Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMC Bioinformatics ; 25(1): 219, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898394

RESUMO

BACKGROUND: With the surge in genomic data driven by advancements in sequencing technologies, the demand for efficient bioinformatics tools for sequence analysis has become paramount. BLAST-like alignment tool (BLAT), a sequence alignment tool, faces limitations in performance efficiency and integration with modern programming environments, particularly Python. This study introduces PxBLAT, a Python-based framework designed to enhance the capabilities of BLAT, focusing on usability, computational efficiency, and seamless integration within the Python ecosystem. RESULTS: PxBLAT demonstrates significant improvements over BLAT in execution speed and data handling, as evidenced by comprehensive benchmarks conducted across various sample groups ranging from 50 to 600 samples. These experiments highlight a notable speedup, reducing execution time compared to BLAT. The framework also introduces user-friendly features such as improved server management, data conversion utilities, and shell completion, enhancing the overall user experience. Additionally, the provision of extensive documentation and comprehensive testing supports community engagement and facilitates the adoption of PxBLAT. CONCLUSIONS: PxBLAT stands out as a robust alternative to BLAT, offering performance and user interaction enhancements. Its development underscores the potential for modern programming languages to improve bioinformatics tools, aligning with the needs of contemporary genomic research. By providing a more efficient, user-friendly tool, PxBLAT has the potential to impact genomic data analysis workflows, supporting faster and more accurate sequence analysis in a Python environment.


Assuntos
Biologia Computacional , Alinhamento de Sequência , Software , Biologia Computacional/métodos , Alinhamento de Sequência/métodos , Linguagens de Programação , Genômica/métodos
2.
Patterns (N Y) ; 2(9): 100323, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34553170

RESUMO

High-throughput image-based technologies are now widely used in the rapidly developing field of digital phenomics and are generating ever-increasing amounts and diversity of data. Artificial intelligence (AI) is becoming a game changer in turning the vast seas of data into valuable predictions and insights. However, this requires specialized programming skills and an in-depth understanding of machine learning, deep learning, and ensemble learning algorithms. Here, we attempt to methodically review the usage of different tools, technologies, and services available to the phenomics data community and show how they can be applied to selected problems in explainable AI-based image analysis. This tutorial provides practical and useful resources for novices and experts to harness the potential of the phenomic data in explainable AI-led breeding programs.

3.
J Proteome Res ; 18(9): 3532-3537, 2019 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-31310539

RESUMO

Glycoinformatics is a critical resource for the study of glycobiology, and glycobiology is a necessary component for understanding the complex interface between intra- and extracellular spaces. Despite this, there is limited software available to scientists studying these topics, requiring each to create fundamental data structures and representations anew for each of their applications. This leads to poor uptake of standardization and loss of focus on the real problems. We present glypy, a library written in Python for reading, writing, manipulating, and transforming glycans at several levels of precision. In addition to understanding several common formats for textual representation of glycans, the library also provides application programming interfaces (APIs) for major community databases, including GlyTouCan and UnicarbKB. The library is freely available under the Apache 2 common license with source code available at https://github.com/mobiusklein/ and documentation at https://glypy.readthedocs.io/ .


Assuntos
Biologia Computacional , Glicômica/tendências , Software , Bases de Dados Factuais , Biblioteca Gênica
4.
Healthc Technol Lett ; 6(6): 210-213, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32038859

RESUMO

The overall prevalence of chronic kidney disease in the general population is ∼14% with more than 661,000 Americans having a kidney failure. Ultrasound (US)-guided renal biopsy is a critically important tool in the evaluation and management of renal pathologies. This Letter presents KBVTrainer, a virtual simulator that the authors developed to train clinicians to improve procedural skill competence in US-guided renal biopsy. The simulator was built using low-cost hardware components and open source software libraries. They conducted a face validation study with five experts who were either adult/pediatric nephrologists or interventional/diagnostic radiologists. The trainer was rated very highly (>4.4) for the usefulness of the real US images (highest at 4.8), potential usefulness of the trainer in training for needle visualization, tracking, steadiness and hand-eye coordination, and overall promise of the trainer to be useful for training US-guided needle biopsies. The lowest score of 2.4 was received for the look and feel of the US probe and needle compared to clinical practice. The force feedback received a moderate score of 3.0. The clinical experts provided abundant verbal and written subjective feedback and were highly enthusiastic about using the trainer as a valuable tool for future trainees.

5.
J Proteome Res ; 18(2): 709-714, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30576148

RESUMO

Many of the novel ideas that drive today's proteomic technologies are focused essentially on experimental or data-processing workflows. The latter are implemented and published in a number of ways, from custom scripts and programs, to projects built using general-purpose or specialized workflow engines; a large part of routine data processing is performed manually or with custom scripts that remain unpublished. Facilitating the development of reproducible data-processing workflows becomes essential for increasing the efficiency of proteomic research. To assist in overcoming the bioinformatics challenges in the daily practice of proteomic laboratories, 5 years ago we developed and announced Pyteomics, a freely available open-source library providing Python interfaces to proteomic data. We summarize the new functionality of Pyteomics developed during the time since its introduction.


Assuntos
Proteômica/métodos , Software , Interface Usuário-Computador , Biologia Computacional , Fluxo de Trabalho
6.
J Biotechnol ; 261: 157-168, 2017 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-28888961

RESUMO

BACKGROUND: The use of novel algorithmic techniques is pivotal to many important problems in life science. For example the sequencing of the human genome (Venter et al., 2001) would not have been possible without advanced assembly algorithms and the development of practical BWT based read mappers have been instrumental for NGS analysis. However, owing to the high speed of technological progress and the urgent need for bioinformatics tools, there was a widening gap between state-of-the-art algorithmic techniques and the actual algorithmic components of tools that are in widespread use. We previously addressed this by introducing the SeqAn library of efficient data types and algorithms in 2008 (Döring et al., 2008). RESULTS: The SeqAn library has matured considerably since its first publication 9 years ago. In this article we review its status as an established resource for programmers in the field of sequence analysis and its contributions to many analysis tools. CONCLUSIONS: We anticipate that SeqAn will continue to be a valuable resource, especially since it started to actively support various hardware acceleration techniques in a systematic manner.


Assuntos
Bases de Dados Genéticas , Genômica/métodos , Análise de Sequência de DNA/métodos , Software , Algoritmos , Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Alinhamento de Sequência
7.
J Biotechnol ; 261: 142-148, 2017 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-28559010

RESUMO

BACKGROUND: In recent years, several mass spectrometry-based omics technologies emerged to investigate qualitative and quantitative changes within thousands of biologically active components such as proteins, lipids and metabolites. The research enabled through these methods potentially contributes to the diagnosis and pathophysiology of human diseases as well as to the clarification of structures and interactions between biomolecules. Simultaneously, technological advances in the field of mass spectrometry leading to an ever increasing amount of data, demand high standards in efficiency, accuracy and reproducibility of potential analysis software. RESULTS: This article presents the current state and ongoing developments in OpenMS, a versatile open-source framework aimed at enabling reproducible analyses of high-throughput mass spectrometry data. It provides implementations of frequently occurring processing operations on MS data through a clean application programming interface in C++ and Python. A collection of 185 tools and ready-made workflows for typical MS-based experiments enable convenient analyses for non-developers and facilitate reproducible research without losing flexibility. CONCLUSIONS: OpenMS will continue to increase its ease of use for developers as well as users with improved continuous integration/deployment strategies, regular trainings with updated training materials and multiple sources of support. The active developer community ensures the incorporation of new features to support state of the art research.


Assuntos
Biologia Computacional , Espectrometria de Massas , Software , Bases de Dados Genéticas , Humanos
8.
Biochim Biophys Acta ; 1844(1 Pt A): 63-76, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23467006

RESUMO

Data processing, management and visualization are central and critical components of a state of the art high-throughput mass spectrometry (MS)-based proteomics experiment, and are often some of the most time-consuming steps, especially for labs without much bioinformatics support. The growing interest in the field of proteomics has triggered an increase in the development of new software libraries, including freely available and open-source software. From database search analysis to post-processing of the identification results, even though the objectives of these libraries and packages can vary significantly, they usually share a number of features. Common use cases include the handling of protein and peptide sequences, the parsing of results from various proteomics search engines output files, and the visualization of MS-related information (including mass spectra and chromatograms). In this review, we provide an overview of the existing software libraries, open-source frameworks and also, we give information on some of the freely available applications which make use of them. This article is part of a Special Issue entitled: Computational Proteomics in the Post-Identification Era. Guest Editors: Martin Eisenacher and Christian Stephan.


Assuntos
Proteômica , Espectrometria de Massas em Tandem/métodos , Biologia Computacional , Software
9.
Neuroscience ; 256: 445-55, 2014 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-24096138

RESUMO

Children with low aerobic fitness have altered brain function compared to higher-fit children. This study examined the effect of an 8-month exercise intervention on resting state synchrony. Twenty-two sedentary, overweight (body mass index ≥85th percentile) children 8-11 years old were randomly assigned to one of two after-school programs: aerobic exercise (n=13) or sedentary attention control (n=9). Before and after the 8-month programs, all subjects participated in resting state functional magnetic resonance imaging scans. Independent components analysis identified several networks, with four chosen for between-group analysis: salience, default mode, cognitive control, and motor networks. The default mode, cognitive control, and motor networks showed more spatial refinement over time in the exercise group compared to controls. The motor network showed increased synchrony in the exercise group with the right medial frontal gyrus compared to controls. Exercise behavior may enhance brain development in children.


Assuntos
Encéfalo/fisiologia , Terapia por Exercício/métodos , Sobrepeso/reabilitação , Descanso , Análise de Variância , Atenção/fisiologia , Encéfalo/irrigação sanguínea , Criança , Cognição , Exercício Físico/fisiologia , Feminino , Seguimentos , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Testes Neuropsicológicos , Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA