Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Life (Basel) ; 14(5)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38792615

RESUMO

Urodelean amphibians can regenerate the tail and the spinal cord (SC) and maintain this ability throughout their life. This clearly distinguishes these animals from mammals. The phenomenon of tail and SC regeneration is based on the capability of cells involved in regeneration to dedifferentiate, enter the cell cycle, and change their (or return to the pre-existing) phenotype during de novo organ formation. The second critical aspect of the successful tail and SC regeneration is the mutual molecular regulation by tissues, of which the SC and the apical wound epidermis are the leaders. Molecular regulatory systems include signaling pathways components, inflammatory factors, ECM molecules, ROS, hormones, neurotransmitters, HSPs, transcriptional and epigenetic factors, etc. The control, carried out by regulatory networks on the feedback principle, recruits the mechanisms used in embryogenesis and accompanies all stages of organ regeneration, from the moment of damage to the completion of morphogenesis and patterning of all its structures. The late regeneration stages and the effects of external factors on them have been poorly studied. A new model for addressing this issue is herein proposed. The data summarized in the review contribute to understanding a wide range of fundamentally important issues in the regenerative biology of tissues and organs in vertebrates including humans.

2.
Nanomaterials (Basel) ; 14(8)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38668224

RESUMO

The healing of skin wounds, myocardial, and spinal cord injuries in salamander, newt, and axolotl amphibians, and in mouse neonates, results in scar-free regeneration, whereas injuries in adult mice heal by fibrosis and scar formation. Although both types of healing are mediated by macrophages, regeneration in these amphibians and in mouse neonates also involves innate activation of the complement system. These differences suggest that localized complement activation in adult mouse injuries might induce regeneration instead of the default fibrosis and scar formation. Localized complement activation is feasible by antigen/antibody interaction between biodegradable nanoparticles presenting α-gal epitopes (α-gal nanoparticles) and the natural anti-Gal antibody which is abundant in humans. Administration of α-gal nanoparticles into injuries of anti-Gal-producing adult mice results in localized complement activation which induces rapid and extensive macrophage recruitment. These macrophages bind anti-Gal-coated α-gal nanoparticles and polarize into M2 pro-regenerative macrophages that orchestrate accelerated scar-free regeneration of skin wounds and regeneration of myocardium injured by myocardial infarction (MI). Furthermore, injection of α-gal nanoparticles into spinal cord injuries of anti-Gal-producing adult mice induces recruitment of M2 macrophages, that mediate extensive angiogenesis and axonal sprouting, which reconnects between proximal and distal severed axons. Thus, α-gal nanoparticle treatment in adult mice mimics physiologic regeneration in amphibians. These studies further suggest that α-gal nanoparticles may be of significance in the treatment of human injuries.

3.
Stem Cell Rev Rep ; 20(1): 283-300, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37821771

RESUMO

BACKGROUND: Neural stem/progenitor cell (NSPC) transplantation in spinal cord injury (SCI) is a potential treatment that supports regeneration by promoting neuroprotection, remyelination, and neurite outgrowth. However, glial scarring hinders neuroregeneration and reduces the efficiency of cell transplantation. The present study aimed to enhance this neuroregeneration by surgically removing the glial scar and transplanting heat-shock (HS) preconditioned NSPCs in combination with Arg-Gly-Asp (RGD)-functionalised hydrogel in a rat spinal cord hemi-transection model. METHODS: Twelve Sprague-Dawley rats underwent spinal cord hemi-transection and were randomly divided into three treatment groups: hydrogel implantation (control group), NSPC-encapsulated hydrogel implantation, and HS-NSPC-encapsulated hydrogel implantation. HS preconditioning was applied to the NSPCs to reinforce cell retention and an RGD-functionalised hydrogel was used as a biomatrix. RESULTS: In vitro culture showed that preconditioned NSPCs highly differentiated into neurons and oligodendrocytes and exhibited higher proliferation and neurite outgrowth in hydrogels. Rats in the HS-NSPC-encapsulated hydrogel implantation group showed significantly improved functional recovery, neuronal and oligodendrocyte differentiation of transplanted cells, remyelination, and low fibrotic scar formation. CONCLUSIONS: The surgical removal of the glial scar in combination with HS-preconditioning and RGD-functionalised hydrogels should be considered as a new paradigm in NSPC transplantation for spinal cord regeneration treatment.


Assuntos
Células-Tronco Neurais , Traumatismos da Medula Espinal , Ratos , Animais , Ratos Sprague-Dawley , Hidrogéis/farmacologia , Gliose , Oligopeptídeos/farmacologia , Traumatismos da Medula Espinal/terapia
4.
ACS Nano ; 17(18): 18562-18575, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37708443

RESUMO

The treatment of spinal cord injury (SCI) remains unsatisfactory owing to the complex pathophysiological microenvironments at the injury site and the limited regenerative potential of the central nervous system. Metformin has been proven in clinical and animal experiments to repair damaged structures and functions by promoting endogenous neurogenesis. However, in the early stage of acute SCI, the adverse pathophysiological microenvironment of the injury sites, such as reactive oxygen species and inflammatory factor storm, can prevent the activation of endogenous neural stem cells (NSCs) and the differentiation of NSCs into neurons, decreasing the whole repair effect. To address those issues, a series of robust and multifunctional natural polyphenol-metformin nanoparticles (polyphenol-Met NPs) were fabricated with pH-responsiveness and excellent antioxidative capacities. The resulting NPs possessed several favorable advantages: First, the NPs were composed of active ingredients with different biological properties, without the need for carriers; second, the pH-responsiveness feature could allow targeted drug delivery at the injured site; more importantly, NPs enabled drugs with different performances to exhibit strong synergistic effects. The results demonstrated that the improved microenvironment by natural polyphenols boosted the differentiation of activated NSCs into neurons and oligodendrocytes, which could efficiently repair the injured nerve structures and enhance the functional recovery of the SCI rats. This work highlighted the design and fabrication of robust and multifunctional NPs for SCI treatment via efficient microenvironmental regulation and targeted NSCs activation.


Assuntos
Metformina , Nanopartículas Multifuncionais , Traumatismos da Medula Espinal , Regeneração da Medula Espinal , Animais , Ratos , Traumatismos da Medula Espinal/tratamento farmacológico , Metformina/farmacologia , Polifenóis/farmacologia
5.
Cell Rep ; 42(9): 113068, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37656624

RESUMO

Primary somatosensory axons stop regenerating as they re-enter the spinal cord, resulting in incurable sensory loss. What arrests them has remained unclear. We previously showed that axons stop by forming synaptic contacts with unknown non-neuronal cells. Here, we identified these cells in adult mice as oligodendrocyte precursor cells (OPCs). We also found that only a few axons stop regenerating by forming dystrophic endings, exclusively at the CNS:peripheral nervous system (PNS) borderline where OPCs are absent. Most axons stop in contact with a dense network of OPC processes. Live imaging, immuno-electron microscopy (immuno-EM), and OPC-dorsal root ganglia (DRG) co-culture additionally suggest that axons are rapidly immobilized by forming synapses with OPCs. Genetic OPC ablation enables many axons to continue regenerating deep into the spinal cord. We propose that sensory axons stop regenerating by encountering OPCs that induce presynaptic differentiation. Our findings identify OPCs as a major regenerative barrier that prevents intraspinal restoration of sensory circuits following spinal root injury.


Assuntos
Células Precursoras de Oligodendrócitos , Camundongos , Animais , Medula Espinal/fisiologia , Axônios/fisiologia , Raízes Nervosas Espinhais , Gânglios Espinais/fisiologia , Regeneração Nervosa/fisiologia
6.
Neural Regen Res ; 18(12): 2743-2750, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37449639

RESUMO

Cynops orientalis (C. orientalis) has a pronounced ability to regenerate its spinal cord after injury. Thus, exploring the molecular mechanism of this process could provide new approaches for promoting mammalian spinal cord regeneration. In this study, we established a model of spinal cord thoracic transection injury in C. orientalis, which is an endemic species in China. We performed RNA sequencing of the contused axolotl spinal cord at two early time points after spinal cord injury - during the very acute stage (4 days) and the subacute stage (7 days) - and identified differentially expressed genes; additionally, we performed Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses, at each time point. Transcriptome sequencing showed that 13,059 genes were differentially expressed during C. orientalis spinal cord regeneration compared with uninjured animals, among which 4273 were continuously down-regulated and 1564 were continuously up-regulated. Down-regulated genes were most enriched in the Gene Ontology term "multicellular organismal process" and in the ribosome pathway at 10 days following spinal cord injury. We found that multiple genes associated with energy metabolism were down-regulated and multiple genes associated with the lysosome were up-regulated after spinal cord injury, indicating the importance of low metabolic activity during wound healing. Immune response-associated pathways were activated during the early acute phase (4 days), while the expression of extracellular matrix proteins such as glycosaminoglycan and collagen, as well as tight junction proteins, was lower at 10 days post-spinal cord injury than 4 days post-spinal cord injury. However, compared with 4 days post-injury, at 10 days post-injury neuroactive ligand-receptor interactions were no longer down-regulated, up-regulated differentially expressed genes were enriched in pathways associated with cancer and the cell cycle, and SHH, VIM, and Sox2 were prominently up-regulated. Immunofluorescence staining showed that glial fibrillary acidic protein was up-regulated in axolotl ependymoglial cells after injury, similar to what is observed in mammalian astrocytes after spinal cord injury, even though axolotls do not form a glial scar during regeneration. We suggest that low intracellular energy production could slow the rapid amplification of ependymoglial cells, thereby inhibiting reactive gliosis, at early stages after spinal cord injury. Extracellular matrix degradation slows cellular responses, represses the expression of neurogenic genes, and reactivates a transcriptional program similar to that of embryonic neuroepithelial cells. These ependymoglial cells act as neural stem cells: they migrate and proliferate to repair the lesion and then differentiate to replace lost glial cells and neurons. This provides the regenerative microenvironment that allows axon growth after injury.

7.
Front Mol Neurosci ; 16: 1155754, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37492522

RESUMO

Adult zebrafish are capable of anatomical and functional recovery following severe spinal cord injury. Axon growth, glial bridging and adult neurogenesis are hallmarks of cellular regeneration during spinal cord repair. However, the correlation between these cellular regenerative processes and functional recovery remains to be elucidated. Whereas the majority of established functional regeneration metrics measure swim capacity, we hypothesize that gait quality is more directly related to neurological health. Here, we performed a longitudinal swim tracking study for 60 individual zebrafish spanning 8 weeks of spinal cord regeneration. Multiple swim parameters as well as axonal and glial bridging were integrated. We established rostral compensation as a new gait quality metric that highly correlates with functional recovery. Tensor component analysis of longitudinal data supports a correspondence between functional recovery trajectories and neurological outcomes. Moreover, our studies predicted and validated that a subset of functional regeneration parameters measured 1 to 2 weeks post-injury is sufficient to predict the regenerative outcomes of individual animals at 8 weeks post-injury. Our findings established new functional regeneration parameters and generated a comprehensive correlative database between various functional and cellular regeneration outputs.

8.
Regen Ther ; 24: 85-93, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37334243

RESUMO

Spinal cord injury (SCI) is a major clinical problem in young patients. The major hurdle in SCI regeneration is the replacement of lost nerve communication signals due to injury. Here we have prepared a biocompatible electrical conductive composite such as Collagen-Polypyrrole combined with Quercetin (Col-PPy-Qur) composite. The prepared composites are characterized for their chemical functionality and morphology by the FTIR and SEM & TEM analysis, respectively. The Col-PPy-Qur composite observed electrical conductivity at 0.0653 s/cm due to the conductive Polypyrrole polymer present in the composite. The Col-PPy-Qur composite exhibits a mechanical strength of 0.1281 mPa, similar to the native human spinal cord's mechanical strength. In order to explore the regeneration potential, the viability of the composite has been tested with human astrocyte cells (HACs). The Tuj1 and GFAF marker expression was quantized by RT-PCR analysis. Increased Tuj1 and decreased GFAF expression by the Col-PPy-Qur composite indicated the potential differentiation ability of the HACs into neuron cells. The results indicated that the Col-PPy-Qur composite could have good regeneration and differentiation ability, better biocompatibility, and suitable mechanical and conductivity properties. It can act as an excellent strategy for spinal cord regeneration in the nearer future.

9.
Acta Biomater ; 167: 219-233, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37257575

RESUMO

Bio-factor stimulation is essential for axonal regeneration in the central nervous system. Thus, persistent and efficient factor delivery in the local microenvironment is an ideal strategy for spinal cord injury repair. We developed a biomimetic hydrogel scaffold to load biofactors in situ and release them in a controlled way as a promising therapeutic modality. Hyaluronic acid and silk fibroin were cross-linked as the basement of the scaffolds, and poly-dopamine coating was used to further increase the loading of factors and endow the hydrogel scaffolds with ideal physical and chemical properties and proper biocompatibility. Notably, neurotrophin-3 release from the hydrogel scaffolds was prolonged to 28 days. A spinal cord injury model was constructed for hydrogel scaffold transplantation. After eight weeks, significant NF200-positive nerve fibers were observed extending across the glial scar to the center of the injured area. Due to the release of neurotrophin-3, spinal cord regeneration was enhanced, and the cavity area of the injury graft site and inflammation associated with CD68 positive cells were reduced, which led to a significant improvement in hind limb motor function. The results show that the hyaluronic acid/silk fibroin/poly-dopamine-coated biomimetic hydrogel scaffold achieved locally slow release of neurotrophin-3, thus facilitating the regeneration of injured spinal cord. STATEMENT OF SIGNIFICANCE: Hydrogels have received great attention in spinal cord regeneration. Current research has focused on more efficient and controlled release of bio-factors. Here, we adopted a mussel-inspired strategy to functionalize the hyaluronic acid/silk fibroin hydrogel scaffold to increase the load of neurotrophin-3 and extend the release time. The hydrogel scaffolds have ideal physiochemical properties, proper release rate, and biocompatibility. Owing to the continuous neurotrophin-3 release from implanted scaffolds, cavity formation is reduced, inflammation alleviated, and spinal cord regeneration enhanced, indicating great potential for bio-factor delivery in soft tissue regeneration applications.


Assuntos
Fibroínas , Traumatismos da Medula Espinal , Regeneração da Medula Espinal , Humanos , Ácido Hialurônico/farmacologia , Hidrogéis/química , Fibroínas/farmacologia , Dopamina , Biomimética , Alicerces Teciduais/química , Regeneração Nervosa , Traumatismos da Medula Espinal/terapia , Medula Espinal , Inflamação
10.
Biomedicines ; 11(5)2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37239001

RESUMO

BACKGROUND: Pathological changes associated with spinal cord injury (SCI) can be observed distant, rostral, or caudal to the epicenter of injury. These remote areas represent important therapeutic targets for post-traumatic spinal cord repair. The present study aimed to investigate the following in relation to SCI: distant changes in the spinal cord, peripheral nerve, and muscles. METHODS: The changes in the spinal cord, the tibial nerve, and the hind limb muscles were evaluated in control SCI animals and after intravenous infusion of autologous leucoconcentrate enriched with genes encoding neuroprotective factors (VEGF, GDNF, and NCAM), which previously demonstrated a positive effect on post-traumatic restoration. RESULTS: Two months after thoracic contusion in the treated mini pigs, a positive remodeling of the macro- and microglial cells, expression of PSD95 and Chat in the lumbar spinal cord, and preservation of the number and morphological characteristics of the myelinated fibers in the tibial nerve were observed and were aligned with hind limb motor recovery and reduced soleus muscle atrophy. CONCLUSION: Here, we show the positive effect of autologous genetically enriched leucoconcentrate-producing recombinant neuroprotective factors on targets distant to the primary lesion site in mini pigs with SCI. These findings open new perspectives for the therapy of SCI.

11.
Methods Mol Biol ; 2636: 343-366, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36881310

RESUMO

Mammals have a limited regenerative capacity, especially of the central nervous system. Consequently, any traumatic injury or neurodegenerative disease results in irreversible damage. An important approach to finding strategies to promote regeneration in mammals has been the study of regenerative organisms like Xenopus, the axolotl, and teleost fish. High-throughput technologies like RNA-Seq and quantitative proteomics are starting to provide valuable insight into the molecular mechanisms that drive nervous system regeneration in these organisms. In this chapter, we present a detailed protocol for performing iTRAQ proteomics that can be applied to the analysis of nervous system samples, using Xenopus laevis as an example. The quantitative proteomics protocol and directions for performing functional enrichment data analyses of gene lists (e.g., differentially abundant proteins from a proteomic study, or any type of high-throughput analysis) are aimed at the general bench biologist and do not require previous programming knowledge.


Assuntos
Doenças Neurodegenerativas , Animais , Proteômica , Regeneração Nervosa , Sistema Nervoso Central , Análise de Dados , Xenopus laevis , Mamíferos
12.
Acta Anatomica Sinica ; (6): 6-12, 2023.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1015247

RESUMO

Objective To analyze the expression changes of related mRNA and microRNA(miRNA)during spinal cord regeneration after tail amputation of Gekko japonicus, and to explore the biological effects of differentially expressed mRNA and miRNA during spinal cord regeneration. Methods Fifty Gekko japonicus, the tail amputation model of Gekko japonicus was constructed, divided into normal group, 15 days tail amputation group, and 25 days tail amputation group, 5 in each group, repeat the experiment 3 times, 5 spare. Samples of each group were collected, RNA of each group was extracted and high-throughput sequencing. Bioinformatics analysis identifies differentially expressed mRNA and miRNA between groups, Gene Ontology(GO) enrichment analysis of differentially expressed mRNA functional annotations, and construction of miRNA and mRNA gene regulatory networks related to spinal cord regeneration. Results The differential expression of mRNA and miRNA in the normal and newborn spinal cords of Gekko japonicus was analyzed by sequencing. The 15 days and 25 days tail amputation groups identified 538 and 510 differential mRNA expressions and 446, 127 differential miRNA expressions, respectively. GO analysis found that the differentially expressed mRNA aggregated in biological processes related to cell proliferation and neurodevelopment. In the spinal cord regeneration-related miRNA and its target gene regulatory network, 21 mRNA expression was down-regulated in the 15 days tail amputation group, which was regulated negatively by 41 up-regulated miRNAs; 12 mRNA expression was up-regulated and was regulated by 29 down-regulated miRNAs. In the 25 days tail amputation group, 8 mRNA expression was down-regulated and regulated negatively by 10 up-regulated miRNAs; 20 mRNA expression was up-regulated and regulated by 32 down-regulated miRNAs. Conclusion Through the analysis of the differential expression of miRNA and mRNA in the regenerated spinal cord of Gekko japonicus, the expression changes of mRNA and miRNA in spinal cord regeneration were initially revealed, which provided experimental data for elucidating the molecular mechanism of spinal cord regeneration.

13.
J Am Heart Assoc ; 11(20): e026076, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36216458

RESUMO

Background Spinal cord ischemia (SCI) remains a devastating complication after aortic dissection or repair. A primary hypoxic damage is followed by a secondary damage resulting in further cellular loss via apoptosis. Affected patients have a poor prognosis and limited therapeutic options. Shock wave therapy (SWT) improves functional outcome, neuronal degeneration and survival in murine spinal cord injury. In this first-in-human study we treated 5 patients with spinal cord ischemia with SWT aiming to prove safety and feasibility. Methods and Results Human neurons were subjected to ischemic injury with subsequent SWT. Reactive oxygen species and cellular apoptosis were quantified using flow cytometry. Signaling of the antioxidative transcription factor NRF2 (nuclear factor erythroid 2-related factor 2) and immune receptor Toll-like receptor 3 (TLR3) were analyzed. To assess whether SWT act via a conserved mechanism, transgenic tlr3-/- zebrafish created via CRISPR/Cas9 were subjected to spinal cord injury. To translate our findings into a clinical setting, 5 patients with SCI underwent SWT. Baseline analysis and follow-up (6 months) included assessment of American Spinal Cord Injury Association (ASIA) impairment scale, evaluation of Spinal Cord Independence Measure score and World Health Organization Quality of Life questionnaire. SWT reduced the number of reactive oxygen species positive cells and apoptosis upon ischemia via induction of the antioxidative factor nuclear factor erythroid 2-related factor 2. Inhibition or deletion of tlr3 impaired axonal growth after spinal cord lesion in zebrafish, whereas tlr3 stimulation enhanced spinal regeneration. In a first-in-human study, we treated 5 patients with SCI using SWT (mean age, 65.3 years). Four patients presented with acute aortic dissection (80%), 2 of them exhibited preoperative neurological symptoms (40%). Impairment was ASIA A in 1 patient (20%), ASIA B in 3 patients (60%), and ASIA D in 1 patient (20%) at baseline. At follow-up, 2 patients were graded as ASIA A (40%) and 3 patients as ASIA B (60%). Spinal cord independence measure score showed significant improvement. Examination of World Health Organization Quality of Life questionnaires revealed increased scores at follow-up. Conclusions SWT reduces oxidative damage upon SCI via immune receptor TLR3. The first-in-human application proved safety and feasibility in patients with SCI. SWT could therefore become a powerful regenerative treatment option for this devastating injury.


Assuntos
Dissecção Aórtica , Tratamento por Ondas de Choque Extracorpóreas , Traumatismos da Medula Espinal , Isquemia do Cordão Espinal , Humanos , Camundongos , Animais , Idoso , Receptor 3 Toll-Like/metabolismo , Receptor 3 Toll-Like/uso terapêutico , Fator 2 Relacionado a NF-E2 , Peixe-Zebra , Estudos de Viabilidade , Espécies Reativas de Oxigênio , Qualidade de Vida , Isquemia do Cordão Espinal/etiologia , Isquemia do Cordão Espinal/prevenção & controle , Isquemia do Cordão Espinal/patologia , Traumatismos da Medula Espinal/terapia , Traumatismos da Medula Espinal/patologia , Medula Espinal/metabolismo , Estresse Oxidativo , Isquemia , Dissecção Aórtica/patologia
14.
Brain Spine ; 2: 100859, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36248104

RESUMO

Introduction: Traumatic Spinal Cord Injury (SCI) is one of the leading causes of disability in the world. Treatment is limited to supportive care and no curative therapy exists. Experimental research to understand the complex pathophysiology and potential mediators of spinal cord regeneration is essential to develop innovative translational therapies. A multitude of experimental imaging methods to monitor spinal cord regeneration in vivo have developed over the last years. However, little literature exists to deal with advanced imaging methods specifically available in SCI research. Research Question: This systematic literature review examines the current standards in experimental imaging in SCI allowing for in vivo imaging of spinal cord regeneration on a neuronal, vascular, and cellular basis. Material and Methods: Articles were included meeting the following criteria: experimental research, original studies, rodent subjects, and intravital imaging. Reviewed in detail are microstructural and functional Magnetic Resonance Imaging, Micro-Computed Tomography, Laser Speckle Imaging, Very High Resolution Ultrasound, and in vivo microscopy techniques. Results: Following the PRISMA guidelines for systematic reviews, 689 articles were identified for review, of which 492 were sorted out after screening and an additional 104 after detailed review. For qualitative synthesis 93 articles were included in this publication. Discussion and Conclusion: With this study we give an up-to-date overview about modern experimental imaging techniques with the potential to advance the knowledge on spinal cord regeneration following SCI. A thorough knowledge of the strengths and limitations of the reviewed techniques will help to optimally exploit our current experimental armamentarium in the field.

15.
Cureus ; 14(5): e25475, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35800787

RESUMO

Traumatic spinal cord injury (SCI) provokes the onset of an intricate pathological process. Initial primary injury ruptures local micro-neuro-vascularcomplex triggering the commencement of multi-factorial secondary sequences which exert significant influence on neurological deterioration progress. Stimulating by local ischemia, neovascularization pathways emerge to provide neuroprotection and improve functional recovery. Although angiogenetic processes are prompted, newly formed vascular system is frequently inadequate to distribute sufficient blood supply and improve axonal recovery. Several treatment interventions have been endeavored to achieve the optimal conditions in SCI microenvironment, enhancing angiogenesis and improve functional recovery. In this study we review the revascularization pathogenesis and importance within the secondary processes and condense the proangiogenic influence of several angiogenetic-targeted treatment interventions.

16.
Cureus ; 14(6): e25997, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35859951

RESUMO

SCI is regarded as one of the most devastating central nervous system (CNS) injuries, exhibiting an alarmingly rising incidence rate, indirectly connected with the expansion of the global economy. The consequences of SCI are multidimensional: SCI injuries may result in permanent voluntary motor dysfunction and loss of sensation while incurring heavy economic and psychological burdens as part of the treatment. Thus, it is crucial to develop effective and suitable SCI treatment strategies. Collagen-based scaffold application is one of the most promising methods of SCI treatment. This review compiles newer bibliographical data regarding the application of collagen scaffolds for the treatment of Spinal cord injury (SCI) in animal models. Recently, several relevant studies have been carried out using carefully selected animals with similar pathophysiology to humans. In mouse, rat and canine models that have undergone transection or hemisection, the stump connection, the transplanted cell differentiation, and the elimination of glial scar are promising. Also, encouraging results have been found regarding the increased neuronal growth, the decreased collagen deposition, the behavioral recovery, the improved electrophysiology, and the enhanced axonal regeneration.

17.
Int J Mol Sci ; 23(9)2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35562941

RESUMO

A spinal cord injury (SCI) is one of the most devastating lesions, as it can damage the continuity and conductivity of the central nervous system, resulting in complex pathophysiology. Encouraged by the advances in nanotechnology, stem cell biology, and materials science, researchers have proposed various interdisciplinary approaches for spinal cord regeneration. In this respect, the present review aims to explore the most recent developments in SCI treatment and spinal cord repair. Specifically, it briefly describes the characteristics of SCIs, followed by an extensive discussion on newly developed nanocarriers (e.g., metal-based, polymer-based, liposomes) for spinal cord delivery, relevant biomolecules (e.g., growth factors, exosomes) for SCI treatment, innovative cell therapies, and novel natural and synthetic biomaterial scaffolds for spinal cord regeneration.


Assuntos
Traumatismos da Medula Espinal , Regeneração da Medula Espinal , Materiais Biocompatíveis/uso terapêutico , Humanos , Regeneração Nervosa , Polímeros , Medula Espinal/patologia , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/terapia , Alicerces Teciduais
18.
Neurospine ; 19(4): 961-975, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36597633

RESUMO

Traumatic spinal cord injury (SCI) disrupts the spinal cord vasculature resulting in ischemia, amplification of the secondary injury cascade and exacerbation of neural tissue loss. Restoring functional integrity of the microvasculature to prevent neural loss and to promote neural repair is an important challenge and opportunity in SCI research. Herein, we summarize the course of vascular injury and repair following SCI and give a comprehensive overview of current experimental therapeutic approaches targeting spinal cord microvasculature to diminish ischemia and thereby facilitate neural repair and regeneration. A systematic review of the published literature on therapeutic approaches to promote vascular repair after experimental SCI was performed using PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) standards. The MEDLINE databases PubMed, Embase, and OVID MEDLINE were searched using the keywords "spinal cord injury," "angiogenesis," "angiogenesis inducing agents," "tissue engineering," and "rodent subjects." A total of 111 studies were identified through the search. Five main therapeutic approaches to diminish hypoxia-ischemia and promote vascular repair were identified as (1) the application of angiogenic factors, (2) genetic engineering, (3) physical stimulation, (4) cell transplantation, and (5) biomaterials carrying various factor delivery. There are different therapeutic approaches with the potential to diminish hypoxia-ischemia and promote vascular repair after experimental SCI. Of note, combinatorial approaches using implanted biomaterials and angiogenic factor delivery appear promising for clinical translation.

19.
Spectrochim Acta A Mol Biomol Spectrosc ; 265: 120323, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34534772

RESUMO

Spinal cord injury is a significant public health issue with high psychological and financial costs to both the family and the society. Effective treatment strategies are hence of immense value. Several reports have suggested application of amniotic membrane for treating injuries, and there is evidence that it may be used to treat spinal injuries. In this animal model study, we explore biochemical changes in amniotic membrane treated injured spinal cord with respect to untreated injured and uninjured spinal cord using Raman spectroscopy. Multivariate statistical analysis is able to classify control, untreated, and treated with 92%, 87%, and 80% efficiency, respectively; suggesting unique biochemical changes in each group. Such studies may lead to development of minimally invasive methodologies for spinal cord injury treatment monitoring.


Assuntos
Âmnio , Traumatismos da Medula Espinal , Animais , Modelos Animais de Doenças , Ratos , Análise Espectral Raman , Traumatismos da Medula Espinal/terapia
20.
Front Cell Dev Biol ; 9: 744191, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34869332

RESUMO

A pair of Mauthner cells (M-cells) can be found in the hindbrain of most teleost fish, as well as amphibians and lamprey. The axons of these reticulospinal neurons cross the midline and synapse on interneurons and motoneurons as they descend the length of the spinal cord. The M-cell initiates fast C-type startle responses (fast C-starts) in goldfish and zebrafish triggered by abrupt acoustic/vibratory stimuli. Starting about 70 days after whole spinal cord crush, less robust startle responses with longer latencies manifest in adult goldfish, Carassius auratus. The morphological and electrophysiological identifiability of the M-cell provides a unique opportunity to study cellular responses to spinal cord injury and the relation of axonal regrowth to a defined behavior. After spinal cord crush at the spinomedullary junction about one-third of the damaged M-axons of adult goldfish send at least one sprout past the wound site between 56 and 85 days postoperatively. These caudally projecting sprouts follow a more lateral trajectory relative to their position in the fasciculus longitudinalis medialis of control fish. Other sprouts, some from the same axon, follow aberrant pathways that include rostral projections, reversal of direction, midline crossings, neuromas, and projection out the first ventral root. Stimulating M-axons in goldfish that had post-injury startle behavior between 198 and 468 days postoperatively resulted in no or minimal EMG activity in trunk and tail musculature as compared to control fish. Although M-cells can survive for at least 468 day (∼1.3 years) after spinal cord crush, maintain regrowth, and elicit putative trunk EMG responses, the cell does not appear to play a substantive role in the emergence of acoustic/vibratory-triggered responses. We speculate that aberrant pathway choice of this neuron may limit its role in the recovery of behavior and discuss structural and functional properties of alternative candidate neurons that may render them more supportive of post-injury startle behavior.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...