Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(13)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37446684

RESUMO

The iconic caged shape of fullerenes gives rise to a series of unique chemical and physical properties; hence a deeper understanding of the attractive and repulsive forces between two buckyballs can bring detrimental information about the structural stability of such complexes, providing significant data applicable for several studies. The potential energy curves for the interaction of multiple van der Waals buckyball complexes with increasing mass were theoretically obtained within the DFT framework at ωB97xD/6-31G(d) compound model. These potential energy curves were employed to estimate the spectroscopic constants and the lifetime of the fullerene complexes with the Discrete Variable Representation and with the Dunham approaches. It was revealed that both methods are compatible in determining the rovibrational structure of the dimers and that they are genuinely stable, i.e., long-lived complexes. To further inquire into the nature of such interaction, Bader's QTAIM approach was applied. QTAIM descriptors indicate that the interactions of these closed-shell systems are dominated by weak van der Waals forces. This non-covalent interaction character was confirmed by the RDG analysis scheme. Indirectly, QTAIM also allowed us to confirm the stability of the non-covalent bonded fullerene dimers. Our lifetime calculations have shown that the studied dimers are stable for more than 1 ps, which increases accordingly with the number of carbon atoms.


Assuntos
Fulerenos , Fulerenos/química , Carbono , Análise Espectral , Fenômenos Físicos
2.
Molecules ; 27(9)2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35565987

RESUMO

A series of 2-(haloalkyl)-3-azidomethyl and 6-azido chromones has been synthetized, characterized and studied by theoretical (DFT calculations) and spectroscopic methods (UV-Vis, NMR). The crystal structure of 3-azidomethyl-2-difluoromethyl chromone, determined by X-ray diffraction methods, shows a planar framework due to extended π-bond delocalization. Its molecular packing is stabilized by F···H, N···H and O···H hydrogen bonds, π···π stacking and C-O···π intermolecular interactions. Moreover, AIM, NCI and Hirshfeld analysis evidenced that azido moiety has a significant role in the stabilization of crystal packing through weak intermolecular interactions, where analysis of electronic density suggested closed-shell (CS) interatomic interactions.


Assuntos
Ligação de Hidrogênio , Teoria da Densidade Funcional , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Difração de Raios X
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 243: 118707, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32827906

RESUMO

The capability of Diffusion Quantum Monte Carlo (DMC) to produce high quality potential energy curve (PEC) was evaluated. H2+, HeH+ and LiH PECs were built by all-electron fixed-node DMC calculations. Trial wave functions were obtained from Hartree-Fock (HF) (H2+), MCSCF and CI (HeH+ and LiH) calculations multiplied by Jastrow factor. The quality of these generated PECs was analyzed throughout equilibrium distance, dissociation energy, vibrational energies and rovibrational spectroscopic constants (ωe, ωexe, ωeye, αe, γe and Be). The Discrete Variable Representation (DVR) and the Dunham approaches were used to determine the rovibrational spectroscopic constants. The PECs and the aforementioned properties were also obtained by the following methods: MCSCF/aug-cc-pV5Z (LiH), CCSD(T)/aug-cc-pV5Z (HeH+ and LiH) and HF (H2+ and HeH+) levels. The results of these DMC computations, specially the DMC-DVR procedure, are the most accurate among others DMC calculations available in the literature for these systems. They suggest that DMC can be used to achieve accurate PECs to produce spectroscopic properties with the same level of accuracy of theoretical benchmarks and experimental data of the literature.

4.
Spectrochim Acta A Mol Biomol Spectrosc ; 193: 212-218, 2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29247917

RESUMO

This paper reports the synthesis and the characterization of Yb3+-doped calcium borotellurite (CaBTeX) glasses with composition 10CaF2-(29.5-0.4x)CaO-(60-0.6x)B2O3-xTeO2-0.5Yb2O3 (x=10, 16, 22, 31 and 54mol%). The results of XRD confirm the amorphous character of all the samples. The density, molar volume, refractive index and electronic polarizability values show an increase with TeO2 content. Otherwise, the optical band gap energy shows a decrease with the increase of TeO2 content. The replacement of CaO and B2O3 by TeO2 changes the glass structure, which decreases the excited Yb3+/cm3 and, consequently, the luminescence intensity. The temperature dependence of luminescence was studied for all the samples up to 420K. The fluorescence lifetime does not change significantly due to TeO2 addition. In addition, absorption and emission cross section were calculated and present high values as compared to other tellurite and phosphate glasses.

5.
Spectrochim Acta A Mol Biomol Spectrosc ; 136 Pt C: 1358-70, 2015 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-25459694

RESUMO

The new 3-methyl-2-trifluoromethylchromone (1) and 3-bromomethyl-2-trifluoromethylchromone (2) compounds were synthesized and characterized by vibrational (IR, Raman), UV-Vis and NMR ((1)H, (13)C and (19)F) spectroscopy and MS spectrometry. The crystal structures of 1 and 2 were determined by X-ray diffraction methods. Both compounds crystallize in the monoclinic P21/c space group with Z=4 molecules per unit cell. The structures were solved from 1423 (1) and 1856 (2) reflections with I>2σ (I) and refined by full-matrix least-squares to agreement R1-values of 0.0403 (1) and 0.0554 (2). Because of π-bonding delocalization, the organic molecular skeletons are planar and the molecular bonding structures can be described by formally single, double and resonant bonds. In 2, the CF3 group revealed a strong rotational disorder around the CCF3 bond, which could be explained in terms of four split positions with about uniform angular distribution. The vibrational, electronic and NMR, spectra were discussed and assigned with the assistance of DFT calculations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA