Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.767
Filtrar
1.
Sci Total Environ ; : 174735, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39004354

RESUMO

Particulate suspended matter (PSM) of rivers is a significant factor for carbon, nutrient, and trace metal transfer from land to ocean. Towards better understanding the role that PSM exerts on major and trace elements in riverine systems, here we report the results of an experimental study which utilizes a two-fold approach to assess interaction between PSM and riverine solutes. First, we measured element leaching (via desorption and dissolution in distilled water, simulating snow melt) from PSM of the largest Siberian river, the Ob River. Second, we quantified the capacity of PSM to adsorb dissolved organic carbon (DOC), macro- and micronutrients and trace elements from organic-rich waters of the river floodplain. We documented sizable desorption of organic carbon, some major and trace metals, oxyanions and insoluble elements from PSM; the majority (>50 %) of elements were released over the first hour of reaction. In contrast, PSM of the Ob River was capable of removing 20 to 90 % of dissolved OC, nutrients (Si, P), and trace elements from the tributary and floodplain fen. Our experiments demonstrated preferential adsorption of aromatic compounds large molecular size colloids. Taken together, the adsorption of solutes by PSM can sizably decrease the concentration and modify the molecular size distribution, and therefore the potential bioavailability of major (DOC, P, Si) and trace micronutrients. Overall, the PSM of the Ob River exhibited high reactivity with respect to natural waters and was capable of modifying the elemental composition of the tributary and floodplain fen waters. This transfer of organic carbon and nutrients in the surface-adsorbed (particulate) form is especially important during spring flood and requires specific consideration in short-term biogeochemical cycles of elements in continental waters.

2.
Sci Total Environ ; 947: 174683, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38992352

RESUMO

The estuary of Huelva is constituted by the common mouth of the Odiel and Tinto rivers, which are extreme cases of acid mine drainage contamination due to the Iberian Pyrite Belt, the world's largest sulfide mineral province. The drained acidic waters are subjected to seawater mixing and thus, to dilution and precipitation processes that drive the load of contaminants entering the oceanic environment. This research reports the distribution of major metal(loid)s present in the highly acidic waters across the entire Tinto and Odiel estuarine systems as they are subjected to acid mine drainage neutralization, until reaching the ocean. The datasets presented are divided in low- and high-flow periods, corresponding to dry/warm and wet/cold seasons, respectively. Iron and Al were almost entirely removed from solution with pH increase at both periods due to their precipitation as schwertmannite and basaluminite, respectively. These mineral phases also, controlled the behavior of As, Cu and Pb, which were removed from solution, with >90 % of their concentration ending up in the particulate phase due to sorption processes. However, at pH >7, As returned entirely to the dissolved phase at both sampled seasons because of desorption, similarly to Cu at the low-flow period. On the other hand, concentrations of Zn, Cd, Mn, Co and Ni in solution decreased only by dilution with seawater, with null partitioning to any sorption processes during estuarine mixing until reaching the Atlantic Ocean.

3.
Sci Total Environ ; 947: 174644, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38992358

RESUMO

An increasing number of studies have demonstrated the presence of per and polyfluoroalkyl substances (PFAS) in the vapor phase. It is therefore important to consider the potential for vapor-phase transport of PFAS in soil and the vadose zone and to investigate the processes impacting the retention and transport of volatile PFAS in soil. It is also critically important to evaluate existing models and develop new models as needed for their application to PFAS vapor-phase transport. The objectives of the present work were to provide an overview of vapor-phase transport processes and modeling, with a specific focus on their relevance for PFAS, and to discuss implications for mass discharge to groundwater, vapor intrusion, and soil vapor extraction. Decades of research have been devoted to the retention and transport of legacy volatile organic contaminants in the vadose zone. This work provides an abundant source of information concerning the many factors and processes of relevance, and insights into the development and application of mathematical modeling. However, given the unique properties of PFAS, there is a need to conduct research to investigate vapor-phase transport of PFAS and to develop PFAS-specific models. We highlight with illustrative examples that vapor-phase transport can be significantly more rapid than aqueous-phase advective transport, which can result in enhanced mass discharge to groundwater.

4.
J Environ Sci (China) ; 146: 264-271, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38969454

RESUMO

Slow release of emerging contaminants limits their accessibility from soil to pore water, constraining the treatment efficiency of physio-chemical treatment sites. DC fields mobilize organic contaminants and influence their interactions with geo-matrices such as zeolites. Poor knowledge, however, exists on the joint application of heating and electrokinetic approaches on perfluorooctanoic acid (PFOA) transport in porous media. Here, we investigated electrokinetic PFOA transport in zeolite-filled percolation columns at varying temperatures. Variations of pseudo-second-order kinetic constants (kPSO) were correlated to the liquid viscosity variations (η) and elctroosmotic flow velocities (vEOF). Applying DC fields and elevated temperature significantly (>37%) decreased PFOA sorption to zeolite. A good correlation between η, vEOF, and kPSO was found and used to develop an approach interlinking the three parameters to predict the joint effects of DC fields and temperature on PFOA sorption kinetics. These findings may give rise to future applications for better tailoring PFOA transport in environmental biotechnology.


Assuntos
Caprilatos , Fluorocarbonos , Zeolitas , Caprilatos/química , Fluorocarbonos/química , Adsorção , Zeolitas/química , Cinética , Modelos Químicos
5.
J Environ Manage ; 366: 121722, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38991346

RESUMO

The breeding of livestock raises substantial environmental concerns, especially the efficient management of nutrients and pollution. This research is designed to assess the potency of char and modified char in diluting nutrient concentrations in livestock wastewater. The characteristics of graphene oxide, struvite, and calcium-modified char were inspected, defining their efficacy in both batch and bed-column investigations of nutrient sorption. Various factors, including sorption capacity, time of contact, ion levels, a decrease in ion levels over time, and sorption kinetics, have been considered, along with their appropriateness for respective models. The first evaluation of the options concluded that 600 °C char was better since it exhibited higher removal efficiency. Modified char sorption data at 600 °C was used to adjust the models "PSOM, Langmuir", and "Thomas". The models were applied to both batch and bed-column experiments. The maximum phosphate sorption was 110.8 mg/g, 85.73 mg/g, and 82.46 mg/g for B-GO, B-S, and B-C modified chars respectively, in the batch experiments. The highest phosphate sorption in column experiments, at a flow rate of 400 µl/min, was 51.23 mg per 10 g of sorbent. This corresponds to a sorption rate of 5.123 mg/g. B-GO and B-S modified chars showed higher sorption capacities; this was observed in both the batch and bed-column studies. This displayed the capability of graphene oxide and struvite-modified chars for efficient ion and nutrient uptake, whether in single or multi-ion environments, making them a very good candidate for nutrient filtration in livestock wastewater treatment. Additionally, B-GO char enhanced the sorption of phosphate, resulting in augmented seed germination and seedling growth. These results reveal that B-GO char can be used as a possible substitute for chemical fertilizers.

6.
J Hazard Mater ; 476: 134929, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38991645

RESUMO

This study focuses on assessing the hydrogeochemical processes influencing the mobility of dissolved metal and metalloid species during mine effluent mixing. Field samples were collected to characterize effluents at an active gold mine located in the Abitibi Greenstone belt in western Québec, Canada. Controlled laboratory mixing experiments were further performed with real effluents. In situ physicochemical parameters, concentrations of major dissolved ions and trace elements were analyzed. Mineralogical analyses were also performed on precipitates from the laboratory mixtures. The data were used for statistical analyses and for modeling the geochemical evolution of effluents using PHREEQC with the wateq4f.dat database (with modifications). The results suggest that the formation of secondary minerals such as schwertmannite, Fe(OH)3, and jarosite could significantly affect the concentrations of trace elements in effluents. The precipitation of secondary minerals immobilized trace elements through coprecipitation and sorption processes. The main limitations of the modeling approach used here include the evaluation of the ion balance for low pH samples with high Fe and Al concentrations and the omission of biological processes. The approach provides insights into the geochemical evolution of mine effluents and could be adapted to several mining sites as a tool for improving water management.

7.
J Environ Manage ; 366: 121717, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38981274

RESUMO

Sorption enhanced steam gasification of biomass (SESGB) presents a promising approach for producing high-purity H2 with potential for zero or negative carbon emissions. This study investigated the effects of gasification temperature, CaO to carbon in biomass molar ratio [CaO/C], and steam flow on the SESGB process, employing carbide slag (CS) and its modifications, CSSi2 (mass ratio of CS to SiO2 is 98:2) and CSCG5 (mass ratio of CS to coal gangue (CG) is 95:5), as CaO-based sorbents. The investigation included non-isothermal and isothermal gasification experiments and kinetic analyses using corn cob (CC) in a macro-weight thermogravimetric setup, alongside a fixed-bed pyrolysis-gasification system to assess operational parameter effects on gas product. The results suggested that CO2 capture by CaO reduced the mass loss during the main gasification as the [CaO/C] increased. The appropriate temperature for SESGB process should be selected between 550 and 700 °C at atmospheric pressure. The appropriate amount of sorbent or steam could facilitate the gasification reaction, but excessive addition led to adverse effects. Operational parameters influenced the apparent activation energy (Ea) by affecting various gasification reactions. For each test, Ea at the char gasification stage was significantly higher than that at the rapid pyrolysis stage. The addition of CS notably increased H2 concentration and yield, while sharply reducing CO2 levels. H2 concentration initially rose and then fell with greater steam flow, peaking at 76.11 vol% for a steam flow of 1.0 g/min. H2 yield peaked at 298 mL/g biomass with a steam flow of 1.5 g/min, a gasification temperature of 600 °C and a [CaO/C] of 1.0. Increasing gasification temperature remarkably boosted the H2 and CO2 yields. Optimal conditions for the SESGB using CS as a sorbent, determined via response surface methodology (RSM), include a gasification temperature of 666 °C, a [CaO/C] of 1.99, and a steam flow of 0.5 g/min, under which H2 and CO2 yields were 464 and 48 mL/g biomass, respectively. CSSi2 and CSCG5 demonstrated excellent cyclic H2 production stability, maintaining H2 yields around 440 mL/g biomass and low CO2 yields (∼60 mL/g biomass) across five cycles. The study results offer new insights for the high-value utilization of agroforestry biomass and the reduction and resource utilization of industrial waste.

8.
Chemosphere ; 363: 142760, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38969229

RESUMO

The biochar-enabled advanced reduction process (ARP) was developed for enhanced sorption (by biochar) and destruction of PFAS (by ARP) in water. First, the biochar (BC) was functionalized by iron oxide (Fe3O4), zero valent iron (ZVI), and chitosan (chi) to produce four biochars (BC, Fe3O4-BC, ZVI-chi-BC, and chi-BC) with improved physicochemical properties (e.g., specific surface area, pore structure, hydrophobicity, and surface functional groups). Batch sorption experimental results revealed that compared to unmodified biochar, all modified biochars showed greater sorption efficiency, and the chi-BC performed the best for PFAS sorption. The chi-BC was then selected to facilitate reductive destruction and defluorination of PFAS in water by ARP in the UV-sulfite system. Adding chi-BC in UV-sulfite ARP system significantly enhanced both degradation and defluorination efficiencies of PFAS (up to ∼100% degradation and ∼85% defluorination efficiencies). Radical analysis using electron paramagnetic resonance (EPR) spectroscopy showed that sulfite radicals dominated at neutral pH (7.0), while hydrated electrons (eaq-) were abundant at higher pH (11) for the efficient destruction of PFAS in the ARP system. Our findings elucidate the synergies of biochar and ARP in enhancing PFAS sorption and degradation, providing new insights into PFAS reductive destruction and defluorination by different reducing radical species at varying pH conditions.

9.
Waste Manag ; 187: 128-133, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39029406

RESUMO

Pharmaceuticals have been detected at high concentrations in landfill leachate and refuse, which may pose potential long-term environmental impacts. The interaction of pharmaceuticals between leachate and refuse contributes to their retention through in situ sorption, thereby mitigating this impact. However, limited efforts have been made to describe the distribution characteristics of pharmaceuticals in the refuse-leachate phase. In this study, two refuse and three leachate samples were used to obtain partitioning coefficients (Kd) for two typical pharmaceuticals, carbamazepine (CBZ) and sulfadiazine (SD), with campus soil as a comparison. Landfill refuse exhibited higher Kd values (12.36 ± 0.90 and 19.76 ± 1.96 mL/g for CBZ and 1.90 ± 0.34 and 6.27 ± 0.58 mL/g for SD in two samples, respectively) than campus soil (3.73 ± 1.31 mL/g for CBZ and 0.81 ± 0.26 mL/g for SD), influenced by refuse properties such as higher organic matter (OM) content and specific surface area (SSA). The influence of leachate pH on Kd values depended on the electrostatic interaction between the species of target pollutants and negatively charged refuse. The effect of humic acid (HA) was related to its binding with target pollutants in solution and its competition with them for sorption sites. Electrostatic repulsion, hydrogen bonding and π-π interaction were the proposed mechanisms in SD sorption on refuse, while hydrogen bonding participated in the sorption of CBZ. The results will help aid the understanding of the distribution of pharmaceuticals in the refuse-leachate system and improve corresponding management strategies.

10.
Environ Sci Technol ; 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39037862

RESUMO

Perfluorooctanesulfonate (PFOS), a toxic anionic perfluorinated surfactant, exhibits variable electrostatic adsorption mechanisms on charge-regulated minerals depending on solution hydrochemistry. This work explores the interplay of multicomponent interactions and surface charge effects on PFOS adsorption to goethite surfaces under flow-through conditions. We conducted a series of column experiments in saturated goethite-coated porous media subjected to dynamic hydrochemical conditions triggered by step changes in the electrolyte concentration of the injected solutions. Measurements of pH and PFOS breakthrough curves at the outlet allowed tracking the propagation of multicomponent reactive fronts. We performed process-based reactive transport simulations incorporating a mechanistic network of surface complexation reactions to quantitatively interpret the geochemical processes. The experimental and modeling outcomes reveal that the coupled spatio-temporal evolution of pH and electrolyte fronts, driven by the electrostatic properties of the mineral, exerts a key control on PFOS mobility by determining its adsorption and speciation reactions on goethite surfaces. These results illuminate the important influence of multicomponent transport processes and surface charge effects on PFOS mobility, emphasizing the need for mechanistic adsorption models in reactive transport simulations of ionizable PFAS compounds to determine their environmental fate and to perform accurate risk assessment.

11.
Talanta ; 279: 126581, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39032459

RESUMO

Cation exchange membranes (CEMs) are widely used in many applications. The fixed anionic groups e.g., COO-, -SO3-, etc. in the polymer matrix ideally allows the passage only of oppositely charged cations, driven by a potential or a concentration gradient. Anions, charged negative, the same as the membrane matrix, cannot pass through the membrane due to electrostatic repulsion. Such "Donnan-forbidden" passage can, however, occur to some degree, if the electrical or concentration gradient is high enough to overcome the "Donnan barrier". Except for salt uptake/transport in concentrated salt solutions, the factors that govern such Forbidden Ion Transport (FIT) have rarely been studied. In most applications of transmembrane ion transport, whether electrically driven as in electrodialysis, or concentration-driven, it is the transport of the counterion to the fixed charged groups, such as that of the proton through a CEM, that is usually of interest. Nevertheless, CEMs are also of interest in analytical chemistry, specifically in suppressed ion chromatography. As used in membrane suppressors, both transport of permitted ions and rejection of forbidden ions are important. If the latter is indeed governed by electrostatic factors, other things being equal, the primary governing factor should be the charge density of the membrane, tantamount to its ion exchange capacity (IEC). In fabricating microscale suppressors, we found useful to synthesize a new ion exchange polymer that can be easily molded to make tubular microconduits. Despite a high IEC of this material, FIT was also found to be surprisingly high. We measured several relevant properties for thirteen commercial and four custom-made membranes to discover that while FIT is indeed linearly related to 1/IEC for a significant number of these membranes, for very high water-content membranes, FIT may be overwhelmingly governed by the water content of the membrane. In addition, FIT through all CEMs differ greatly among strong acids, they may still be transported as the molecular acids and the extent is in the same order as the expected activity of the molecular acid in the CEM. These results are discussed with the perspective that even for strong acids, the transport does take place as un-ionized molecular acids.

12.
Sci Total Environ ; 948: 174814, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39032739

RESUMO

Biofilms can enhance the sorption of heavy metals onto microplastic (MP) surfaces. However, most research in this field relies on laboratory experiments and neglects metal fractions and seasonal variations. Further studies of the metal/biofilm interaction in the aquatic environment are essential for assessing the ecological threat that MPs pose. The present study used in situ experiments in an environment conducive to biofouling (Vistula Lagoon, Baltic Sea). The objective was to investigate the sorption of mercury and its fractions (thermodesorption technique) in MP (polypropylene-PP, polystyrene-PS, polylactide-PLA) biofilms and natural matrices across three seasons. After one month of incubation, the Hg concentrations in MP and natural substratum (gravel grains-G) biofilms were similar (MP: 145 ± 45 ng/g d.w.; G: 132 ± 23 ng/g d.w.) and approximately twofold those of suspended particulate matter (SPM) (63 ± 27 ng/g d.w.). Hg concentrations in biofilms and sediments were similar, but labile fractions dominated in biofilms and stable fractions in sediments. Seasonal Hg concentrations in MP biofilms decreased over summer>winter>spring, with significant variation for mineral and loosely bound Hg fractions. Multiple regression analysis revealed that hydrochemical conditions and sediment resuspension played a crucial role in the observed variability. The influence of polymer type and morphology (pellets, fibres, aged MP) on Hg sorption in biofilms was visible only in high summer temperatures. In this season, PP fibres and aged PP pellets encouraged biofilm growth and the accumulation of labile Hg fractions. Additionally, high concentrations of mineral (stable and semi-labile) Hg fractions were found in expanded PS biofilms. These findings suggest that organisms that ingest MPs or feed on the biofilms are exposed to the adverse effects of Hg and the presence of MPs in aquatic ecosystems may facilitate the transfer of mercury within the food chain.

13.
J Sci Food Agric ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38962940

RESUMO

BACKGROUND: In this work, water transition points (first transition: monolayer-multilayer water; and second transition: multilayer-free and solvent water) of different parts of jasmine rice including white rice, brown rice and bran were identified through the integration of sorption isotherm and dielectric properties data. Desorption isotherm data were fitted to four established models to select the optimal model for describing the sorption behaviors. Then, dielectric properties such as dielectric constant (ε') and dielectric loss factor (ε″) were measured across various moisture content levels within the frequency range of 200-20 000 MHz. RESULTS: A type III isotherm was observed for all samples and the Peleg model was the best fit with the experimental data. Monolayer moisture content of the samples, estimated using the GAB model, ranged from 3.25% to 4.17% dry basis. For dielectric properties, frequency and moisture dependencies were evident for all sample types. Moreover, the sorption isotherm models effectively described the relationship between water activity (aw) and dielectric properties as reflected by their goodness of fit, and their strong correlation through principal component analysis and Pearson's correlation results. CONCLUSION: The first water transition occurs at aw values of 0.11, 0.12, and 0.22, while the second transition appears at aw values of 0.9, 0.9 and 0.75-0.85 for white rice, brown rice and bran, respectively. This knowledge will be useful for food processors, providing insights into the optimization of food processing and storage conditions to extend food products' shelf life. © 2024 Society of Chemical Industry.

14.
J Chromatogr A ; 1730: 465091, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38964159

RESUMO

An extraction chromatography resin, prepared by the impregnation of bis-octyloxy-calix[4]arene-mono-crown-6 (BOCMC)onto an acrylic ester based polymeric support material, gave excellent uptake data for the removal of radio-cesium (Cs-137) from nitric acid feed solutions. The weight distribution coefficient (Kd) value of >300 obtained during the present study at 3 M HNO3 was the highest reported so far while using a calix-crown-6 based extraction chromatographic resin material. Analogous resin reported previously has yielded a Kd value <100 at comparable feed conditions. The sorbed metal ions could be efficiently desorbed with de-ionized water. Kinetic modeling of the uptake data indicated that both the film and the intra-particle diffusion mechanism are simultaneously operating in the sorption of Cs+ion onto the BOCMC resin. The metal ion sorption data were fitted to the sorption isotherm models and did not conform to the chemisorptions of physisorption models and indicated a pi-pi interaction between the benzene rings of the calix-crown-6 ligand and the Cs+ ion. The reusability of the resins was quite satisfactory after 5 cycles and the radiation stability of the resin material was very good upto an absorbed dose of 500 kGy. The results of column studies were quite encouraging with 15 mL (9 bed volumes) as the breakthrough volume while the elution was complete in about 12 bed volumes of de-ionized water.

15.
Sci Rep ; 14(1): 15026, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951606

RESUMO

The objective of this study was to assess the potential for recovering precious metals from technological solutions using an ion-exchange dynamic method. Precious metals like platinum, palladium, rhodium, and gold are essential materials in various industries such as: automotive, electronics, pharmaceuticals, and jewellery. Due to their limited occurrence in primary sources, there is a growing trend in the market to extract these metals from secondary sources. The research involved conducting sorption and elution tests under different parameters to investigate their impact on the process in dynamic conditions. Additionally, an attempt was made to calculate the operational and total capacity of the resins, which has not been done previously for industrial solutions. The results showed that using Puromet MTS9200, Puromet MTS9850, and Lewatit MonoPlus MP600 resins, the sorption process could be effectively carried out in dynamic conditions with a contact time of 5 min between the technological solution and the resin bed. For optimal elution, the contact time between the eluent solution and the bed should range between 10 and 30 min. To improve rhodium sorption efficiency, it was found that neutralizing the technological solution to a pH of approximately 7 and using Lewatit MonoPlus MP600 resin could be beneficial.

16.
J Environ Radioact ; 278: 107493, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38970971

RESUMO

The presence of carbonates or humic substances (HS) will significantly affect the species and chemical behavior of U(VI) in solution, but lacking systematic exploration of the coupling effect of carbonates and HS under near real environmental conditions at present. Herein, the sorption behavior of U(VI) on illite was systematically studied in the co-existence of carbonates and HS including both humic acid (HA) and fulvic acid (FA) by batch technique. The distribution coefficients (Kd) increased as function of time and temperature but decreased with increasing concentrations of initial U(VI), Ca2+, and Mg2+, as well as ion strength. At pH 2.0-10.5, the Kd values first increased rapidly and then decreased visibly, with its maximum value appearing at pH 5.0, owning to the changes in the interaction between illite and the dominant species of U(VI) from electrostatic attraction to electrostatic repulsion. The sorption was a heterogeneous, spontaneous, and endothermic chemical process, which could be well described by pseudo-second-order kinetic and Flory-Huggins isotherm models. When carbonates and HA/FA coexisted, the Kd values always increased first and then decreased as a function of pH, with the only difference for HA and FA being the key pH (pHkey) at which the promoting and inhibiting effects on the sorption of U(VI) onto illite undergo a transition. The carbonates and HS have a synergistic inhibitory effect on the U(VI) sorption onto illite at pH 7.8. FTIR and XPS spectra demonstrated that the hydroxyl groups on the illite surface and in the HS were involved in U(VI) sorption on illite in the presence of carbonates. These results provide valuable data for a deeper understanding of U(VI) migration in geological media.

17.
Environ Technol ; : 1-16, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38972300

RESUMO

Calotropis procera fibres have been proposed for free-phase diesel removal in case of spillage into groundwater. For this, characterizations were carried out using Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FEG-SEM), wettability and contact angle measurements. Sorption oil capacity, kinetic, isothermal and recycling behaviour were evaluated. For initial optimization of the oil sorption capacity, an experimental design (DOE) was applied, with the optimized condition being 60 g L-1 of diesel in water and 0.01 g of fibre. Then, the results clearly indicated that the fibres have a hydrophobic and oleophilic character, quickly reaching more than 71.43 g g-1 of diesel sorption, according to the adjustment (R² > 0.99) of the pseudo-second order and Langmuir models, governed by absorption mechanisms. It should also be noted that at the end of 8 reuse cycles, the fibre presented a total accumulated sorption capacity of about 252.6 g g-1 of diesel. Furthermore, a laboratory-scale experiment was carried out to remove diesel from groundwater in gas station areas, the fibre removed 98.55% to 99.97% of removal efficiencies were achieved of the free phase over time. Therefore, the material demonstrates excellent characteristics for removing diesel spills in groundwater due to its fast, high and stable removal capacity.

18.
J Environ Radioact ; 278: 107501, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39032341

RESUMO

Crystalline rock is used as the host rock for the disposal of high-level radioactive waste. Two cationic elements (Cs(I) and Ni(II)) and three anionic elements (Se(IV/VI), Mo(VI), and U(VI)) were selected to comprehensively evaluate the sorption behaviors of these radionuclides on crystalline granite and biotite gneiss. The anionic elements showed weak sorption (log Kd (L·kg-1) < 1) and little competition effect, while the cationic elements (log Kd (L·kg-1) = 2-3) showed clear competition (18-98% in Kd values) even at low concentrations. Analysis by pseudo-second-order kinetics showed that Cs(I) sorbed at similar rates on both rocks (20% faster on biotite gneiss), but Ni(II) sorbed 190% faster on biotite gneiss than on granite. That is why the retardation factors for Cs(I) and Ni(II) were reversed in the biotite gneiss column compared to their distribution coefficients. Therefore, the sorption kinetics cannot be neglected in groundwater systems with high flow rates. In the desorption column test, the retardation followed the order of the distribution coefficient. The desorption column test revealed that the distribution coefficient determines the strength of sorption on crystalline rocks.

19.
Bull Environ Contam Toxicol ; 113(1): 6, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980453

RESUMO

Pesticide transport in the environment is impacted by the kinetics of its adsorption onto soil. The adsorption kinetics of pyrimethanil was investigated in ten soil samples of varying physicochemical properties. The highest adsorption was in the soil having the maximum silt and CaCO3 contents, pH and electrical conductance but the lowest amorphous Fe oxides and CaCl2 extractable Mn. Pseudo-second order kinetics and intra-particle diffusion model best accounted the adsorption kinetics of pyrimethanil. The equilibrium adsorption estimated by pseudo-second order kinetics (q02) was significantly and positively correlated with CaCl2 extractable Cu content (r = 0.709) while rate coefficient (k02) had a negative correlation with crystalline iron oxides content (r = -0.675). The intra-particle diffusion coefficient (ki.d.) had inverse relationship with CaCl2 extractable Mn content in soils (r = -0.689). FTIR spectra showed a significant interaction of pyrimethanil with micronutrient cations. Adsorption kinetic parameters of pyrimethanil could be successfully predicted by soil properties. The findings may help to evolve fungicide management decisions.


Assuntos
Fungicidas Industriais , Pirimidinas , Poluentes do Solo , Solo , Adsorção , Fungicidas Industriais/química , Fungicidas Industriais/análise , Cinética , Poluentes do Solo/química , Poluentes do Solo/análise , Solo/química , Pirimidinas/química , Pirimidinas/análise , Modelos Químicos
20.
Artigo em Inglês | MEDLINE | ID: mdl-39017864

RESUMO

Soil erosion from agricultural fields is a persistent ecological problem, potentially leading to eutrophication of aquatic habitats in the catchment area. Often used and recommended mitigation measures are vegetated filter strips (VFS) as buffer zones between arable land and water bodies. However, if they are designed and managed poorly, nutrients - especially phosphorus (P) - may accumulate in the soil. Ultimately, VFS can switch from being a nutrient sink to a source. This problem is further aggravated if the field runoff does not occur as uniform sheet flow, but rather in concentrated form, as is usually the case. To assess the impact of concentrated flow on VFS performance, we have taken soil core samples from field-VFS transition zones at six sites in Lower Austria. We determined a multitude of physical and chemical soil parameters, focusing on P fractions and indices. Our results revealed that concentrated flow can lead to an accumulation of P in the VFS. P levels in the VFS inside the area of concentrated runoff can be equal to or higher than in the field, even though they receive no direct fertilization. However, the concentration and distribution of nutrients in the fields and VFSs were also site-specific and affected by local factors such as the age of the VFS, cropping, and fertilization. Accordingly, there is a need for more sophisticated, bespoke VFS designs that can cope with site-specific runoff volumes and movements of nutrients that occur.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA