles (AUVs) at a dump site in the San Pedro Basin, California. Previous camera surveys located 60 barrels and other debris. Sediment analysis in the region showed varying concentrations of the insecticidal chemical dichlorodiphenyltrichloroethane (DDT), of which an estimated 350-700 t were discarded in the San Pedro Basin between 1947 and 1961. A lack of primary historical documents specifying DDT acid waste disposal methods has contributed to the ambiguity surrounding whether dumping occurred via bulk discharge or containerized units. Barrels and debris observed during previous surveys were used for ground truth classification algorithms based on size and acoustic intensity characteristics. Image and signal processing techniques identified over 74,000 debris targets within the survey region. Statistical, spectral, and machine learning methods characterize seabed variability and classify bottom-type. These analytical techniques combined with AUV capabilities provide a framework for efficient mapping and characterization of uncharted deep-water disposal sites.


Assuntos
Ecossistema , Eliminação de Resíduos , Humanos , DDT , Algoritmos , Oceanos e Mares
16.
Sensors (Basel) ; 23(8)2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37112211

RESUMO

The Russian sector of the arctic shelf is the longest in the world. Quite a lot of places of massive discharge of bubble methane from the seabed into the water column and further into the atmosphere were found there. This natural phenomenon requires an extensive complex of geological, biological, geophysical, and chemical studies. This article is devoted to aspects of the use of a complex of marine geophysical equipment applied in the Russian sector of the arctic shelf for the detection and study of areas of the water and sedimentary strata with increased saturation with natural gases, as well as a description of some of the results obtained. This complex contains a single-beam scientific high-frequency echo sounder and multibeam system, a sub-bottom profiler, ocean-bottom seismographs, and equipment for continuous seismoacoustic profiling and electrical exploration. The experience of using the above equipment and the examples of the results obtained in the Laptev Sea have shown that these marine geophysical methods are effective and of particular importance for solving most problems related to the detection, mapping, quantification, and monitoring of underwater gas release from the bottom sediments of the shelf zone of the arctic seas, as well as the study of upper and deeper geological roots of gas emission and their relationship with tectonic processes. Geophysical surveys have a significant performance advantage compared to any contact methods. The large-scale application of a wide range of marine geophysical methods is essential for a comprehensive study of the geohazards of vast shelf zones, which have significant potential for economic use.

17.
Sensors (Basel) ; 23(6)2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36991793

RESUMO

Side scan sonar (SSS) is a multi-purpose ocean sensing technology, but due to the complex engineering and variable underwater environment, its research process often faces many uncertain obstacles. A sonar simulator can provide reasonable research conditions for guiding development and fault diagnosis, by simulating the underwater acoustic propagation and sonar principle to restore the actual experimental scenarios. However, the current open-source sonar simulators gradually lag behind mainstream sonar technology; therefore, they cannot be of sufficient assistance, especially due to their low computational efficiency and unsuitable high-speed mapping simulation. This paper presents a sonar simulator based on a two-level network architecture, which has a flexible task scheduling system and extensible data interaction organization. The echo signal fitting algorithm proposes a polyline path model to accurately capture the propagation delay of the backscattered signal under high-speed motion deviation. The large-scale virtual seabed is the operational nemesis of the conventional sonar simulators; therefore, a modeling simplification algorithm based on a new energy function is developed to optimize the simulator efficiency. This paper arranges several seabed models to test the above simulation algorithms, and finally compares the actual experiment results to prove the application value of this sonar simulator.

18.
Curr Zool ; 69(1): 32-40, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36974145

RESUMO

As actively sensing animals guided by acoustic information, echolocating bats must adapt their vocal-motor behavior to various environments and behavioral tasks. Here, we investigated how the temporal patterns of echolocation and flight behavior were adjusted in 2 species of bats with a high duty cycle (HDC) call structure, Rhinolophus ferrumequinum and Hipposideros armiger, when they flew along a straight corridor and then passed through windows of 3 different sizes. We also tested whether divergence existed in the adaptations of the 2 species. Both H. armiger and R. ferrumequinum increased their call rates by shortening the pulse duration and inter-pulse interval for more rapid spatial sampling of the environment when flying through smaller windows. Bats produced more sonar sound groups (SSGs) while maintaining a stable proportion of calls that made up SSGs during approaches to smaller windows. The 2 species showed divergent adjustment in flight behavior across 3 different window sizes. Hipposideros armiger reduced its flight speed to pass through smaller windows while R. ferrumequinum increased its flight speed. Our results suggest that these 2 species of HDC bats adopt similar acoustic timing patterns for different tasks although they performed different flight behaviors.

19.
J Environ Manage ; 336: 117716, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36921473

RESUMO

Entrainment and mortality of freshwater fish at hazardous pumping station intakes used for Flood Risk Management (FRM) are of global concern. Although upstream and downstream passage of diadromous fish has received considerable attention, the ecological behaviours of river-resident fish at these structures and how to protect these species from entrainment is poorly-understood. At a lowland flood-relief pumping station and floodgate situated off-channel (River Foss) to the main-river Yorkshire Ouse (York, England), multi-beam sonar (Dual-Frequency Identification Sonar: DIDSON) was used over a pluriannual (three years) period to investigate diel movements of river-resident fish in response to the variations in temperature, hydrology and pump and floodgate operation, and to determine fish-friendly management options. Diel lateral movements of thousands of river-resident fish between the main-river, floodgate operated channel (River Foss) and off-channel pump forebay were predominantly during the crepuscular period and daytime, proposing important considerations for when managers should operate pumps and associated flood infrastructure. Seasonal diel movements increased throughout winter during a baseline year (no pump operation) and overwintering behaviour was influenced by cooling river temperatures. A Generalized Linear Mixed Model (GLMM) revealed fish entered the off-channel forebay when river levels were stable and not when they were rising or falling, suggesting hydrological stability was important for the ecological function of this fish community. Two years of impact data (pumps operated) then revealed pump operations severely disrupted the ecological functions of local fish populations, which was also uniquely quantified over two independent 24h periods during which temporal fish counts were reduced by 85%. A trial period where the floodgate was lowered ahead of dawn significantly reduced fish immigration into the hazardous forebay when compared to two different hydrological periods. Modifying when the floodgate and pumps operate, including lowering the floodgate ahead of fish immigration at dawn, and starting pumps during the night (but not day), are therefore promising non-engineered management options to prevent immigration of fish into the hazardous off-channel pump forebay and to reduce entrainment and mortality risk during pump operation.


Assuntos
Peixes , Rios , Animais , Peixes/fisiologia , Água Doce , Inundações , Temperatura
20.
Methods Mol Biol ; 2643: 183-197, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36952186

RESUMO

The pyridine nucleotides NAD(H) and NADP(H) are key molecules in cellular metabolism, and measuring their levels and oxidation states with spatiotemporal precision is of great value in biomedical research. Traditional methods to assess the redox state of these metabolites are intrusive and prohibit live-cell quantifications. This obstacle was surpassed by the development of genetically encoded fluorescent biosensors enabling dynamic measurements with subcellular resolution in living cells. Here, we provide step-by-step protocols to monitor the intraperoxisomal NADPH levels and NAD+/NADH redox state in cellulo by using targeted variants of iNAP1 and SoNar, respectively.


Assuntos
NAD , NAD/metabolismo , NADP/metabolismo , Oxirredução , Proteínas Luminescentes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...