Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Diabetes Metab Syndr ; 18(7): 103092, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39098209

RESUMO

BACKGROUND: The study investigates substituting non-nutritive sweeteners (NNS) for sugar to address health concerns related to excess sugar intake. It specifically examines how stevia affects insulin and blood glucose levels. The systematic review and meta-analysis aim to evaluate stevia's impact on glycemic indices. METHODS: We conducted a systematic review and meta-analysis following PRISMA guidelines, including 26 studies with 1439 participants. The PROSPERO registration number for this research is CRD42023414411. We systematically searched PubMed (MEDLINE), Scopus, Web of Science, and Google Scholar. Additionally, we thoroughly reviewed the reference lists of the articles we extracted and relevant reviews. Two evaluators independently carried out screening, quality assessment, and data extraction. The GRADE (grading of recommendations, assessment, development, and evaluation) approach was utilized to evaluate the certainty of the evidence. RESULTS: Stevia consumption was associated with significantly reducing blood glucose levels (WMD: -3.84; 95 % CI: -7.15, -0.53; P = 0.02, low certainty), especially in individuals with higher BMI, diabetes, and hypertension. Dose-response analysis revealed a decrease in blood glucose for ≥3342 mg/day of stevia consumption. Stevia consumption has been shown to reduce blood glucose levels within 1-4 months, as evidenced by dose-response analysis (less than 120 days) and subgroup analysis (more than four weeks). However, stevia did not significantly affect insulin concentration or HbA1C levels (very low and low certainty, respectively). CONCLUSIONS: Low certainty evidence showed that stevia improved blood glucose control, especially when consumed for less than 120 days. However, more randomized trials with higher stevia dosages are required.

2.
Foods ; 13(12)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38928740

RESUMO

Understanding the edulcorant profile of synthetic glucosyl steviol glycosides (GSGs) and rare natural steviol glycosides (SGs) is challenging due to their numerous species and rareness. This study developed a computational model based on the interactions of SG molecules with human sweet and bitter taste receptors (hSTR/hBTR). The models demonstrated a high correlation between the cumulative interaction energies and the perceived sweetness of SGs (R2 = 0.97), elucidating the mechanism of the diverse sweetness of SGs. It also revealed that more (within three) glucose residues at the C-13 position of the SG molecule yield stronger sweetness and weaker bitterness. Furthermore, the computational prediction was consistently validated with the known sweetness of GSG and also aligned well with that of several natural mogrosides. Thus, this model possesses a potential to predict the sweetness of SGs, GSGs, and mogrosides, facilitating the application or targeted synthesis of GSGs with desired sensory profiles.

3.
Int J Radiat Biol ; 100(7): 1104-1115, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38870412

RESUMO

PURPOSE: Stevia rebaudiana Bertoni is a perennial herb, widely used as a natural sweetener around the globe. The key compounds responsible for its sweetness includes stevioside and rebaudioside-A. In order to improve these steviol glycosides, the present study was initiated to study the effect of induced mutagenesis on growth parameters, steviol glycosides and nuclear DNA content in Stevia rebaudiana Bertoni using ten doses of gamma-rays (5-100 kR). MATERIALS AND METHODS: Healthy seeds of 'Madhuguna' variety of Stevia rebaudiana Bertoni developed and maintained at stevia breeding farm, Agrotechnology division, CSIR-Institute of Himalayan Bioresource Technology, Palampur (HP), India were irradiated with ten doses of gamma rays (600 seeds each/dose) ranging from 5 kR to 100 kR (i.e., 5, 10, 15, 20, 30, 40, 50, 60, 80 and 100 kR) using Co60 gamma irradiation chamber at CCS Haryana Agricultural University, Hisar, (Haryana), India. RESULTS: Significant variations were recorded for all the seedling traits studied while major impact was noticed on the seedling after reaching the cotyledonary stage and doses above 40 kR showed absolute mortality of the seedlings. Based on probit analysis, the optimum LD50 dose lies in the range of 20-23 kR. Glycosidic profiling of 296 mutants using high-performance liquid chromatography showed decreased total steviol glycoside content with increased radiation dose. Doses 5 kR and 10 kR, were found to be effective in increasing the overall glycosidic content. A total of 72 promising mutants were also screened for increased rebaudioside-A stevioside ratio. Comparison of nuclear DNA content using flow cytometry revealed a similar decrease in the total nuclear DNA content with increase in dosage of gamma rays. The average genome size at 5, 10, 15, 20 and 30 kR treatments were 2.72, 2.69, 2.68, 2.70 and 2.66 pg as compared to 2.72 pg in control. CONCLUSIONS: Mild dose of gamma rays (5 and 10 kR) in stevia were found to be effective in improving the mean steviol glycoside content and may be used in future stevia mutation programmes.


Assuntos
Diterpenos do Tipo Caurano , Raios gama , Stevia , Stevia/efeitos da radiação , Tolerância a Radiação , Glucosídeos , Relação Dose-Resposta à Radiação
4.
J Agric Food Chem ; 72(14): 8140-8148, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38563232

RESUMO

Rebaudioside (Reb) M is an important sweetener with high sweetness, but its low content in Stevia rebaudiana and low catalytic capacity of the glycosyltransferases in heterologous microorganisms limit its production. In order to improve the catalytic efficiency of the conversion of stevioside to Reb M by Saccharomyces cerevisiae, several key issues must be resolved including knocking out endogenous hydrolases, enhancing glycosylation, and extending the enzyme catalytic process. Herein, endogenous glycosyl hydrolase SCW2 was knocked out in S. cerevisiae. The glycosylation process was enhanced by screening glycosyltransferases, and UGT91D2 from S. rebaudiana was identified as the optimum glycosyltransferase. The UDP-glucose supply was enhanced by overexpressing UGP1, and co-expressing UGT91D2 and UGT76G1 achieved efficient conversion of stevioside to Reb M. In order to extend the catalytic process, the silencing information regulator 2 (SIR2) which can prolong the growth cycle of S. cerevisiae was introduced. Finally, combining these modifications produced 12.5 g/L Reb M and the yield reached 77.9% in a 5 L bioreactor with 10.0 g/L stevioside, the highest titer from steviol glycosides to Reb M reported to date. The engineered strain could facilitate the industrial production of Reb M, and the strategies provide references for the production of steviol glycosides.


Assuntos
Diterpenos do Tipo Caurano , Stevia , Trissacarídeos , Saccharomyces cerevisiae/genética , Difosfato de Uridina , Hidrolases , Glucosídeos , Glicosiltransferases/genética , Glicosídeos , Folhas de Planta
5.
Front Bioeng Biotechnol ; 12: 1334427, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38375456

RESUMO

Rebaudioside M2 (Reb M2), a novel steviol glycoside derivative, has limited industrial applications due to its low synthetic yield and selectivity. Herein, we identify UGT94D1 as a selective glycosyltransferase for rebaudioside D (Reb D), leading to the production of a mono ß-1,6-glycosylated derivative, Reb M2. A variant UGT94D1-F119I/D188P was developed through protein engineering. This mutant exhibited a 6.33-fold improvement in catalytic efficiency, and produced Reb M2 with 92% yield. Moreover, molecular dynamics simulations demonstrated that UGT94D1-F119I/D188P exhibited a shorter distance between the nucleophilic oxygen (OH6) of the substrate Reb D and uridine diphosphate glucose, along with an increased Ophosphate-C1-Oacceptor angle, thus improving the catalytic activity of the enzyme. Therefore, this study provides an efficient method for the selective synthesis of Reb M2 and paves the way for its applications in various fields.

6.
EFSA J ; 21(12): e8387, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38125973

RESUMO

The EFSA Panel on Food Additive and Flavourings (FAF Panel) provides a scientific opinion on the safety of a new process to produce steviol glycosides by fermentation of simple sugars using a genetically modified strain of Yarrowia lipolytica (named Y. lipolytica VRM). The manufacturing process may result in impurities different from those that may be present in the other steviol glycosides E 960a-d, therefore the Panel concluded that separate specifications are required for the food additive produced as described in the current application. Viable cells and DNA from the production strain are not present in the final product. The Panel considered that the demonstration of the absence of kaurenoic acid in the proposed food additive, using a method with a limit of detection (LOD) of 0.3 mg/kg, is adequate to dispel the concerns for potential genotoxicity. Given that all steviol glycosides follow the same metabolic pathways, the Panel considered that the current steviol glycosides would fall within the same group of substances. Therefore, the Panel considered that the already existing data on rebaudioside M and structurally related steviol glycosides are sufficient, and a similar metabolic fate and toxicity is expected for the food additive. The results from the bacterial reverse mutation assay and the in vitro micronucleus assay were negative and indicated absence of genotoxicity from the food additive. The existing acceptable daily intake (ADI) of 4 mg/kg body weight (bw) per day, expressed as steviol equivalents, was considered to be applicable to the proposed food additive. The Panel concluded that there is no safety concern for steviol glycosides, predominantly Rebaudioside M, produced by fermentation using Y. lipolytica VRM, to be used as a food additive at the proposed uses and use levels.

7.
Foods ; 12(21)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37959060

RESUMO

The aim of this study was to validate a method for determining nine types of steviol glycoside and its derivatives in food and beverage products, using ultrahigh-performance liquid chromatography tandem mass spectrometry with electrospray ionization (UHPLC ESI MS/MS). The performance characteristics of the analysis method were determined along with their suitability for the intended use. Coefficient of determination (R2) calibration curves from 0.2 to 1.0 mg L-1 were in the ranges of 0.9911-0.9990, 0.9939-1.0000 and 0.9973-0.9999 for a beverage, yogurt and snack, respectively. Intra-day precisions in terms of percent relative standard deviation (% RSD) of concentration, at 0.2, 0.5 and 1.0 mg L-1, for the beverage, yogurt and snack were lower than 15% (1.1-9.3%). At all concentrations, percentage recoveries were in the accepted range of 70-120%. For the matrix effect study, matrix-matched calibration was used for all compounds, obtaining a linear concentration range from 0.2 mg L-1 to 1.0 mg L-1. Almost all matrix-matched results presented as percentage recoveries were within the accepted range of 80-120%. The limit of detection (LOD) for steviol glycosides ranged from 0.003 to 0.078 µg g-1, while the limit of quantitation (LOQ) ranged from 0.011 to 0.261 µg g-1. These results indicate that the modified test method can be applied to determine the presence of steviol glycoside and its derivatives in a wide range of sample matrices.

8.
Microb Cell Fact ; 22(1): 113, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37312096

RESUMO

BACKGROUND: Compared with steviol glycosides, the taste of glucosylated steviol glycosides is better and more similar to that of sucrose. At present, cyclodextrin glucanotransferase (CGTase) is primarily used to catalyze the conversion of steviol glycosides to glucosylated steviol glycosides, with soluble starch serving as a glycosyl donor. The main disadvantages of enzymatic transglycosylation are the limited number of enzymes available, the low conversion rates that result in low yields, and the lack of selectivity in the degree of glycosylation of the products. In order to fill these gaps, the proteome of Alkalihalobacillus oshimensis (also named Bacillus oshimensis) was used for mining novel CGTases. RESULTS: Here, CGTase-15, a novel ß-CGTase with a wide pH adaptation range, was identified and characterized. The catalyzed product of CGTase-15 tasted better than that of the commercial enzyme (Toruzyme® 3.0 L). In addition, two amino acid sites, Y199 and G265, which play important roles in the conversion of steviol glycosides to glucosylated steviol glycosides were identified by site-directed mutagenesis. Compared with CGTase-15, CGTase-15-Y199F mutant significantly increased the conversion rate of rebaudioside A (RA) to glucosylated steviol glycosides. Compared with CGTase-15, the content of short-chain glycosylated steviol glycosides catalyzed by CGTase-15-G265A mutant was significantly increased. Moreover, the function of Y199 and G265 was verified in other CGTases. The above mutation pattern has also been applied to CGTase-13 (a CGTase discovered by our laboratory with great potential in the production of glycosylated steviol glycosides), confirming that the catalytic product of CGTase-13-Y189F/G255A mutant has a better taste than that of CGTase-13. CONCLUSIONS: This is the first report on the improvement of the sensory profiles of glycosylated steviol glycosides through site-directed mutagenesis of CGTase, which is significant for the production of glycosylated steviol glycosides.


Assuntos
Glucosídeos , Glicosilação
9.
Carbohydr Res ; 523: 108737, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36657220

RESUMO

Steviol glycosides have attracted great interest because of their high levels of sweetness and safety, and absence of calories. Improvement of their sensory qualities via glycosylation modification by glycosyltransferase is a research hotspot. In this study, YjiC, a uridine diphosphate-dependent glycosyltransferase from Bacillus subtilis 168, was found with the ability to glycosylate rebaudioside A (Reb A) to produce a novel mono ß-1, 6-glycosylated Reb A derivative rebaudioside L2 (Reb L2). It has an improved sweetness compared with Reb A. Next, a cascade reaction was established by combining YjiC with sucrose synthase AtSuSy from Arabidopsis thaliana for scale-up preparation of Reb L2. It shows that Reb L2 (30.94 mg/mL) could be efficiently synthesized with an excellent yield of 91.34% within 12 h. Therefore, this study provides a potential approach for the production and application of new steviol glycoside Reb L2, expanding the scope of steviol glycosides.


Assuntos
Diterpenos do Tipo Caurano , Stevia , Glicosiltransferases , Glucosídeos , Catálise
10.
Compr Rev Food Sci Food Saf ; 22(1): 615-642, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36524621

RESUMO

For health and safety concerns, traditional high-calorie sweeteners and artificial sweeteners are gradually replaced in food industries by natural and low-calorie sweeteners. As a natural and high-quality sugar substitute, steviol glycosides (SvGls) are continually scrutinized regarding their safety and application. Recently, the cultivation of organic stevia has been increasing in many parts of Europe and Asia, and it is obvious that there is a vast market for sugar substitutes in the future. Rebaudioside A, the main component of SvGls, is gradually accepted by consumers due to its safe, zero calories, clear, and sweet taste with no significant undesirable characteristics. Hence, it can be used in various foods or dietary supplements as a sweetener. In addition, rebaudioside A has been demonstrated to have many physiological functions, such as antihypertension, anti-diabetes, and anticaries. But so far, there are few comprehensive reviews of rebaudioside A. In this review article, we discuss the physicochemical properties, metabolic process, safety, regulatory, health benefits, and biosynthetic pathway of rebaudioside A and summarize the modification methods and state-of-the-art production and purification techniques of rebaudioside A. Furthermore, the current problems hindering the future production and application of rebaudioside A are analyzed, and suggestions are provided.


Assuntos
Açúcares da Dieta , Stevia , Açúcares da Dieta/metabolismo , Edulcorantes/química , Edulcorantes/metabolismo , Aditivos Alimentares , Stevia/química , Stevia/metabolismo
11.
Carbohydr Res ; 522: 108687, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36270051

RESUMO

Steviol glycosides have been widely applied as new sweeteners in food, beverages, health care, and daily chemical industry owing to the properties of high-intensity sweetness, low calorie, and good physiological characteristics. However, most of steviol glycosides have a bitter taste. Their organoleptic properties can be effectively improved by modifying the linked glycosyl units. In this study, UGT94D1, a uridine diphosphate-dependent glycosyltransferase from Sesamum indicum, was reported to selectively glycosylate rebaudioside A (Reb A) for the synthesis of rebaudioside D2 (Reb D2). Furthermore, a cascade reaction system was constructed to synthesize Reb D2 with 94.66% yield by coupling UGT94D1 with sucrose synthase AtSuSy from Arabidopsis thaliana. Thus, our study not only introduced a practical method for the synthesis of steviol glycosides but also provided the possibility for further exploration of Reb D2.


Assuntos
Diterpenos do Tipo Caurano , Stevia , Stevia/química , Glicosilação , Diterpenos do Tipo Caurano/química , Glucosídeos/química , Catálise
12.
EFSA J ; 20(5): e07291, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35600273

RESUMO

The EFSA Panel on Food Additives and Flavourings (FAF Panel) provides a scientific opinion on the safety of a proposed amendment of the specifications of enzymatically produced steviol glycosides (E 960c) with respect to the inclusion of rebaudioside D produced via enzyme-catalysed bioconversion of purified stevia leaf extract. Rebaudioside D (95% on dry basis) is produced via enzymatic bioconversion of purified stevia leaf extract using uridine diphosphate (UDP)-glucosyltransferase (UGT) and sucrose synthase enzymes produced by the genetically modified yeast K. phaffii UGT-A, that facilitates the transfer of glucose to purified stevia leaf extract via glycosidic bonds. The same enzymes from K. phaffii UGT-A may be used in the manufacturing process of the food additive, rebaudioside M produced via enzyme modification of steviol glycosides from stevia (E 960c(i)). The Panel considered that separate specifications would be needed for this food additive produced via the manufacturing process described in the current application, aligned with those already established for E 960c(i). The Panel concluded that there is no toxicological concern for Rebaudioside D produced via enzymatic bioconversion of purified stevia leaf extract using UDP-glucosyltransferase and sucrose synthase produced by a genetically modified strain of the yeast K. phaffii. However, based on the available data, the Panel could not exclude the possibility that some residual amount of DNA coding for the kanamycin resistance gene could remain in the final product. Should this gene propagate in microbiota due to the presence of recombinant DNA in the final product, this would be of concern. Therefore, the Panel concluded that the safety of Rebaudioside D produced via this enzymatic bioconversion was not sufficiently demonstrated with the available data given that the absence of recombinant DNA was not shown.

13.
BMC Complement Med Ther ; 22(1): 62, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35260150

RESUMO

BACKGROUND: The objective of this in vivo study is to evaluate in five rat models the pharmacologic effects and toxicity of a commercial hydro-alcoholic extract, GlucoMedix®, derived from Stevia rebaudiana and the pentacyclic chemotype of Uncaria Tomentosa (Willd.) DC, for use as a treatment for metabolic syndrome. The extract contains phytochemicals of Stevia (e.g., steviol glycosides) and Uncaria (e.g., pentacyclic oxindole alkaloids, but lacks tetracyclic oxindole alkaloids). METHODS: The pharmacologic assessments in three rat models include reductions in chemically induced hyperglycemia, hyperlipidemia (cholesterol and triglycerides), and hypertension, all of which are comorbidities of metabolic syndrome. Acute toxicity and 28-day subacute toxicity were assessed in rat models at doses higher than those used in the efficacy models. RESULTS: The acute oral toxicity was evaluated in Holtzman rats and the extract did not produce acute toxic effects or lethality, with the LD50 > 5000 mg/kg (extract wet weight). Furthermore, subacute oral toxicity was evaluated in rats for 28 days at daily doses as high as 2000 mg/kg without toxicity or abnormal clinical chemistry or hematological effects. Daily oral doses of 250 - 1000 mg/kg were used to evaluate the treatment effects in hyperglycemic (alloxan-induced and glibenclamide-controlled), hyperlipidemic (cholesterol-induced and atorvastatin-controlled), and hypertensive (L-NAME-induced and enalapril-controlled) rat models. Alloxan-induced hyperglycemia was reduced in a dose-dependent manner within 28 days or less. Cholesterol-induced hyperlipidemic rats exhibited dose-dependent reductions in cholesterol and triglycerides at 21 days. Furthermore, GlucoMedix® produced a dose-dependent decrease in systolic and diastolic arterial blood pressure in L-NAME-induced hypertensive rats at 28 days. CONCLUSIONS: The five in vivo rat models revealed that the all-natural phytotherapy GlucoMedix® is a safe and effective treatment for hyperglycemia, hyperlipidemia, and hypertension. This extract is expected to affect multiple comorbidities of metabolic syndrome, without any acute or subacute oral toxicity in humans. Although multiple prescription drugs are well known for the treatment of individual comorbidities of metabolic syndrome, no drug monotherapy concurrently treats all three comorbidities.


Assuntos
Unha-de-Gato , Hiperglicemia , Hiperlipidemias , Hipertensão , Síndrome Metabólica , Stevia , Animais , Hiperglicemia/tratamento farmacológico , Hiperlipidemias/tratamento farmacológico , Hipertensão/tratamento farmacológico , Síndrome Metabólica/tratamento farmacológico , Extratos Vegetais/uso terapêutico , Ratos
14.
Molecules ; 26(22)2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34834008

RESUMO

Steviol glycosides were subjected to bacteria present in a soil sample collected from a Stevia plantation in Paraguay. During the incubation experiments, next to the aglycon steviol, steviol degradation products were also formed. X-ray analysis and NMR methods in combination with chemical synthesis and GIAO NMR calculations were used to fully characterize the structure of these compounds as a tricyclic ketone and the corresponding reduced form. They were nicknamed monicanone and monicanol. The latter has the (S)-configuration at the alcohol site.


Assuntos
Diterpenos do Tipo Caurano/química , Diterpenos do Tipo Caurano/metabolismo , Glucosídeos/química , Glucosídeos/metabolismo , Folhas de Planta/química , Stevia/química
15.
Foods ; 10(11)2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34829084

RESUMO

In this study, the optimization and modeling of microwave-assisted extraction (MAE) of water-soluble curcuminoids prepared using novel steviol glycosides (SGs) was carried out using four independent process variables at varying levels-X1: microwave power (50-200 W), X2: stevioside concentration (50-200 mg/mL), X3: curcumin concentration (20-200 mg/mL), and X4: time (1-10 min)-in response surface methodology configuration. Moreover, the effects of stevioside, as the most cost-effective natural solubilizer, were also evaluated. The water solubility of curcuminoids increased from 11 to 1320 mg/L with the addition of stevioside as a natural solubilizer. Moreover, microwave heating synergistically with stevioside addition significantly (p < 0.05) increased the solubility up to 5400 mg/L. Based on the results, the optimum conditions providing the maximum solubilization of 16,700 mg/L were 189 W microwave power, 195 g/L stevioside concentration, 183 g/L curcuminoid concentration, and 9 min of incubation time. Moreover, MAE of curcuminoids using SGs might render a significant advantage for its wide-scale application to solubilizing the multitude of insoluble functional flavonoids in fruits, plants, and food materials.

16.
EFSA J ; 19(8): e06691, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34377189

RESUMO

The EFSA Panel on Food Additives and Flavourings (FAF) provides a scientific opinion on the safety of steviol glycoside preparations, including rebaudioside AM, obtained by enzymatic bioconversion of highly purified stevioside and/or rebaudioside A stevia leaf extracts. These steviol glycoside preparations are produced via enzymatic bioconversion of highly purified stevioside and/or rebaudioside A extracts obtained from stevia plant using two UDP-glucosyltransferases and one sucrose synthase enzymes produced by the genetically modified strains of E. coli K-12 that facilitate the transfer of glucose to purified stevia leaf extracts via glycosidic bonds. The Panel considered that the parental strain is a derivative of E. coli K-12 which is well characterised and its safety has been documented; therefore, it is considered to be safe for production purposes. The Panel concluded that there is no safety concern for steviol glycoside preparations, including rebaudioside AM, obtained by enzymatic bioconversion of highly purified stevioside and/or rebaudioside A stevia leaf extracts using UDP-glucosyltransferases and sucrose synthase enzymes produced by the genetically modified strains of E. coli K-12, to be used as a food additive. The Panel recommends the European Commission to consider the proposal of establishing separate specifications for steviol glycoside preparations, including rebaudioside AM, obtained by enzymatic bioconversion of highly purified stevioside and/or rebaudioside A stevia leaf extracts in Commission Regulation (EU) No 231/2012.

17.
J Food Sci ; 86(7): 3075-3081, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34155649

RESUMO

Steviol glycosides are well-known food sweeteners; their consumption has steadily increased over time. A pretreatment method was developed and validated to better separate rebaudioside A and stevioside from various protein-rich and fatty foods for quantification. This method was applied to soy sauce in liquid type and fish cake and coffee in solid type. Parameters such as linearity, limit of detection (LOD), limit of quantification (LOQ), accuracy, and precision were calculated. Calibration curves were linear in the working range of 5-100 mg/l, with coefficients of determination ≥0.99. The LOD and LOQ were in the ranges of 0.16-0.39 and 0.52-1.28 mg/kg, respectively. The percentage recoveries of the fortified samples were in the 88.01%-103.09% range, and the relative standard deviation was <10%. Method validation predicted a desirable accuracy, linearity, and precision. Therefore, the developed method can be practically applied for the quantitation of steviol glycosides in various foods, including soy sauce in liquid type and fish cake and coffee in solid type.


Assuntos
Diterpenos do Tipo Caurano/análise , Análise de Alimentos/métodos , Análise de Alimentos/normas , Glucosídeos/análise , Stevia/química , Edulcorantes/análise , Limite de Detecção
18.
Appl Biochem Biotechnol ; 193(3): 637-649, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33057971

RESUMO

Rebaudioside E, one of the minor components of steviol glycosides, was first isolated and identified from Stevia rebaudiana in 1977. It is a high-intensity sweetener that tastes about 150-200 times sweeter than sucrose and is also a precursor for biosynthesis of rebaudioside D and rebaudioside M, the next-generation Stevia sweeteners. In this work, new unknown steviol glycosides were enzymatically synthesized from stevioside by coupling UDP-glucosyltransferase UGTSL2 from Solanum lycopersicum and sucrose synthase StSUS1 from Solanum tuberosum. Rebaudioside E was speculated to be the main product of glucosylation of the Glc(ß1→C-19) residue of stevioside along with the formation of a (ß1→2) linkage based on the analysis of the regioselectivity and stereoselectivity of UGTSL2, and verified afterwards by LC-MS/MS with standard. In a 20-ml bioconversion reaction of 20 g/l stevioside by UGTSL2 and StSUS1, 15.92 g/l rebaudioside E was produced for 24 h.


Assuntos
Diterpenos do Tipo Caurano/química , Diterpenos do Tipo Caurano/síntese química , Glucosídeos/química , Glicosiltransferases/química , Proteínas de Plantas/química , Solanum lycopersicum/enzimologia , Glucosiltransferases/química , Solanum tuberosum/enzimologia
19.
Dokl Biol Sci ; 492(1): 79-82, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32632831

RESUMO

The concentrations of steviol and its derivatives stimulating the growth of wheat plants were measured: 10-8 for stevioside and 10-9 М for steviol and isosteviol. It was found that stevioside increased the activity of amylolytic enzymes and protein content, as well as frost tolerance of the roots of wheat seedlings. Thus, stevioside can be recommended for the development of complex phytopreparations for stimulating the growth processes and increasing the resistance of wheat plants to low temperatures.


Assuntos
Diterpenos do Tipo Caurano/farmacologia , Glucosídeos/farmacologia , Folhas de Planta/efeitos dos fármacos , Stevia/química , Triticum/crescimento & desenvolvimento , Diterpenos/farmacologia , Diterpenos do Tipo Caurano/química , Glucosídeos/química , Folhas de Planta/crescimento & desenvolvimento , Triticum/efeitos dos fármacos
20.
J Sci Food Agric ; 100(10): 3841-3849, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32297310

RESUMO

BACKGROUND: Stevia has been proposed as a potential antidiabetic sweetener, mainly based on inconsistent results from stevioside or the plant extract, yet lacking relative experimental evidence from individual steviol glycosides (SGs) and their metabolites. RESULTS: The results systematically revealed that the typical SGs and their final metabolite (steviol) presented an antidiabetic effect on streptozotocin (STZ) diabetic mice in all assayed antidiabetic aspects. In general, the performance strength of the samples followed the sequence steviol > steviol glucosyl ester > steviolbioside > rubusoside > stevioside > rebaudioside A, which is opposite to their sweetness strength order, and generally in accordance with the glucosyl group numbers in their molecules. This may imply that the antidiabetic effect of the SGs might be achieved through steviol, which presented antidiabetic performance similar to that of metformin with a dose of 1/20 that of metformin. Moreover, the 18 F-fluorodeoxyglucose traced micro-PET experiment revealed that stevioside and steviol could increase the uptake of glucose in the myocardium and brain of the diabetic mice within 60 min, and decrease the accumulation of glucose in the liver and kidney. CONCLUSIONS: The SGs and steviol presented an antidiabetic effect on STZ diabetic mice in all assayed aspects, with an induction time to start the effect of the SGs. Stevioside and steviol could increase uptake of glucose in the myocardium and brain of the diabetic mice, and decrease accumulation of glucose in the liver and kidney. The performance strength of the SGs is generally in accordance with glucosyl group numbers in their molecules.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Diterpenos do Tipo Caurano/administração & dosagem , Glucosídeos/administração & dosagem , Hipoglicemiantes/administração & dosagem , Extratos Vegetais/administração & dosagem , Stevia/química , Animais , Diabetes Mellitus Experimental/metabolismo , Diterpenos do Tipo Caurano/metabolismo , Glucose/metabolismo , Glucosídeos/metabolismo , Humanos , Hipoglicemiantes/metabolismo , Rim/efeitos dos fármacos , Rim/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Extratos Vegetais/metabolismo , Folhas de Planta/química , Estreptozocina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA