Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 979
Filtrar
1.
J Forensic Sci ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775145

RESUMO

Mitragyna speciosa, commonly known as kratom, is a narcotic plant that is used for its unique mood-enhancing and pain-relieving effects. It is marketed throughout the United States as a 'legal high' and has gained popularity as an alternative to opioids. However, kratom's increasing involvement in accidental overdoses, especially among polydrug users, has prompted warnings from the Drug Enforcement Agency (DEA) and the Food and Drug Administration (FDA). Despite these warnings, kratom remains legal federally, although it is banned in six states. This legal disparity complicates monitoring and enforcement efforts in states where kratom is illegal. Common forensic techniques using morphology or chemical analysis are beneficial in some instances but are not useful in source attribution because most seized kratom is powdered and the alkaloid content of samples can vary within products, making sourcing unreliable. This study focused on developing a DNA barcoding method to access sequence variation in commercial kratom products. It evaluated the utility of one nuclear barcode region (ITS) and three chloroplast barcode regions (matK, rbcL, and trnH-psbA) in assessing sequence variation across commercially available kratom products. Novel polymorphisms were discovered, and the ITS region showed the greatest variation between samples. Among the 15 kratom products tested, only two haplotypes were identified across the four barcoding regions. The findings highlight the potential of DNA barcoding as a forensic tool in the traceability and enforcement against illegal kratom distribution. Nonetheless, the limited haplotypic diversity points to a need for further development and expansion of the M. speciosa DNA sequence database.

2.
J Korean Med Sci ; 39(17): e157, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38711319

RESUMO

This study assessed the performance of the BioFire Blood Culture Identification 2 (BCID2) panel in identifying microorganisms and antimicrobial resistance (AMR) profiles in positive blood cultures (BCs) and its influence on turnaround time (TAT) compared with conventional culture methods. We obtained 117 positive BCs, of these, 102 (87.2%) were correctly identified using BCID2. The discordance was due to off-panel pathogens detected by culture (n = 13), and additional pathogens identified by BCID2 (n = 2). On-panel pathogen concordance between the conventional culture and BCID2 methods was 98.1% (102/104). The conventional method detected 19 carbapenemase-producing organisms, 14 extended-spectrum beta-lactamase-producing Enterobacterales, 18 methicillin-resistant Staphylococcus spp., and four vancomycin-resistant Enterococcus faecium. BCID2 correctly predicted 53 (96.4%) of 55 phenotypic resistance patterns by detecting AMR genes. The TAT for BCID2 was significantly lower than that for the conventional method. BCID2 rapidly identifies pathogens and AMR genes in positive BCs.


Assuntos
Hemocultura , Reação em Cadeia da Polimerase Multiplex , Reação em Cadeia da Polimerase Multiplex/métodos , Humanos , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana/genética , Proteínas de Bactérias/genética , beta-Lactamases/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Enterococcus faecium/genética , Enterococcus faecium/isolamento & purificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/efeitos dos fármacos , Enterococos Resistentes à Vancomicina/genética , Enterococos Resistentes à Vancomicina/isolamento & purificação , Bacteriemia/microbiologia , Bacteriemia/diagnóstico
3.
PhytoKeys ; 241: 143-154, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38699680

RESUMO

Species identification is fundamental to all aspects of biology and conservation. The process can be challenging, particularly in groups including many closely related or similar species. The problem is confounded by the absence of an up-to-date taxonomic revision, but even with such a resource all but professional botanists may struggle to recognise key species, presenting a substantial barrier to vital work such as surveys, threat assessments, and seed collection for ex situ conservation. Genus Erica: An Identification Aid is a tool to help both amateurs and professionals identify (using a limited number of accessible characteristics) and find information about the 851 species and many subspecific taxa of the genus Erica. We present an updated version 4.00, with new features including integrating distribution data from GBIF and iNaturalist, links to taxonomic resources through World Flora Online, and a probability function for identifications, that is freely available for PCs. It remains a work in progress: We discuss routes forward for collaboratively improving this resource.

4.
Parasit Vectors ; 17(1): 216, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734639

RESUMO

BACKGROUND: Mosquitoes pose a risk to human health worldwide, and correct species identification and detection of cryptic species are the most important keys for surveillance and control of mosquito vectors. In addition to traditional identification based on morphology, DNA barcoding has recently been widely used as a complementary tool for reliable identification of mosquito species. The main objective of this study was to create a reference DNA barcode library for the Croatian mosquito fauna, which should contribute to more accurate and faster identification of species, including cryptic species, and recognition of relevant vector species. METHODS: Sampling was carried out in three biogeographical regions of Croatia over six years (2017-2022). The mosquitoes were morphologically identified; molecular identification was based on the standard barcoding region of the mitochondrial COI gene and the nuclear ITS2 region, the latter to identify species within the Anopheles maculipennis complex. The BIN-RESL algorithm assigned the COI sequences to the corresponding BINs (Barcode Index Number clusters) in BOLD, i.e. to putative MOTUs (Molecular Operational Taxonomic Units). The bPTP and ASAP species delimitation methods were applied to the genus datasets in order to verify/confirm the assignment of specimens to specific MOTUs. RESULTS: A total of 405 mosquito specimens belonging to six genera and 30 morphospecies were collected and processed. Species delimitation methods assigned the samples to 31 (BIN-RESL), 30 (bPTP) and 28 (ASAP) MOTUs, with most delimited MOTUs matching the morphological identification. Some species of the genera Culex, Aedes and Anopheles were assigned to the same MOTUs, especially species that are difficult to distinguish morphologically and/or represent species complexes. In total, COI barcode sequences for 34 mosquito species and ITS2 sequences for three species of the genus Anopheles were added to the mosquito sequence database for Croatia, including one individual from the Intrudens Group, which represents a new record for the Croatian mosquito fauna. CONCLUSION: We present the results of the first comprehensive study combining morphological and molecular identification of most mosquito species present in Croatia, including several invasive and vector species. With the exception of some closely related species, this study confirmed that DNA barcoding based on COI provides a reliable basis for the identification of mosquito species in Croatia.


Assuntos
Culicidae , Código de Barras de DNA Taxonômico , Complexo IV da Cadeia de Transporte de Elétrons , Mosquitos Vetores , Animais , Croácia , Mosquitos Vetores/genética , Mosquitos Vetores/classificação , Mosquitos Vetores/anatomia & histologia , Culicidae/classificação , Culicidae/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Anopheles/genética , Anopheles/classificação , Filogenia , Biblioteca Gênica
5.
Front Zool ; 21(1): 10, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561769

RESUMO

BACKGROUND: Rapid identification and classification of bats are critical for practical applications. However, species identification of bats is a typically detrimental and time-consuming manual task that depends on taxonomists and well-trained experts. Deep Convolutional Neural Networks (DCNNs) provide a practical approach for the extraction of the visual features and classification of objects, with potential application for bat classification. RESULTS: In this study, we investigated the capability of deep learning models to classify 7 horseshoe bat taxa (CHIROPTERA: Rhinolophus) from Southern China. We constructed an image dataset of 879 front, oblique, and lateral targeted facial images of live individuals collected during surveys between 2012 and 2021. All images were taken using a standard photograph protocol and setting aimed at enhancing the effectiveness of the DCNNs classification. The results demonstrated that our customized VGG16-CBAM model achieved up to 92.15% classification accuracy with better performance than other mainstream models. Furthermore, the Grad-CAM visualization reveals that the model pays more attention to the taxonomic key regions in the decision-making process, and these regions are often preferred by bat taxonomists for the classification of horseshoe bats, corroborating the validity of our methods. CONCLUSION: Our finding will inspire further research on image-based automatic classification of chiropteran species for early detection and potential application in taxonomy.

6.
BMC Plant Biol ; 24(1): 254, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594633

RESUMO

BACKGROUND: The genus Caragana encompasses multiple plant species that possess medicinal and ecological value. However, some species of Caragana are quite similar in morphology, so identifying species in this genus based on their morphological characteristics is considerably complex. In our research, illumina paired-end sequencing was employed to investigate the genetic organization and structure of Caragana tibetica and Caragana turkestanica, including the previously published chloroplast genome sequence of 7 Caragana plants. RESULTS: The lengths of C. tibetica and C. turkestanica chloroplast genomes were 128,433 bp and 129,453 bp, respectively. The absence of inverted repeat sequences in these two species categorizes them under the inverted repeat loss clade (IRLC). They encode 110 and 111 genes (4 /4 rRNA genes, 30 /31tRNA genes, and 76 /76 protein-coding genes), respectively. Comparison of the chloroplast genomes of C. tibetica and C. turkestanica with 7 other Caragana species revealed a high overall sequence similarity. However, some divergence was observed between certain intergenic regions (matK-rbcL, psbD-psbM, atpA-psbI, and etc.). Nucleotide diversity (π) analysis revealed the detection of five highly likely variable regions, namely rps2-atpI, accD-psaI-ycf4, cemA-petA, psbN-psbH and rpoA-rps11. Phylogenetic analysis revealed that C. tibetica's sister species is Caragana jubata, whereas C. turkestanica's closest relative is Caragana arborescens. CONCLUSIONS: The present study provides worthwhile information about the chloroplast genomes of C. tibetica and C. turkestanica, which aids in the identification and classification of Caragana species.


Assuntos
Caragana , Genoma de Cloroplastos , Filogenia , Caragana/genética , Genoma de Cloroplastos/genética
7.
BMC Genomics ; 25(1): 387, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643090

RESUMO

BACKGROUND: Drug-resistant tuberculosis (TB) is a major threat to global public health. Whole-genome sequencing (WGS) is a useful tool for species identification and drug resistance prediction, and many clinical laboratories are transitioning to WGS as a routine diagnostic tool. However, user-friendly and high-confidence automated bioinformatics tools are needed to rapidly identify M. tuberculosis complex (MTBC) and non-tuberculous mycobacteria (NTM), detect drug resistance, and further guide treatment options. RESULTS: We developed GenoMycAnalyzer, a web-based software that integrates functions for identifying MTBC and NTM species, lineage and spoligotype prediction, variant calling, annotation, drug-resistance determination, and data visualization. The accuracy of GenoMycAnalyzer for genotypic drug susceptibility testing (gDST) was evaluated using 5,473 MTBC isolates that underwent phenotypic DST (pDST). The GenoMycAnalyzer database was built to predict the gDST for 15 antituberculosis drugs using the World Health Organization mutational catalogue. Compared to pDST, the sensitivity of drug susceptibilities by the GenoMycAnalyzer for first-line drugs ranged from 95.9% for rifampicin (95% CI 94.8-96.7%) to 79.6% for pyrazinamide (95% CI 76.9-82.2%), whereas those for second-line drugs ranged from 98.2% for levofloxacin (95% CI 90.1-100.0%) to 74.9% for capreomycin (95% CI 69.3-80.0%). Notably, the integration of large deletions of the four resistance-conferring genes increased gDST sensitivity. The specificity of drug susceptibilities by the GenoMycAnalyzer ranged from 98.7% for amikacin (95% CI 97.8-99.3%) to 79.5% for ethionamide (95% CI 76.4-82.3%). The incorporated Kraken2 software identified 1,284 mycobacterial species with an accuracy of 98.8%. GenoMycAnalyzer also perfectly predicted lineages for 1,935 MTBC and spoligotypes for 54 MTBC. CONCLUSIONS: GenoMycAnalyzer offers both web-based and graphical user interfaces, which can help biologists with limited access to high-performance computing systems or limited bioinformatics skills. By streamlining the interpretation of WGS data, the GenoMycAnalyzer has the potential to significantly impact TB management and contribute to global efforts to combat this infectious disease. GenoMycAnalyzer is available at http://www.mycochase.org .


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Mycobacterium tuberculosis/genética , Testes de Sensibilidade Microbiana , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Micobactérias não Tuberculosas , Resistência a Medicamentos , Internet
8.
Plant Pathol J ; 40(2): 171-191, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38606447

RESUMO

Identification of Helicotylenchus species is very challenging due to phenotypic plasticity and existence of cryptic species complexes. Recently, the use of rDNA barcodes has proven to be useful for identification of Helicotylenchus. Molecular markers are a quick diagnostic tool and are crucial for discriminating related species and resolving cryptic species complexes within this speciose genus. However, DNA barcoding is not an error-free approach. The public databases appear to be marred by incorrect sequences, arising from sequencing errors, mislabeling, and misidentifications. Herein, we provide a comprehensive analysis of the newly obtained, and published DNA sequences of Helicotylenchus, revealing the potential faults in the available DNA barcodes. A total of 97 sequences (25 nearly full-length 18S-rRNA, 12 partial 28S-rRNA, 16 partial internal transcribed spacer [ITS]-rRNA, and 44 partial cytochrome c oxidase subunit I [COI] gene sequences) were newly obtained in the present study. Phylogenetic relationships between species are given as inferred from the analyses of 103 sequences of 18S-rRNA, 469 sequences of 28S-rRNA, 183 sequences of ITS-rRNA, and 63 sequences of COI. Remarks on suggested corrections of published accessions in GenBank database are given. Additionally, COI gene sequences of H. dihystera, H. asiaticus and the contentious H. microlobus are provided herein for the first time. Similar to rDNA gene analyses, the COI sequences support the genetic distinctness and validity of H. microlobus. DNA barcodes from type material are needed for resolving the taxonomic status of the unresolved taxonomic groups within the genus.

9.
Acta Trop ; 255: 107221, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38642695

RESUMO

Mosquito surveillance for vector-borne disease management relies on traditional morphological and molecular techniques, which are tedious, time-consuming, and costly. The present study describes a simple and efficient recording device that analyzes mosquito sound to estimate species composition, male-female ratio, fed-unfed status, and harmonic convergence interaction using fundamental frequency (F0) bandwidth, harmonics, amplitude, and combinations of these parameters. The study examined a total of 19 mosquito species, including 3 species of Aedes, 7 species of Anopheles, 1 species of Armigeres, 5 species of Culex, 1 species of Hulecoetomyia, and 2 species of Mansonia. Among them, the F0 ranges between 269.09 ± 2.96 Hz (Anopheles culiciformis) to 567.51 ± 3.82 Hz (Aedes vittatus) and the harmonic band (hb) number ranges from 5 (An. culiciformis) to 12 (Ae. albopictus). In terms of species identification, the success rate was 95.32 % with F0, 84.79 % with F0-bandwidth, 84.79 % with harmonic band (hb) diversity, and 49.7 % with amplitude (dB). The species identification rate has gone up to 96.50 % and 97.66 % with the ratio and multiplication of F0 and hb, respectively. This is because of the matrices that combine multiple sound attributes. Comparatively, combinations of the amplitude of the F0 and the higher harmonic frequency band were non-significant for species identification (60.82 %). The fed females have shown a considerable increase in F0 in comparison to the unfed. The males of all the species possessed significantly higher frequencies with respect to the females. Interestingly, the presence of male-female of Ae. vittatus together showed harmonic convergence between the 2nd and 3rd harmonic bands. In conclusion, the sound-based technology is simple, precise, and cost-effective and provides better resolution for species, sex, and fed-unfed status detection in comparison to conventional methods. Real-time surveillance of mosquitoes could potentially utilize this technology.

10.
Plants (Basel) ; 13(6)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38592876

RESUMO

The classification system for the genus Aconitum is highly complex. It is also the subject of ongoing debate. Aconitum pendulum Busch and Aconitum flavum Hand.-Mazz. are perennial herbs of the genus Aconitum. Dried roots of these two plants are used in traditional Chinese medicine. In this study, morphological observations and ISSR molecular markers were employed to discriminate between A. flavum and A. pendulum, with the objective of gaining insights into the interspecies classification of Aconitum. The pubescence on the inflorescence of A. flavum was found to be appressed, while that on the inflorescence of A. pendulum was spread. UPGMA (unweighted pair-group method with arithmetic average) cluster analysis, PCoA (principal coordinates analysis), and Bayesian structural analysis divided the 199 individuals (99 individuals from DWM population and 100 individuals from QHL population) into two main branches, which is consistent with the observations of the morphology of pubescence on the inflorescence. These analyses indicated that A. flavum and A. pendulum are distinct species. No diagnostic bands were found between the two species. Two primer combinations (UBC808 and UBC853) were ultimately selected for species identification of A. flavum and A. pendulum. This study revealed high levels of genetic diversity in both A. flavum (He = 0.254, I = 0.395, PPB = 95.85%) and A. pendulum (He = 0.291, I = 0.445, PPB = 94.58%). We may say, therefore, that ISSR molecular markers are useful for distinguishing A. flavum and A. pendulum, and they are also suitable for revealing genetic diversity and population structure.

11.
Zhongguo Zhong Yao Za Zhi ; 49(4): 942-950, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38621901

RESUMO

Scorpio, a commonly used animal medicine in China, is derived from Buthus martensii as recorded in the Chinese Pharmacopoeia. China harbors rich species of Scorpionida and adulterants exist in the raw medicinal material and deep-processed products of Scorpio. The microscopic characteristics of the deep-processed products may be incomplete or lost during processing, which makes the identification difficult. In this study, the maximum likelihood(ML) tree was constructed based on the morphology and cytochrome C oxidase subunit I(COⅠ) to identify the species of Scorpio products. The results showed that the main adulterant of Scorpio was Lychas mucronatus. According to the specific SNP sites in the COⅠ sequence of B. martensii, the stable primers were designed for the identification of the medicinal material and formula granules of Scorpio. The polymerase chain reaction(PCR) at the annealing temperature of 61 ℃ and 30 cycles produced bright specific bands at about 150 bp for both B. martensii and its formula particles and no band for adulterants. The adaptability of the method was investigated, which showed that the bands at about 150 bp were produced for Scorpio medicinal material, lyophilized powder, and formula granules, and commercially available formula granules. The results showed that the established method could be used to identify the adulterants of Scorpio and its formula granules, which could help to improve the quality control system and ensure the safe clinical application of Scorpio formula granules.


Assuntos
Animais Peçonhentos , Medicamentos de Ervas Chinesas , Escorpiões , Animais , Reação em Cadeia da Polimerase/métodos
12.
Methods Mol Biol ; 2744: 391-402, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38683333

RESUMO

This chapter describes procedures for the use of DNA sequence data to obtain and compare taxonomic identification using the public databases GenBank and Barcode of Life Data System (BOLD). The chapter begins by describing procedures used to prepare quality sequences for uploading into GenBank and BOLD. Next, steps used to query the DNA sequences against the public databases are described using GenBank BLAST and BOLD identification engines. Interpretation guidelines for the taxonomic identification assignments are presented. Finally, a procedure for evaluating the accuracy and reliability of sequences from GenBank and BOLD is provided.


Assuntos
Código de Barras de DNA Taxonômico , Bases de Dados de Ácidos Nucleicos , Código de Barras de DNA Taxonômico/métodos , Biologia Computacional/métodos , Análise de Sequência de DNA/métodos , Bases de Dados Genéticas , Software
13.
Methods Mol Biol ; 2744: 445-473, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38683335

RESUMO

Plant DNA barcoding has a multitude of applications ranging from species detection and biomonitoring to investigating ecological networks and checking food quality. The ability to accurately identify species, using DNA barcoding, depends on the quality and comprehensiveness of the reference library that is used. This chapter describes how to create plant reference libraries using the rbcL, matK, and ITS2 DNA barcode regions. It covers the creation of species lists, the collection of specimens from the field and herbarium, DNA extraction, PCR amplification, and DNA sequencing. This methodology gives special attention to using samples from herbaria, as they represent important collections of easily accessible, taxonomically verified plant material.


Assuntos
Código de Barras de DNA Taxonômico , DNA de Plantas , Plantas , Código de Barras de DNA Taxonômico/métodos , Plantas/genética , DNA de Plantas/genética , Reação em Cadeia da Polimerase/métodos , Análise de Sequência de DNA/métodos , Biblioteca Gênica
14.
Methods Mol Biol ; 2744: 267-278, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38683325

RESUMO

FastFish-ID for rapid and accurate identification of fish species was conceived at Brandeis University based on pioneering work on Closed-Tube Barcoding (Rice et al., Mitochondrial DNA Part A 27(2):1358-1363, 2016; Sirianni et al., Genome 59:1049-1061, 2016). FastFish-ID was subsequently validated and commercialized at Thermagenix, Inc. using a portable device and high-precision PCR (Naaum et al., Food Res Int 141:110035, 2021). The motivation for these efforts was the pressing need for a technology that could be widely used throughout the seafood supply chain to combat IUU Fishing (Helyar et al., PLOS ONE 9, 2014) and overfishing (FAO, State of the World Fisheries and Aquaculture 2018. http://www.fao.org/documents/card/en/c/I9540EN/ , 2018), along with seafood fraud and mislabeling (Watson et al., Fish Fish 17:585-595, 2015). These destructive practices are wasting fish stocks, frustrating attempts to achieve seafood sustainability, endangering oceanic ecosystems, and causing consumers billions of dollars each year (Porterfield et al., Oceana: February, 2022). During the past three Covid19 pandemic years, EcologeniX, LLC has taken over further development and optimization of FastFish-ID. The present chapter provides an overview of the improvements introduced throughout the FastFish-ID process.


Assuntos
Código de Barras de DNA Taxonômico , Peixes , Animais , Código de Barras de DNA Taxonômico/métodos , Peixes/genética , Peixes/classificação , Alimentos Marinhos , Reação em Cadeia da Polimerase/métodos , DNA Mitocondrial/genética , Pesqueiros
15.
Methods Mol Biol ; 2744: 503-514, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38683338

RESUMO

FastFish-ID via Closed-Tube barcoding is a portable platform for rapid and accurate identification of fish species that was conceived at Brandeis University, commercialized at Thermagenix, Inc., and further improved at Ecologenix, LLC (see Chap. 17 in this volume). This chapter focuses on the use of FastFish-ID for (1) identification of intraspecies variants, (2) quantitative use of FastFish-ID to measure the decay of fresh fish, and (3) use of FastFish-ID for the identification of dried and processed shark fins.


Assuntos
Código de Barras de DNA Taxonômico , Peixes , Tubarões , Animais , Código de Barras de DNA Taxonômico/métodos , Nadadeiras de Animais
16.
Life (Basel) ; 14(4)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38672767

RESUMO

This study aimed to provide an overview of the methodological approach used for the species determination of big cats. The molecular system described herein employs mitochondrial DNA control region (CR-mtDNA)-length polymorphism in combination with highly sensitive and precise capillary electrophoresis. We demonstrated that the described CR-mtDNA barcoding system can be utilized for species determination where the presence of biological material from big cats is expected or used as a confirmatory test alongside Sanger or massive parallel sequencing (MPS). We have also addressed the fact that species barcoding, when based on the analysis of mtDNA targets, can be biased by nuclear inserts of the mitochondrial genome (NUMTs). The CR-mtDNA barcoding system is suitable even for problematic and challenging samples, such as hair. CR-mtDNA-length polymorphisms can also distinguish hybrids from pure breeds.

17.
Forensic Sci Int ; 358: 112007, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38579526

RESUMO

While plant species identification in forensics can be useful in cases involving poisonous, psychoactive, or endangered plant species, it can also become quite challenging, especially, when dealing with processed, decaying, colonized or infected material of plant origin. The Animal Plant and Soil Traces expert working group of the European Network of Forensic Science Institutes in their best practice manual has recommended several markers for plant species identification. Current study is a part of implementation of method in a forensic laboratory and its aim is to evaluate four of the recommended markers (ITS, matK, rbcL, and trnH-psbA) for species identification of forensically important plant species including medicinal, poisonous, psychoactive, and other plants. Such parameters as PCR and sequencing success, sequence length, species resolution rate and species cover in GenBank were analysed. Blind testing was performed to evaluate use of the markers for identification of forensically more complicated samples. According to results, a combination of ITS, matK and trnH-psbA is the best choice for plant species identification. The best results with fresh plant material can be achieved with ITS, trnH-psbA, and matK, while ITS and matK are the best choice when working with low quality plant material. rbcL due to its low species discrimination rate can be used only as an indicative marker.


Assuntos
DNA de Plantas , Plantas , Reação em Cadeia da Polimerase , Marcadores Genéticos , DNA de Plantas/genética , Especificidade da Espécie , Análise de Sequência de DNA , Ciências Forenses/métodos
18.
Sci Total Environ ; 929: 172414, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38631624

RESUMO

The integration of recombinase polymerase amplification (RPA) with CRISPR/Cas technology has revolutionized molecular diagnostics and pathogen detection due to its unparalleled sensitivity and trans-cleavage ability. However, its potential in the ecological and environmental monitoring scenarios for aquatic ecosystems remains largely unexplored, particularly in accurate qualitative/quantitative detection, and its actual performance in handling complex real environmental samples. Using zooplankton as a model, we have successfully optimized the RPA-CRISPR/Cas12a fluorescence detection platform (RPA-Cas-FQ), providing several crucial "technical tips". Our findings indicate the sensitivity of CRISPR/Cas12a alone is 5 × 109 copies/reaction, which can be dramatically increased to 5 copies/reaction when combined with RPA. The optimized RPA-Cas-FQ enables reliable qualitative and semi-quantitative detection within 50 min, and exhibits a good linear relationship between fluorescence intensity and DNA concentration (R2 = 0.956-0.974***). Additionally, we developed a rapid and straightforward identification procedure for single zooplankton by incorporating heat-lysis and DNA-barcode techniques. We evaluated the platform's effectiveness using real environmental DNA (eDNA) samples from the Three Gorges Reservoir, confirming its practicality. The eDNA-RPA-Cas-FQ demonstrated strong consistency (Kappa = 0.43***) with eDNA-Metabarcoding in detecting species presence/absence in the reservoir. Furthermore, the two semi-quantitative eDNA technologies showed a strong positive correlation (R2 = 0.58-0.87***). This platform also has the potential to monitor environmental pollutants by selecting appropriate indicator species. The novel insights and methodologies presented in this study represent a significant advancement in meeting the complex needs of aquatic ecosystem protection and monitoring.


Assuntos
Monitoramento Ambiental , Zooplâncton , Monitoramento Ambiental/métodos , Animais , Sistemas CRISPR-Cas , DNA Ambiental/análise , Técnicas de Amplificação de Ácido Nucleico/métodos , Recombinases/metabolismo
19.
Insects ; 15(3)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38535406

RESUMO

Proper species identification is the keystone of successful integrated pest management (IPM). However, efforts to identify thrips species in Canadian greenhouses have not been formally made since the 1980s. In response to recent increases in crop damage, we sampled thrips communities from eight commercial floriculture greenhouses in the Niagara region (Ontario, Canada) from May until August 2016. Selected sites were revisited in 2017, 2018, and 2019 to determine changes in species composition over time. Western flower thrips (Frankliniella occidentalis (Pergande)), along with onion thrips (Thrips tabaci Lindeman), constituted the majority of species found. Other pest species (less than 8% of specimens across all sampling years) included poinsettia thrips (Echinothrips americanus Morgan), chrysanthemum thrips (Thrips nigropilosus Uzel), and Frankliniella fusca (Hinds). Further investigations of thrips outbreaks in Ontario from 2016 to 2023 revealed other important species, including Thrips parvispinus (Karny), Hercinothrips femoralis (Reuter), and Scirtothrips dorsalis Hood. The current biocontrol strategies used in Ontario floriculture crops for western flower thrips do not adequately control onion thrips or other thrips pests in ornamental crops, making identification a fundamental step in determining whether biocontrol or chemical control strategies should be implemented. However, traditional taxonomic keys are inaccessible to non-specialists due to their technical difficulty. Using the data gathered in these surveys, we developed a simplified, illustrated identification key for use by growers and IPM consultants.

20.
Exp Appl Acarol ; 92(3): 403-421, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38489086

RESUMO

Spider mites (Acari: Tetranychidae) are polyphagous pests of economic importance in agriculture, among which the two-spotted spider mite Tetranychus urticae Koch has spread widely worldwide as an invasive species, posing a serious threat to fruit tree production in China, including Beijing. The hawthorn spider mite, Amphitetranychus viennensis Zacher, is also a worldwide pest of fruit trees and woody ornamental plants. The cassava mite, Tetranychus truncatus Ehara, is mainly found in Asian countries, including China, Korea and Japan, and mainly affects fruit trees and agricultural crops. These three species of spider mites are widespread and serious fruit tree pests in Beijing. Rapid and accurate identification of spider mites is essential for effective pest and plant quarantine in Beijing orchard fields. The identification of spider mite species is difficult due to their limited morphological characteristics. Although the identification of insect and mite species based on PCR and real-time polymerase chain reaction TaqMan is becoming increasingly common, DNA extraction is difficult, expensive and time-consuming due to the minute size of spider mites. Therefore, the objective of this study was to establish a direct multiplex PCR method for the simultaneous identification of three common species of spider mites in orchards, A. viennensis, T. truncatus and T. urticae, to provide technical support for the differentiation of spider mite species and phytosanitary measures in orchards in Beijing. Based on the mitochondrial cytochrome c oxidase subunit I (COI) of the two-spotted spider mite and the cassava mite and the 18S gene sequence of the hawthorn spider mite as the amplification target, three pairs of specific primers were designed, and the primer concentrations were optimized to establish a direct multiplex PCR system for the rapid and accurate discrimination of the three spider mites without the need for DNA extraction and purification. The method showed a high sensitivity of 0.047 ng for T. truncatus and T. urticae DNA and 0.0002 ng for A. viennensis. This method eliminates the DNA extraction and sequencing procedures of spider mite samples, offers a possibility for rapid monitoring of multiple spider mites in an integrated microarray laboratory system, reducing the time and cost of leaf mite identification and quarantine monitoring in the field.


Assuntos
Reação em Cadeia da Polimerase Multiplex , Tetranychidae , Animais , Tetranychidae/genética , Reação em Cadeia da Polimerase Multiplex/métodos , Pequim , Complexo IV da Cadeia de Transporte de Elétrons/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...