Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 942: 173681, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-38844210

RESUMO

Soil microbial food web is crucial for maintaining crop production, while its community structure varies among fertilization regimes. Currently, the mechanistic understanding of the relationships between microbial food web and crop production under various nutrient fertilizations is poor. This knowledge gap limits our capacity to achieve precision agriculture for ensuring yield stability. In this study, we investigated the abiotic (i.e., soil chemical properties) and biotic factors (i.e., microbial food web, including bacteria, fungi, archaea and nematodes) that were closely associated with rice (Oryza sativa L.) production, using soils from seven fertilization regimes in distinct sampling locations (i.e., bulk vs rhizosphere soil) at a long-term experimental site. Organic manure alone fertilization (M) and integrated fertilization (NPKM) combining manure with inorganic fertilizers increased soil pH by 0.21-0.41 units and organic carbon content by 49.1 %-65.2 % relative to the non-fertilization (CK), which was distinct with inorganic fertilization. The principal coordinate analysis (PCoA) revealed that soil microbial and nematode communities were primarily shaped by fertilization rather than sampling locations. Organic fertilization (M, NPKM) increased the relative abundance of both r-strategist bacteria, specific taxa within the fungal (i.e., Pezizales) and nematode communities (i.e., omnivores-predators), whereas inorganic fertilization increased K-strategist bacteria abundances relative to the CK. Correspondingly, network analysis showed that the keystone taxa in the amplicon sequence variants (ASVs) enriched by organic manure and inorganic fertilization were mainly affiliated with r- and K-strategist bacteria, respectively. Structural equation modeling (SEM) analysis found that r- and K-strategist bacteria were positively correlated with rice production under organic and inorganic fertilization, respectively. Our results demonstrate that the response patterns of r/K-strategists to nutrient fertilization largely regulate rice yield, suggesting that the enhanced soil fertility and r-strategists contribute to the highest crop production in NPKM fertilization.


Assuntos
Agricultura , Bactérias , Fertilizantes , Cadeia Alimentar , Oryza , Microbiologia do Solo , Fertilizantes/análise , Bactérias/classificação , Agricultura/métodos , Solo/química , Esterco , Fungos , Rizosfera
2.
FEMS Microbiol Ecol ; 93(9)2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28922803

RESUMO

Predation is a fundamental mechanism of all food webs, but its drivers and organismic connectivities, especially at microbial level, are still poorly understood. Specifically, competitive carbon flows in the presence of multiple micropredators, as well as trophic links within and between microbial kingdoms have rarely been resolved. Here, using maize-planted agricultural soil as a model system, we have investigated the predation of amended bacterial prey by both prokaryotic and eukaryotic micropredators. We have queried how soil compartment (rhizosphere vs bulk soil) and nature of prey (Gram-positive vs Gram-negative) influence predation outcomes. We added 13C-labelled biomass of Pseudomonas putida and Arthrobacter globiformis to soil microcosms and found that P. putida was consumed much more rapidly. Bacteria and microeukaryotes specifically responsive to the biomass amendments were identified by RNA-stable isotope probing. Amongst the bacteria, only a few myxobacteria sequestered C from A. globiformis, whereas a considerable diversity of predatory bacteria incorporated C derived from P. putida. Diverse groups of heterotrophic protists, especially amoeba including Glaeseria, Hartmanella and Vahlkampfia spp., were observed to incorporate 13C from both amendments, but with pronounced niche differentiation between rhizosphere and bulk soil. This provides novel insights into niche partitioning between bacterial and eukaryotic micropredators in soil, driven not only by the nature of bacterial prey itself, but also by soil compartments.


Assuntos
Arthrobacter/metabolismo , Eucariotos/metabolismo , Pseudomonas putida/metabolismo , Rizosfera , Zea mays/microbiologia , Zea mays/parasitologia , Biomassa , Carbono/metabolismo , Ciclo do Carbono/fisiologia , Eucariotos/classificação , Cadeia Alimentar , Pseudomonas putida/classificação , Solo , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA