Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Heliyon ; 10(5): e26645, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38444471

RESUMO

The flagellar movement of the mammalian sperm plays a crucial role in fertilization. In the female reproductive tract, human spermatozoa undergo a process called capacitation which promotes changes in their motility. Only capacitated spermatozoa may be hyperactivated and only those that transition to hyperactivated motility are capable of fertilizing the egg. Hyperactivated motility is characterized by asymmetric flagellar bends of greater amplitude and lower frequency. Historically, clinical fertilization studies have used two-dimensional analysis to classify sperm motility, despite the inherently three-dimensional (3D) nature of sperm motion. Recent research has described several 3D beating features of sperm flagella. However, the 3D motility pattern of hyperactivated spermatozoa has not yet been characterized. One of the main challenges in classifying these patterns in 3D is the lack of a ground-truth reference, as it can be difficult to visually assess differences in flagellar beat patterns. Additionally, it is worth noting that only a relatively small proportion, approximately 10-20% of sperm incubated under capacitating conditions exhibit hyperactivated motility. In this work, we used a multifocal image acquisition system that can acquire, segment, and track sperm flagella in 3D+t. We developed a feature-based vector that describes the spatio-temporal flagellar sperm motility patterns by an envelope of ellipses. The classification results obtained using our 3D feature-based descriptors can serve as potential label for future work involving deep neural networks. By using the classification results as labels, it will be possible to train a deep neural network to automatically classify spermatozoa based on their 3D flagellar beating patterns. We demonstrated the effectiveness of the descriptors by applying them to a dataset of human sperm cells and showing that they can accurately differentiate between non-hyperactivated and hyperactivated 3D motility patterns of the sperm cells. This work contributes to the understanding of 3D flagellar hyperactive motility patterns and provides a framework for research in the fields of human and animal fertility.

2.
Neuroimage ; 287: 120522, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38253216

RESUMO

Designing a comprehensive four-dimensional resting-state functional magnetic resonance imaging (4D Rs-fMRI) based default mode network (DMN) modeling methodology to reveal the spatio-temporal patterns of individual DMN, is crucial for understanding the cognitive mechanisms of the brain and the pathogenesis of psychiatric disorders. However, there are still two limitations of existing approaches for DMN modeling. The approaches either (1) simply split the spatio-temporal components and ignore the overall character of the spatio-temporal patterns or (2) are biased in the process of feature extraction for DMN modeling, and their spatio-temporal accuracy is thus not warranted. To this end, we propose a novel Spatio-Temporal Brain Attention Skip Network (STBAS-Net) to model the personalized spatio-temporal patterns of the DMN. STBAS-Net consists of spatial and temporal components, where the multi-head attention skip connection block in the spatial component achieves detailed feature extraction and enhancement in the shallow stage. Under the guidance of spatial information, we technically fuse multiple spatio-temporal information in the temporal component, which dexterously exploits the overall spatio-temporal features and achieves mutual constraints of spatio-temporal patterns to characterize the spatio-temporal patterns of the DMN. We verify the proposed STBAS-Net on a publicly released 4D Rs-fMRI dataset and an EMCI dataset. The experimental results show that compared with existing advanced methods, the proposed network can more accurately model the personalized spatio-temporal patterns of the human brain DMN and successfully identify abnormal spatio-temporal patterns in EMCI patients. This study provides a potential tool for revealing the spatio-temporal patterns of the human brain DMN and is expected to provide an effective methodological framework for future exploration of abnormal brain spatio-temporal patterns and modeling of other functional brain networks.


Assuntos
Mapeamento Encefálico , Rede de Modo Padrão , Humanos , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Atenção , Rede Nervosa/diagnóstico por imagem
3.
Front Neurosci ; 17: 1244675, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38075285

RESUMO

Spiking neural networks coupled with neuromorphic hardware and event-based sensors are getting increased interest for low-latency and low-power inference at the edge. However, multiple spiking neuron models have been proposed in the literature with different levels of biological plausibility and different computational features and complexities. Consequently, there is a need to define the right level of abstraction from biology in order to get the best performance in accurate, efficient and fast inference in neuromorphic hardware. In this context, we explore the impact of synaptic and membrane leakages in spiking neurons. We confront three neural models with different computational complexities using feedforward and recurrent topologies for event-based visual and auditory pattern recognition. Our results showed that, in terms of accuracy, leakages are important when there are both temporal information in the data and explicit recurrence in the network. Additionally, leakages do not necessarily increase the sparsity of spikes flowing in the network. We also investigated the impact of heterogeneity in the time constant of leakages. The results showed a slight improvement in accuracy when using data with a rich temporal structure, thereby validating similar findings obtained in previous studies. These results advance our understanding of the computational role of the neural leakages and network recurrences, and provide valuable insights for the design of compact and energy-efficient neuromorphic hardware for embedded systems.

4.
Entropy (Basel) ; 25(8)2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37628167

RESUMO

Results from an explorative study revealing spatio-temporal patterns of the SARS-CoV-2/ COVID-19 epidemic in Germany are presented. We dispense with contestable model assumptions and show the intrinsic spatio-temporal patterns of the epidemic dynamics. The analysis is based on COVID-19 incidence data, which are age-stratified and spatially resolved at the county level, provided by the Federal Government's Public Health Institute of Germany (RKI) for public use. Although the 400 county-related incidence time series shows enormous heterogeneity, both with respect to temporal features as well as spatial distributions, the counties' incidence curves organise into well-distinguished clusters that coincide with East and West Germany. The analysis is based on dimensionality reduction, multidimensional scaling, network analysis, and diversity measures. Dynamical changes are captured by means of difference-in-difference methods, which are related to fold changes of the effective reproduction numbers. The age-related dynamical patterns suggest a considerably stronger impact of children, adolescents and seniors on the epidemic activity than previously expected. Besides these concrete interpretations, the work mainly aims at providing an atlas for spatio-temporal patterns of the epidemic, which serves as a basis to be further explored with the expertise of different disciplines, particularly sociology and policy makers. The study should also be understood as a methodological contribution to getting a handle on the unusual complexity of the COVID-19 pandemic.

5.
Artigo em Inglês | MEDLINE | ID: mdl-36776477

RESUMO

Background: Exposure to particulate air pollution is one of the greatest environmental risk factors for adverse human health outcomes. However, the constituents that may be responsible for such adverse health effects have not been fully studied. Methods: Total suspended particulates filters collected every 6 days in 2011 from three South Carolina locations were used in this case study. An inductively coupled plasma mass spectrometer interfaced with a laser ablation system (LA-ICP-MS) was used to directly analyze 41 inorganic elemental species on air pollution filters. Then, machine learning and multivariate statistical methods was employed to identify combinatorial patterns in the data and classify sites based on their elemental composition. Results: Forty-one elements were assessed and 33 were used in subsequent analysis. Correlations between United States Environmental Protection Agency (US EPA)'s chemical analysis dataset and data from the current study revealed significant associations between 7/15 elements with enough variation for comparison (r between 0.28 to 0.66, p<0.05). Subsequent multivariate analyses revealed four distinct patterns in the distribution of elements by sample location throughout the year. Conclusion: The different airborne elements may need to be assessed to understand combinations of elements which occur together over space and/or time. Such information can be helpful in planning effective counter measures and strategies to control particulate air pollution.

6.
Biostatistics ; 24(3): 562-584, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34958093

RESUMO

Univariate spatio-temporal models for areal count data have received great attention in recent years for estimating risks. However, models for studying multivariate responses are less commonly used mainly due to the computational burden. In this article, multivariate spatio-temporal P-spline models are proposed to study different forms of violence against women. Modeling distinct crimes jointly improves the precision of estimates over univariate models and allows to compute correlations among them. The correlation between the spatial and the temporal patterns may suggest connections among the different crimes that will certainly benefit a thorough comprehension of this problem that affects millions of women around the world. The models are fitted using integrated nested Laplace approximations and are used to analyze four distinct crimes against women at district level in the Indian state of Maharashtra during the period 2001-2013.


Assuntos
Crime , Humanos , Feminino , Teorema de Bayes , Índia , Análise Espaço-Temporal
7.
Ecol Evol ; 12(10): e9430, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36311404

RESUMO

Most of the Earth's surface has now been modified by humans. In many countries, natural and semi-natural ecosystems mostly occur as islands, isolated by land converted for agriculture and a variety of other land-uses. In this fragmented state, long-distance dispersal may be the only option for species to adapt their ranges in response to changing climate. The order of arrival of species may leave a lasting imprint on community assembly. Although mostly studied at and above the species level, such priority effects also apply at the intraspecific level. We suggest that this may be particularly important in subarctic and arctic ecosystems. Mountain birch (Betula pubescens ssp. tortuosa) is characterized by great intraspecific variation. We explored spatio-temporal patterns of the first two mountain birch generations on a homogeneous, early successional glacial outwash plain in SE Iceland that was the recipient of spatially extensive long-distance dispersal ca. 30 years ago. We evaluated the decadal progress of the young population by remeasuring in 2018, tree density and growth form, plant size, and reproductive effort on 30 transects (150 m2) established in 2008 at four sites on the plain and two adjacent sites ca. 10 km away. All measured variables showed positive increases, but contrary to our predictions of converging dynamics among sites, they had significantly diverged. Thus, two of the sites (only 500 m apart) could not be distinguished in 2008, but by 2018, one of them had much faster growth rates than the other, a higher growth form index reflecting more upright tree stature, greater reproductive effort, and much greater second-generation seedling recruitment. We discuss two hypotheses that may explain the diverging dynamics, site-scale environmental heterogeneity, and legacies of intraspecific priority effects.

8.
Biosystems ; 220: 104756, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35940498

RESUMO

We consider a model for the propagation of electrical impulses or activity in a neuronal network. The vertices of a square lattice represent neurons, and the edges of the lattice represent the synaptic connections. Each vertex v is assigned a type: inhibitory or excitatory. The dynamics of propagation of the initial activity captures features of the "integrate-and-fire" model. We study the spread of activation in a large network and describe possible spatio-temporal limiting patterns depending on the initial activation. The rich palette of the limits with qualitatively different properties, including expanding patterns, fixed patterns, and patterns moving across the network, allows us to argue that this is a versatile model for the study of associative memory.


Assuntos
Autômato Celular , Modelos Neurológicos , Neurônios/fisiologia
9.
Entropy (Basel) ; 24(7)2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35885116

RESUMO

Crime is a negative phenomenon that affects the daily life of the population and its development. When modeling crime data, assumptions on either the spatial or the temporal relationship between observations are necessary if any statistical analysis is to be performed. In this paper, we structure space-time dependency for count data by considering a stochastic difference equation for the intensity of the space-time process rather than placing structure on a latent space-time process, as Cox processes would do. We introduce a class of spatially correlated self-exciting spatio-temporal models for count data that capture both dependence due to self-excitation, as well as dependence in an underlying spatial process. We follow the principles in Clark and Dixon (2021) but considering a generalized additive structure on spatio-temporal varying covariates. A Bayesian framework is proposed for inference of model parameters. We analyze three distinct crime datasets in the city of Riobamba (Ecuador). Our model fits the data well and provides better predictions than other alternatives.

10.
Comput Environ Urban Syst ; 90: 101703, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34629583

RESUMO

Cities worldwide adopted lockdown policies in response to the outbreak of coronavirus disease 2019 (COVID-19), significantly influencing people's travel behavior. In particular, micro-mobility, an emerging mode of urban transport, is profoundly shaped by this crisis. However, there is limited research devoted to understanding the rapidly evolving trip patterns of micro-mobility in response to COVID-19. To fill this gap, we analyze the changes in micro-mobility usage before and during the lockdown period exploiting high-resolution micro-mobility trip data collected in Zurich, Switzerland. Specifically, docked bike, docked e-bike, and dockless e-bike are evaluated and compared from the perspective of space, time and semantics. First, the spatial and temporal analysis results uncover that the number of trips decreased remarkably during the lockdown period. The striking difference between the normal and lockdown period is the decline in the peak hours of workdays. Second, the origin-destination flows are used to construct spatially embedded networks. The results suggest that the origin-destination pairs remain similar during the lockdown period, while the numbers of trips between each origin-destination pair is reduced due to COVID-19 pandemic. Finally, the semantic analysis is conducted to uncover the changes in trip purpose. It is revealed that the proportions of Home, Park, and Grocery activities increase, while the proportions of Leisure and Shopping activities decrease during the lockdown period. The above results can help planners and policymakers better make evidence-based policies regarding micro-mobility in the post-pandemic society.

11.
Health Informatics J ; 27(3): 14604582211033020, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34474603

RESUMO

Acute coronary syndrome (ACS) in women is a growing public health issue and a death leading cause. We explored whether the hospital healthcare trajectory was characterizable using a longitudinal clustering approach in women with ACS. From the 2009-2014 French nationwide hospital database, we extracted spatio-temporal patterns in ACS patient trajectories, by replacing the spatiality by their hospitalization cause. We used these patterns to characterize hospital healthcare flows in a visualization tool. We clustered these trajectories with kmlShape to identify time gap and tariff profiles. ACS hospital healthcare flows have three key categories: Angina pectoris, Myocardial Infarction or Ischemia. Elderly flows were more complex. Time gap profiles showed that readmissions were closer together as time goes by. Tariff profiles were different according to age and initial event. Our approach might be applied to monitoring other chronic diseases. Further work is needed to integrate these results into a medical decision-making tool.


Assuntos
Síndrome Coronariana Aguda , Infarto do Miocárdio , Síndrome Coronariana Aguda/terapia , Idoso , Análise por Conglomerados , Atenção à Saúde , Feminino , Hospitais , Humanos
12.
Soc Netw Anal Min ; 11(1): 57, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34149960

RESUMO

Social media platforms like Twitter have become an easy portal for billions of people to connect and exchange their thoughts. Unfortunately, people commonly use these platforms to share misinformation which can influence other people adversely. The spread of misinformation is unavoidable in an extraordinary situation like Covid-19, and the consequences can be dreadful. This paper proposes a two-step ranking-based misinformation detection (RMiD) technique. Firstly, a novel ranking-based approach leveraging the scalable information retrieval infrastructure is applied to detect misinformation from a huge collection of unlabelled tweets based on a related but very small labelled misinformation data set. Secondly, the identified misinformation tweets are represented as a coupled matrix tensor model and Nonnegative Coupled Matrix Tensor Factorization is applied to learn their spatio-temporal topic dynamics. The experimental analysis shows that RMiD is capable of detecting misinformation with better coverage and less noise in comparison with existing techniques. Moreover, the coupled matrix tensor representation has improved the quality of topics discovered from unlabelled data up to 4% by leveraging the semantic similarity of terms in labelled data. SUPPLEMENTARY INFORMATION: The online version supplementary material available at 10.1007/s13278-021-00767-7.

13.
Comput Methods Programs Biomed ; 208: 106167, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34091101

RESUMO

BACKGROUND AND OBJECTIVE: Atrial fibrillation (AF) is the most common cardiac arrhythmia in the world. It is associated with significantly increased morbidity and mortality. Diagnosis of the disease can be based on the analysis of the electrical atrial activity, on quantification of the heart rate irregularity or on a mixture of the both approaches. Since the amplitude of the atrial waves is small, their analysis can lead to false results. On the other hand, the heart rate based analysis usually leads to many unnecessary warnings. Therefore, our goal is to develop a new method for effective AF detection based on the analysis of the electrical atrial waves. METHODS: The proposed method employs the fact that there is a lack of repeatable P waves preceding QRS complexes during AF. We apply the operation of spatio-temporal filtering (STF) to magnify and detect the prominent spatio-temporal patterns (STP) within the P waves in multi-channel ECG recordings. Later we measure their distances (PQ) to the succeeding QRS complexes, and we estimate dispersion of the obtained PQ series. For signals with normal sinus rhythm, this dispersion is usually very low, and contrary, for AF it is much raised. This allows for effective discrimination of this cardiologic disorder. RESULTS: Tested on an ECG database consisting of AF cases, normal rhythm cases and cases with normal rhythm restored by the use of cardioversion, the method proposed allowed for AF detection with the accuracy of 98.75% on the basis of both 8-channel and 2-channel signals of 12 s length. When the signals length was decreased to 6 s, the accuracy varied in the range of 95%-97.5% depending on the number of channels and the dispersion measure applied. CONCLUSIONS: Our approach allows for high accuracy of atrial fibrillation detection using the analysis of electrical atrial activity. The method can be applied to an early detection of the desease and can advantageously be used to decrease the number of false warnings in systems based on the analysis of the heart rate.


Assuntos
Fibrilação Atrial , Fibrilação Atrial/diagnóstico , Eletrocardiografia , Átrios do Coração/diagnóstico por imagem , Frequência Cardíaca , Humanos
14.
Artigo em Inglês | MEDLINE | ID: mdl-33014996

RESUMO

Multicellularity, the coordinated collective behavior of cell populations, gives rise to the emergence of self-organized phenomena at many different spatio-temporal scales. At the genetic scale, oscillators are ubiquitous in regulation of multicellular systems, including during their development and regeneration. Synthetic biologists have successfully created simple synthetic genetic circuits that produce oscillations in single cells. Studying and engineering synthetic oscillators in a multicellular chassis can therefore give us valuable insights into how simple genetic circuits can encode complex multicellular behaviors at different scales. Here we develop a study of the coupling between the repressilator synthetic genetic ring oscillator and constraints on cell growth in colonies. We show in silico how mechanical constraints generate characteristic patterns of growth rate inhomogeneity in growing cell colonies. Next, we develop a simple one-dimensional model which predicts that coupling the repressilator to this pattern of growth rate via protein dilution generates traveling waves of gene expression. We show that the dynamics of these spatio-temporal patterns are determined by two parameters; the protein degradation and maximum expression rates of the repressors. We derive simple relations between these parameters and the key characteristics of the traveling wave patterns: firstly, wave speed is determined by protein degradation and secondly, wavelength is determined by maximum gene expression rate. Our analytical predictions and numerical results were in close quantitative agreement with detailed individual based simulations of growing cell colonies. Confirming published experimental results we also found that static ring patterns occur when protein stability is high. Our results show that this pattern can be induced simply by growth rate dilution and does not require transition to stationary phase as previously suggested. Our method generalizes easily to other genetic circuit architectures thus providing a framework for multi-scale rational design of spatio-temporal patterns from genetic circuits. We use this method to generate testable predictions for the synthetic biology design-build-test-learn cycle.

15.
JMIR Public Health Surveill ; 6(3): e12842, 2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32701458

RESUMO

BACKGROUND: Agencies such as the Centers for Disease Control and Prevention (CDC) currently release influenza-like illness incidence data, along with descriptive summaries of simple spatio-temporal patterns and trends. However, public health researchers, government agencies, as well as the general public, are often interested in deeper patterns and insights into how the disease is spreading, with additional context. Analysis by domain experts is needed for deriving such insights from incidence data. OBJECTIVE: Our goal was to develop an automated approach for finding interesting spatio-temporal patterns in the spread of a disease over a large region, such as regions which have specific characteristics (eg, high incidence in a particular week, those which showed a sudden change in incidence) or regions which have significantly different incidence compared to earlier seasons. METHODS: We developed techniques from the area of transactional data mining for characterizing and finding interesting spatio-temporal patterns in disease spread in an automated manner. A key part of our approach involved using the principle of minimum description length for representing a given target set in terms of combinations of attributes (referred to as clauses); we considered both positive and negative clauses, relaxed descriptions which approximately represent the set, and used integer programming to find such descriptions. Finally, we designed an automated approach, which examines a large space of sets corresponding to different spatio-temporal patterns, and ranks them based on the ratio of their size to their description length (referred to as the compression ratio). RESULTS: We applied our methods using minimum description length to find spatio-temporal patterns in the spread of seasonal influenza in the United States using state level influenza-like illness activity indicator data from the CDC. We observed that the compression ratios were over 2.5 for 50% of the chosen sets, when approximate descriptions and negative clauses were allowed. Sets with high compression ratios (eg, over 2.5) corresponded to interesting patterns in the spatio-temporal dynamics of influenza-like illness. Our approach also outperformed description by solution in terms of the compression ratio. CONCLUSIONS: Our approach, which is an unsupervised machine learning method, can provide new insights into patterns and trends in the disease spread in an automated manner. Our results show that the description complexity is an effective approach for characterizing sets of interest, which can be easily extended to other diseases and regions beyond influenza in the US. Our approach can also be easily adapted for automated generation of narratives.


Assuntos
Mineração de Dados/métodos , Influenza Humana/diagnóstico , Estações do Ano , Análise Espaço-Temporal , Algoritmos , Mineração de Dados/estatística & dados numéricos , Humanos , Influenza Humana/epidemiologia , Influenza Humana/transmissão , Estados Unidos/epidemiologia , Estudos de Validação como Assunto
16.
Artigo em Inglês | MEDLINE | ID: mdl-32668595

RESUMO

Deteriorating surface water quality has become an important environmental problem in China. In this study, river water quality was monitored in July (wet season) and October (dry season) 2019 at 26 sites, and a water quality index (WQI) and positive matrix factorization (PMF) model were used to assess surface water quality and identify pollution sources in the Beichuan River basin, Qinghai Province, China. The results showed that 53.85% and 76.92% of TN, 11.54% and 34.62% of TP, 65.38% and 76.92% of Fe, and 11.54% and 15.38% of Mn samples in the dry and wet seasons, respectively, exceeded the Chinese Government's Grade III standards for surface water quality. The spatial variation in water quality showed that it gradually deteriorated from upstream to downstream as a result of human activity. The temporal variation showed that water quality was poorer in the wet season than in the dry season because of the rainfall runoff effect. The PMF model outputs showed that the primary sources of pollution in the wet season were mineral weathering and organic pollution sources, domestic and industrial sewage, and agricultural and urban non-point pollution sources. However, in the dry season, the primary sources were mineral weathering and organic pollution sources, industrial sewage, and domestic sewage. Our results suggest that the point pollution sources (domestic and industrial sewage) should be more strictly controlled, as a priority, in order to prevent the continued deterioration in water quality.


Assuntos
Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Poluição Química da Água/análise , Poluição da Água/estatística & dados numéricos , Qualidade da Água , China , Análise Fatorial , Humanos , Rios/química , Estações do Ano , Análise Espaço-Temporal , Poluição da Água/análise
17.
Front Neurosci ; 14: 420, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32528239

RESUMO

Precise spike timing and temporal coding are used extensively within the nervous system of insects and in the sensory periphery of higher order animals. However, conventional Artificial Neural Networks (ANNs) and machine learning algorithms cannot take advantage of this coding strategy, due to their rate-based representation of signals. Even in the case of artificial Spiking Neural Networks (SNNs), identifying applications where temporal coding outperforms the rate coding strategies of ANNs is still an open challenge. Neuromorphic sensory-processing systems provide an ideal context for exploring the potential advantages of temporal coding, as they are able to efficiently extract the information required to cluster or classify spatio-temporal activity patterns from relative spike timing. Here we propose a neuromorphic model inspired by the sand scorpion to explore the benefits of temporal coding, and validate it in an event-based sensory-processing task. The task consists in localizing a target using only the relative spike timing of eight spatially-separated vibration sensors. We propose two different approaches in which the SNNs learns to cluster spatio-temporal patterns in an unsupervised manner and we demonstrate how the task can be solved both analytically and through numerical simulation of multiple SNN models. We argue that the models presented are optimal for spatio-temporal pattern classification using precise spike timing in a task that could be used as a standard benchmark for evaluating event-based sensory processing models based on temporal coding.

18.
Mar Pollut Bull ; 154: 111123, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32319934

RESUMO

Oil spill risk assessments are important tools for the offshore oil and gas industries to minimize the consequences of deep spills. The stochastic modeling required in this kind of studies, is generally centered on surface transport and based on a Monte Carlo selection of hundreds or thousands of met-ocean scenarios from reanalysis databases, to create an ensemble of spill simulations. We propose a new integrated stochastic modeling methodology including both surface and subsurface transport, based on the specific selection of the most relevant environmental conditions through data-mining techniques. The methodology was applied to evaluate oil contamination probability as a consequence of a simulated deep release in the North Sea. Our results show the effectiveness of the proposed methodology to select representative evolutions of met-ocean conditions and to obtain pollution probabilities from an integrated subsurface and surface oil spill stochastic modeling, while assuring a manageable computational effort.


Assuntos
Poluição por Petróleo/análise , Método de Monte Carlo , Mar do Norte , Oceanos e Mares , Medição de Risco
19.
Neuroimage Clin ; 25: 102150, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31901793

RESUMO

Most neurodegenerative disorders are characterized by progressive loss of neurons throughout the course of disease in the form of specific spatio-temporal patterns. To capture and quantify these coherent patterns across both space and time, traditionally one would either fit a pre-defined model with spatial and temporal parameters or apply analysis in the spatial and temporal domains separately. In this work, we introduce and validate the use of dynamic mode decomposition (DMD), a data-driven multivariate approach, to extract coupled spatio-temporal patterns simultaneously. We apply the method to examine progressive dopaminergic degeneration in 41 patients with Parkinson's disease (PD) using [11C](±)dihydrotetrabenazine (DTBZ) Positron Emission Tomography (PET). DMD decomposed the progressive dopaminergic changes in the putamen into two orthogonal temporal progression curves associated with distinct spatial patterns: 1) an anterior-posterior gradient, the expression of which decreased gradually with disease progression with a higher initial expression in the less affected side; 2) a dorsal-ventral gradient in the less affected side, which was present in early disease stage only. In the caudate, we found a head-tail gradient analogous to the anterior-posterior gradient seen in the putamen; as in the putamen, the expression of this gradient decreased gradually with disease progression with higher expression in the less affected side. Our results with DTBZ PET data show the applicability and relevance of the proposed method for extracting spatio-temporal patterns of neurotransmitter changes due to neurodegeneration. The method is able to decompose known PD-induced dopaminergic denervation into orthogonal (and thus loosely independent) temporal curves, which may be able to reflect and separate either different mechanisms underlying disease progression and disease initiation, or differential involvement of striatal sub-regions at different disease stages, in a completely data driven way. It is expected that this method can be easily extended to other PET tracers and neurodegenerative disorders and may help to elucidate disease mechanisms in more details compared to traditional approaches.


Assuntos
Interpretação de Imagem Assistida por Computador/métodos , Neuroimagem/métodos , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/patologia , Tomografia por Emissão de Pósitrons/métodos , Putamen/diagnóstico por imagem , Putamen/patologia , Idoso , Dopamina/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/metabolismo , Putamen/metabolismo , Tetrabenazina/análogos & derivados
20.
Artigo em Inglês | MEDLINE | ID: mdl-31159391

RESUMO

With rapid urbanization and economic development, artificial lighting at night brings convenience to human life but also causes a considerable urban environmental pollution issue. This study employed the Mann-Kendall non-parametric test, nighttime light indices, and the standard deviation method to investigate the spatio-temporal characteristics of artificial lighting in the Beijing-Tianjin-Hebei region. Moreover, nighttime light imagery from the Defense Meteorological Satellite Program Operational Linescan System, socioeconomic data, and high-resolution satellite images were combined to comprehensively explore the driving factors of urban artificial lighting change. The results showed the following: (1) Overall, there was an increasing trend in artificial lighting in the Beijing-Tianjin-Hebei region, which accounted for approximately 56.87% of the total study area. (2) The change in artificial lighting in the entire area was relatively stable. The artificial lighting in the northwest area changed faster than that in the southeast area, and the areas where artificial lighting changed the most were Beijing, Tianjin and Tangshan. (3) The fastest growth of artificial lighting was in Chengde and Zhangjiakou, where the rates of increase were 334% and 251%, respectively. The spatial heterogeneity of artificial lighting in economically developed cities was higher than that in economically underdeveloped cities such as Chengde and Zhangjiakou. (4) Multi-source data were combined to analyse the driving factors of urban artificial lighting in the entire area. The Average Population of Districts under City (R2 = 0.77) had the strongest effect on artificial lighting. Total Passenger Traffic (R2 = 0.54) had the most non-obvious effect. At different city levels, driving factors varied with differences of economy, geographical location, and the industrial structures of cities. Urban expansion, transportation hubs, and industries were the major reasons for the significant change in nighttime light. Urban artificial lighting represents a trend of overuse closely related to nighttime light pollution. This study of artificial lighting contributes to the rational planning of urban lighting systems, the prevention and control of nighttime light pollution, and the creation of liveable and ecologically green cities.


Assuntos
Iluminação , Tecnologia de Sensoriamento Remoto , Fatores Socioeconômicos , Pequim , Cidades , Desenvolvimento Econômico , Poluição Ambiental , Humanos , Meios de Transporte , Urbanização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...