Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Environ Sci (China) ; 148: 306-320, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39095167

RESUMO

Antimony smelting activities damage the soil and vegetation surroundings while generating economic value. However, no standardized methods are available to diagnose the extent of soil degradation at antimony smelting sites. This study developed a standardized framework for assessing soil quality by considering microbial-induced resilience and heavy metal contamination at Xikuangshan antimony smelting site. The soil resilience index (SRI) and soil contamination index (SCI) were calculated by Minimum Data Set and geo-accumulation model, respectively. After standardized by a multi-criteria quantitative procedure of modified Nemerow's pollution index (NPI), the integrated assessment of soil quality index (SQI), which is the minimum of SRINPI and SCINPI, was achieved. The results showed that Sb and As were the prominent metal(loid) pollutants, and significant correlations between SQI and SRI indicated that the poor soil quality was mainly caused by the low level of soil resilience. The primary limiting factors of SRI were Fungi in high and middle contaminated areas, and Skermanella in low contaminated area, suggesting that the weak soil resilience was caused by low specific microbial abundances. Microbial regulation and phytoremediation are greatly required to improve the soil quality at antimony smelting sites from the perspectives of pollution control and resilience improvement. This study improves our understanding of ecological effects of antimony smelting sites and provides a theoretical basis for ecological restoration and sustainable development of mining areas.


Assuntos
Antimônio , Monitoramento Ambiental , Metais Pesados , Microbiologia do Solo , Poluentes do Solo , Solo , Poluentes do Solo/análise , Antimônio/análise , Monitoramento Ambiental/métodos , Metais Pesados/análise , Solo/química , Metalurgia , Biodegradação Ambiental , China
2.
Environ Res ; 216(Pt 2): 114583, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36265602

RESUMO

The unintended impact of natural summer fire on soil is complicated and rather less studied than its above-ground impact. Recognising the impact of a fire on silvopastoral soils and their resilience can aid in improving the management of silvopastoral systems. We studied the immediate (after 1 week (W)) and short-term (after 3 months (M)) recovery of different soil biological and chemical properties after the natural fire, with specific emphasis on phosphorus (P) dynamics. Soil samples were collected from four different layers (0-15, 15-30, 30-45, and 45-60 cm) of Morus alba, Leucaena leucocephala, and Ficus infectoria based silvopastoral systems. In the 0-15 cm soil layer, soil organic carbon (SOC) declined by ∼37, 42, and 30% after the fire in Morus-, Leucaena-, and Ficus-based systems, respectively within 1W of fire. However, after 3M of fire, Morus and Leucaena regained ∼6 and 11.5% SOC as compared to their status after 1W in the 0-15 cm soil layer. After 1W of the fire, soil nitrogen (N), sulfur (S), and potassium availability declined significantly at 0-15 cm soil layer in all systems. Iron and manganese availability improved significantly after 1W of the fire. Saloid bound P and aluminium bound P declined significantly immediately after the fire, increasing availability in all systems. However, calcium bound P did not change significantly after the fire. Dehydrogenase and alkaline phosphatase activity declined significantly after the fire, however, phenol oxidase and peroxidase activity were unaltered. Resiliencies of these soil properties were significantly impacted by soil depth and time. Path analysis indicated microbial activity and cationic micronutrients majorly governed the resilience of soil P fractions and P availability. Pasture yield was not significantly improved after the fire, so natural summer fire must be prevented to avoid loss of SOC, N, and S.


Assuntos
Incêndios , Solo , Solo/química , Fósforo , Carbono/análise , Nitrogênio/análise , Cátions
3.
J Environ Manage ; 293: 112850, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34052612

RESUMO

Although environmental rehabilitation projects that did not succeed are not uncommon, there are few research papers that deal with the subject. Works on the rehabilitation of borrow pits are even more rare. In an attempt to fulfill some gaps, the present study sought to evaluate the effectiveness of a program for the restoration of a clay borrow pit used for the construction of a hydroelectric plant, twenty years after its execution. In order to assess the current degradation stage and to identify the possible errors of this intervention, the area was mapped using an unmanned aerial vehicle, which allowed the identification of the remaining physical structures, dimensioning of the actual degraded area and characterization of vegetation cover and types of exposed soil. Physical and chemical parameters of the degraded area soils were compared to those of a contiguous preserved area, which was used as a control. Soils of the degraded area are significantly more compacted (with significant reduction in macroporosity) and depleted in organic matter and nutrients. The results showed that the methodologies used in the rehabilitation project were not sufficient to recover the resilience of a deeply degraded ecosystem. The long-term success of a rehabilitation project is only possible with the guarantee of the ecological sustainability of the area, which is largely related to the restoration of soil ecological processes. Most of the time, this cannot be achieved with the simple use of classical erosion control and revegetation techniques and without the addition of sediment material to aid the process.


Assuntos
Ecossistema , Solo , Plantas
4.
Microorganisms ; 8(3)2020 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-32204532

RESUMO

Understanding the interactions of soil microbial species and how they responded to disturbances are essential to ecological restoration and resilience in the semihumid and semiarid damaged mining areas. Information on this, however, remains unobvious and deficiently comprehended. In this study, based on the high throughput sequence and molecular ecology network analysis, we have investigated the bacterial distribution in disturbed mining areas across three provinces in China, and constructed molecular ecological networks to reveal the interactions of soil bacterial communities in diverse locations. Bacterial community diversity and composition were classified measurably between semihumid and semiarid damaged mining sites. Additionally, we distinguished key microbial populations across these mining areas, which belonged to Proteobacteria, Acidobacteria, Actinobacteria, and Chloroflexi. Moreover, the network modules were significantly associated with some environmental factors (e.g., annual average temperature, electrical conductivity value, and available phosphorus value). The study showed that network interactions were completely different across the different mining areas. The keystone species in different mining areas suggested that selected microbial communities, through natural successional processes, were able to resist the corresponding environment. Moreover, the results of trait-based module significances showed that several environmental factors were significantly correlated with some keystone species, such as OTU_8126 (Acidobacteria), OTU_8175 (Burkholderiales), and OTU_129 (Chloroflexi). Our study also implied that the complex network of microbial interaction might drive the stand resilience of soil bacteria in the semihumid and semiarid disturbed mining areas.

5.
Sci Total Environ ; 566-567: 552-558, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27236620

RESUMO

This study presents a novel approach for assessing the risk of agrochemicals in soil microcosms through the use of non-targeted metabolomics. The metabolome of treated soils was extracted and tested through LCMS profiling in order to generate an "Environmental Metabolic Footprint" (EMF). A dynamic characterization of pollution biomarkers was obtained through a multivariate statistical analysis of EMF data, where our results show the possible evolution towards a state of resilience. The EMF methodology was applied to two ß-triketone herbicides in soil microcosms: one natural, leptospermone, and one synthetic, sulcotrione. In spite of a four-fold higher application dose, leptospermone exhibited a lower resilience time than did sulcotrione (ca. 30 days vs ca. 45 days respectively).


Assuntos
Cicloexanonas/metabolismo , Monitoramento Ambiental/métodos , Herbicidas/metabolismo , Mesilatos/metabolismo , Óleos Voláteis/metabolismo , Microbiologia do Solo , Poluentes do Solo/metabolismo , Floroglucinol/análogos & derivados
6.
Sci Total Environ ; 463-464: 51-60, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23792247

RESUMO

Agroforestry is increasingly viewed as an effective means of maintaining or even increasing crop and tree productivity under climate change while promoting other ecosystem functions and services. This study focused on soil biochemical properties and resilience following disturbance within agroforestry and conventional agricultural systems and aimed to determine whether soil differences in terms of these biochemical properties and resilience would subsequently affect crop productivity under extreme soil water conditions. Two research sites that had been established on agricultural land were selected for this study. The first site included an 18-year-old windbreak, while the second site consisted in an 8-year-old tree-based intercropping system. In each site, soil samples were used for the determination of soil nutrient availability, microbial dynamics and microbial resilience to different wetting-drying perturbations and for a greenhouse pot experiment with wheat. Drying and flooding were selected as water stress treatments and compared to a control. These treatments were initiated at the beginning of the wheat anthesis period and maintained over 10 days. Trees contributed to increase soil nutrient pools, as evidenced by the higher extractable-P (both sites), and the higher total N and mineralizable N (tree-based intercropping site) found in the agroforestry compared to the conventional agricultural system. Metabolic quotient (qCO2) was lower in the agroforestry than in the conventional agricultural system, suggesting higher microbial substrate use efficiency in agroforestry systems. Microbial resilience was higher in the agroforestry soils compared to soils from the conventional agricultural system (windbreak site only). At the windbreak site, wheat growing in soils from agroforestry system exhibited higher aboveground biomass and number of grains per spike than in conventional agricultural system soils in the three water stress treatments. At the tree-based intercropping site, higher wheat biomass, grain yield and number of grains per spike were observed in agroforestry than in conventional agricultural system soils, but in the drought treatment only. Drought (windbreak site) and flooding (both sites) treatments significantly reduced wheat yield and 1000-grain weight in both types of system. Relationships between soil biochemical properties and soil microbial resilience or wheat productivity were strongly dependent on site. This study suggests that agroforestry systems may have a positive effect on soil biochemical properties and microbial resilience, which could operate positively on crop productivity and tolerance to severe water stress.


Assuntos
Secas , Ecossistema , Inundações , Microbiologia do Solo , Solo/química , Árvores , Triticum/crescimento & desenvolvimento , Agricultura Florestal , Fenômenos Fisiológicos Vegetais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA