Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 920: 170909, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38350562

RESUMO

Global climate warming, driven by human activities emitting greenhouse gases like CO2, results in adverse effects, posing significant challenges to human health and food security. In response to this challenge, it is imperative to enhance long-term carbon sequestration, including phytolith-occluded carbon (PhytOC). Currently, there is a dearth of research on the assessment and distribution of the stability of PhytOC. Additionally, the intricate relationships and effects between the stability and environmental factors such as climate and soil remain insufficiently elucidated. Our study provided a composite assessment index for PhytOC stability based on a rapid solubility assay and principal component analysis. The machine learning models that we developed in this study, utilize experimentally and publicly accessible environmental data on large spatial scales, facilitating the prediction and spatial distribution mapping of the PhytOC stability using simple kriging interpolation in wheat ecosystems across China. We compared and evaluated 10 common classification machine learning models at 10-fold cross-validation. Based on the overall performance, the Stochastic Gradient Boosting model (GBM) was selected as predictive model. The stability is influenced by dynamic and complex environments with climate having a more significant impact. It was evident that light and temperature had a significant positive direct relationship with the stability, while the other factors showed indirect effects on the stability. PhytOC stability exhibited obvious zonal difference and spatial heterogeneity, with the distribution trend gradually decreasing from the southeast to the northwest in China. Overall, our research contributed to reducing greenhouse gas emissions and achieving global climate targets, working towards a more sustainable and climate-resilient future.


Assuntos
Carbono , Triticum , Humanos , Carbono/análise , Ecossistema , Sequestro de Carbono , China , Solo , Dióxido de Carbono/análise
2.
J Environ Manage ; 354: 120298, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38377749

RESUMO

In the relentless battle against the impending climate crisis, deep eutectic solvents (DESs) have emerged as beacons of hope in the realm of green chemistry, igniting a resurgence of scientific exploration. These versatile compounds hold the promise of revolutionizing carbon capture, effectively countering the rising tide of carbon dioxide (CO2) emissions responsible for global warming and climate instability. Their adaptability offers a tantalizing prospect, as they can be finely tailored for a multitude of applications, thereby encompassing the uncharted territory of potential DESs. Navigating this unexplored terrain underscores the vital need for predictive computational methods, which serve as our guiding compass in the expansive landscape of DESs. Thermodynamic modeling and solubility prognostications stand as our unwavering navigational aides on this treacherous odyssey. In this direction, the COSMO-RS model intertwined with the captivating Stochastic Gradient Boosting (SGB) algorithm. Together, they unveil the elusive truths pertaining to CO2 solubility in DESs, forging a path toward a sustainable future. Our quest is substantiated by two exhaustive datasets, a repository of knowledge encompassing 1973 and 2327 CO2 solubility data points spanning 132 and 150 distinct DESs respectively, encapsulating a spectrum of conditions. The SGB models, incorporating features derived from COSMO-RS, as well as accounting for pressure and temperature variables, furnishes predictions that harmonize seamlessly with experimental CO2 solubility values, boasting an impressive Average Absolute Relative Deviation (AARD) of a mere 0.85% and 2.30% respectively. When juxtaposed with literature-reported methodologies like different EoS, as well as Computational Solvation, and machine learning (ML) models, our SGB model emerges as the epitome of reliability, offering robust forecasts of CO2 solubility in DESs. It emerges as a potent tool for the design and selection of DESs for CO2 capture and utilization, heralding a sustainable and environmentally conscientious future in the battle against climate change.


Assuntos
Dióxido de Carbono , Solventes/química , Reprodutibilidade dos Testes , Termodinâmica , Temperatura
3.
PeerJ ; 11: e16216, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37842061

RESUMO

Background: Identifying species, particularly small metazoans, remains a daunting challenge and the phylum Nematoda is no exception. Typically, nematode species are differentiated based on morphometry and the presence or absence of certain characters. However, recent advances in artificial intelligence, particularly machine learning (ML) algorithms, offer promising solutions for automating species identification, mostly in taxonomically complex groups. By training ML models with extensive datasets of accurately identified specimens, the models can learn to recognize patterns in nematodes' morphological and morphometric features. This enables them to make precise identifications of newly encountered individuals. Implementing ML algorithms can improve the speed and accuracy of species identification and allow researchers to efficiently process vast amounts of data. Furthermore, it empowers non-taxonomists to make reliable identifications. The objective of this study is to evaluate the performance of ML algorithms in identifying species of free-living marine nematodes, focusing on two well-known genera: Acantholaimus Allgén, 1933 and Sabatieria Rouville, 1903. Methods: A total of 40 species of Acantholaimus and 60 species of Sabatieria were considered. The measurements and identifications were obtained from the original publications of species for both genera, this compilation included information regarding the presence or absence of specific characters, as well as morphometric data. To assess the performance of the species identification four ML algorithms were employed: Random Forest (RF), Stochastic Gradient Boosting (SGBoost), Support Vector Machine (SVM) with both linear and radial kernels, and K-nearest neighbor (KNN) algorithms. Results: For both genera, the random forest (RF) algorithm demonstrated the highest accuracy in correctly classifying specimens into their respective species, achieving an accuracy rate of 93% for Acantholaimus and 100% for Sabatieria, only a single individual from Acantholaimus of the test data was misclassified. Conclusion: These results highlight the overall effectiveness of ML algorithms in species identification. Moreover, it demonstrates that the identification of marine nematodes can be automated, optimizing biodiversity and ecological studies, as well as turning species identification more accessible, efficient, and scalable. Ultimately it will contribute to our understanding and conservation of biodiversity.


Assuntos
Inteligência Artificial , Nematoides , Humanos , Animais , Algoritmos , Aprendizado de Máquina , Cromadoria
4.
MethodsX ; 10: 102163, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37077895

RESUMO

In this study, stochastic gradient boosting (SGB), a commonly-adopted soft computing method, was used to estimate reference evapotranspiration (ETo) for the Adiyaman region of southeastern Türkiye. The FAO-56-Penman-Monteith method was used to calculate ETo, which we then estimated using SGB with maximum temperature, minimum temperature, relative humidity, wind speed, and solar radiation obtained from a meteorological station.•The calculated ETo time series values were decomposed into sub-series using Singular Spectrum Analysis (SSA) to enhance prediction accuracy.•Each sub-series was trained with the first 70% of observations and tested with the remaining 30% via SGB. Final prediction values were obtained by collecting all series predictions.•Three lag times were taken into account during the predictions, and both short-term and long-term ETo values were estimated using the proposed framework. The results were tested with respect to root mean square error (RMSE) and Nash-Sutcliffe efficiency (NSE) indicators for ensuring whether the model produced statically acceptable outcomes.

5.
Eur J Radiol Open ; 10: 100459, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36561422

RESUMO

Purpose: To assess the potential of radiomic features in comparison to dual-energy CT (DECT) material decomposition to objectively stratify abdominal lymph node metastases. Materials and methods: In this retrospective study, we included 81 patients (m, 57; median age, 65 (interquartile range, 58.7-73.3) years) with either lymph node metastases (n = 36) or benign lymph nodes (n = 45) who underwent contrast-enhanced abdominal DECT between 06/2015-07/2019. All malignant lymph nodes were classified as unequivocal according to RECIST criteria and confirmed by histopathology, PET-CT or follow-up imaging. Three investigators segmented lymph nodes to extract DECT and radiomics features. Intra-class correlation analysis was applied to stratify a robust feature subset with further feature reduction by Pearson correlation analysis and LASSO. Independent training and testing datasets were applied on four different machine learning models. We calculated the performance metrics and permutation-based feature importance values to increase interpretability of the models. DeLong test was used to compare the top performing models. Results: Distance matrices and t-SNE plots revealed clearer clusters using a combination of DECT and radiomic features compared to DECT features only. Feature reduction by LASSO excluded all DECT features of the combined feature cohort. The top performing radiomic features model (AUC = 1.000; F1 = 1.000; precision = 1.000; Random Forest) was significantly superior to the top performing DECT features model (AUC = 0.942; F1 = 0.762; precision = 0.800; Stochastic Gradient Boosting) (DeLong < 0.001). Conclusion: Imaging biomarkers have the potential to stratify unequivocal lymph node metastases. Radiomics models were superior to DECT material decomposition and may serve as a support tool to facilitate stratification of abdominal lymph node metastases.

6.
Sci Total Environ ; 803: 150061, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34525705

RESUMO

Downed woody material (DWM) is a unique part of the forest carbon cycle serving as a pool between living biomass and subsequent atmospheric emission or transference to other forest pools. Thus, DWM is an individually defined pool in national greenhouse gas inventories. The diversity of DWM carbon drivers (e.g., decay, tree mortality, or wildfire) and associated high spatial variability make this a difficult-to-predict component of forest ecosystems. Using the now fully established nationwide inventory of DWM across the United States (US), we developed models, which substantially improved predictions of stand-level DWM carbon density relative to the current national-reporting model ('previous' model, here). The previous model was developed from published DWM carbon densities prior to the NFI DWM inventory. Those predictions were tested using NFI DWM carbon densities resulting in a poor fit to the data (coefficient of determination, or R2 = 0.03). We present new random forest (RF) and stochastic gradient boosted (SGB) regression models to prediction DWM carbon density on all NFI plots and spatially on all forest land pixels. We evaluated various biotic and abiotic regression predictors, and the most important were standing dead trees, long-term annual precipitation, and long-term maximum summer temperature. A RF model scored best for expanding predictions to NFI plots (R2 = 0.31), while an SGB model was identified for DWM carbon predictions based on purely spatial data (i.e., NFI-plot-independent, with R2 = 0.23). The new RF model predicts conterminous US DWM carbon stocks to be 15% lower than the previous model and 2% higher than NFI data expanded according to inventory design-based inference. The new NFI data-driven models not only improve the predictions of DWM carbon density on all plots, they also provide flexibility in extending these predictions beyond the NFI to make spatially explicit and spatially continuous estimates of DWM carbon on all forest land in the US.


Assuntos
Carbono , Ecossistema , Biomassa , Carbono/análise , Ciclo do Carbono , Estados Unidos , Madeira/química
7.
BMC Infect Dis ; 20(1): 556, 2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32736602

RESUMO

BACKGROUND: There is a general dearth of information on extrapulmonary tuberculosis (EPTB). Here, we investigated Mycobacterium tuberculosis (Mtb) drug resistance and transmission patterns in EPTB patients treated in the Tshwane metropolitan area, in South Africa. METHODS: Consecutive Mtb culture-positive non-pulmonary samples from unique EPTB patients underwent mycobacterial genotyping and were assigned to phylogenetic lineages and transmission clusters based on spoligotypes. MTBDRplus assay was used to search mutations for isoniazid and rifampin resistance. Machine learning algorithms were used to identify clinically meaningful patterns in data. We computed odds ratio (OR), attributable risk (AR) and corresponding 95% confidence intervals (CI). RESULTS: Of the 70 isolates examined, the largest cluster comprised 25 (36%) Mtb strains that belonged to the East Asian lineage. East Asian lineage was significantly more likely to occur within chains of transmission when compared to the Euro-American and East-African Indian lineages: OR = 10.11 (95% CI: 1.56-116). Lymphadenitis, meningitis and cutaneous TB, were significantly more likely to be associated with drug resistance: OR = 12.69 (95% CI: 1.82-141.60) and AR = 0.25 (95% CI: 0.06-0.43) when compared with other EPTB sites, which suggests that poor rifampin penetration might be a contributing factor. CONCLUSIONS: The majority of Mtb strains circulating in the Tshwane metropolis belongs to East Asian, Euro-American and East-African Indian lineages. Each of these are likely to be clustered, suggesting on-going EPTB transmission. Since 25% of the drug resistance was attributable to sanctuary EPTB sites notorious for poor rifampin penetration, we hypothesize that poor anti-tuberculosis drug dosing might have a role in the development of resistance.


Assuntos
Farmacorresistência Bacteriana/genética , Mycobacterium tuberculosis/genética , Tuberculose/transmissão , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Feminino , Genótipo , Humanos , Lactente , Isoniazida/uso terapêutico , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade , Mutação , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/patogenicidade , Filogenia , Rifampina/uso terapêutico , África do Sul , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia , Tuberculose Pulmonar/microbiologia , Adulto Jovem
8.
Med Intensiva (Engl Ed) ; 44(3): 160-170, 2020 Apr.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-30245121

RESUMO

INTRODUCTION: Sepsis is associated to a high mortality rate, and its severity must be evaluated quickly. The severity of illness scores used are intended to be applicable to all patient populations, and generally evaluate in-hospital mortality. However, patients with sepsis continue to be at risk of death after hospital discharge. OBJECTIVE: To develop a model for predicting 1-year mortality in critical patients diagnosed with sepsis. PATIENTS: The data corresponding to 5650 admissions of patients with sepsis from the Medical Information Mart for Intensive Care (MIMIC-III) database were evaluated, randomly divided as follows: 70% for training and 30% for validation. DESIGN: A retrospective register-based cohort study was carried out. The clinical information of the first 24h after admission was used to develop a 1-year mortality prediction model based on Stochastic Gradient Boosting (SGB) methodology. Variable selection was addressed using Least Absolute Shrinkage and Selection Operator (LASSO) and SGB variable importance methodologies. The predictive power was evaluated using the area under the ROC curve (AUROC). RESULTS: An AUROC of 0.8039 (95% confidence interval (CI): [0.8033 0.8045]) was obtained in the validation subset. The model exceeded the predictive performances obtained with traditional severity of disease scores in the same subset. CONCLUSION: The use of assembly algorithms, such as SGB, for the generation of a customized model for sepsis yields more accurate 1-year mortality prediction than the traditional scoring systems such as SAPS II, SOFA or OASIS.


Assuntos
Algoritmos , Previsões/métodos , Aprendizado de Máquina , Modelos Estatísticos , Sepse/mortalidade , Idoso , Área Sob a Curva , Estado Terminal/mortalidade , Feminino , Humanos , Unidades de Terapia Intensiva , Masculino , Pessoa de Meia-Idade , Curva ROC , Sistema de Registros , Estudos Retrospectivos , Índice de Gravidade de Doença , Fatores de Tempo
9.
Mov Ecol ; 7: 18, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31183112

RESUMO

BACKGROUND: Caribou in the Western Arctic Herd undertake one of the longest, remaining intact migrations of terrestrial mammals in the world. They are also the most important subsistence resource for many northern rural residents, who rely on the caribou's migratory movements to bring them near for harvest. Migratory geography has never been static, but subsistence harvesters have reported recent shifts in migration away from areas where they traditionally occurred. The reasons behind these changes are not well-understood, but may be related to rapid climate change and anthropogenic disturbances. METHODS: To predict changes in distribution and shifting migratory areas over the past decade, we used GPS telemetry data from adult females to develop predictive ecological niche models of caribou across northwestern Alaska. We employed the machine-learning algorithm, TreeNet, to analyze interactive, multivariate relationships between telemetry locations and 37 spatial environmental layers and to predict the distributions of caribou during spring, calving season, insect-harassment season, late summer, fall, and winter from 2009 to 2017. Model results were analyzed to identify regions of repeated predicted use, quantify mean longitude, predict land cover selection, and track migratory changes over time. RESULTS: Distribution models accurately predicted caribou at a spatially-explicit, 500-m scale. Model analyses identified migratory areas that shifted annually across the region, but which predicted 4 main areas of repeated use. Niche models were defined largely by non-linear relationships with coastally-influenced, climatic variables, especially snow-free date, potential evapo-transpiration, growing season length, proximity to sea ice, winter precipitation and fall temperature. Proximity to roads and communities were also important and we predicted caribou to generally occur more than 20-100 km from these features. CONCLUSIONS: Western Arctic Herd caribou were predicted to occur in warmer, snow-free and treeless areas that may provide conditions conducive for efficient travel and foraging. Rapidly changing seasonal climates and coastal influences that determine forage availability, and human impediments that slow or divert movements are related to geographically and phenologically dynamic migration patterns that may periodically shift caribou away from traditional harvest areas. An enhanced understanding of the geographic behavior of caribou over time could inform traditional harvests and help conserve important Western Arctic caribou migratory areas.

10.
J Theor Biol ; 417: 1-7, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28099868

RESUMO

Combinatorial therapy is a promising strategy for combating complex diseases by improving the efficacy and reducing the side effects. To facilitate the identification of drug combinations in pharmacology, we proposed a new computational model, termed PDC-SGB, to predict effective drug combinations by integrating biological, chemical and pharmacological information based on a stochastic gradient boosting algorithm. To begin with, a set of 352 golden positive samples were collected from the public drug combination database. Then, a set of 732 dimensional feature vector involving biological, chemical and pharmaceutical information was constructed for each drug combination to describe its properties. To avoid overfitting, the maximum relevance & minimum redundancy (mRMR) method was performed to extract useful ones by removing redundant subsets. Based on the selected features, the three different type of classification algorithms were employed to build the drug combination prediction models. Our results demonstrated that the model based on the stochastic gradient boosting algorithm yield out the best performance. Furthermore, it is indicated that the feature patterns of therapy had powerful ability to discriminate effective drug combinations from non-effective ones. By analyzing various features, it is shown that the enriched features occurred frequently in golden positive samples can help predict novel drug combinations.


Assuntos
Algoritmos , Bases de Dados de Produtos Farmacêuticos , Combinação de Medicamentos , Modelos Teóricos , Processos Estocásticos , Biologia Computacional/métodos , Interações Medicamentosas , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Tecnologia Farmacêutica/métodos
11.
Comput Methods Programs Biomed ; 130: 87-92, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27208524

RESUMO

AIM: Medical data mining (also called knowledge discovery process in medicine) processes for extracting patterns from large datasets. In the current study, we intend to assess different medical data mining approaches to predict ischemic stroke. MATERIALS AND METHODS: The collected dataset from Turgut Ozal Medical Centre, Inonu University, Malatya, Turkey, comprised the medical records of 80 patients and 112 healthy individuals with 17 predictors and a target variable. As data mining approaches, support vector machine (SVM), stochastic gradient boosting (SGB) and penalized logistic regression (PLR) were employed. 10-fold cross validation resampling method was utilized, and model performance evaluation metrics were accuracy, area under ROC curve (AUC), sensitivity, specificity, positive predictive value and negative predictive value. The grid search method was used for optimizing tuning parameters of the models. RESULTS: The accuracy values with 95% CI were 0.9789 (0.9470-0.9942) for SVM, 0.9737 (0.9397-0.9914) for SGB and 0.8947 (0.8421-0.9345) for PLR. The AUC values with 95% CI were 0.9783 (0.9569-0.9997) for SVM, 0.9757 (0.9543-0.9970) for SGB and 0.8953 (0.8510-0.9396) for PLR. CONCLUSIONS: The results of the current study demonstrated that the SVM produced the best predictive performance compared to the other models according to the majority of evaluation metrics. SVM and SGB models explained in the current study could yield remarkable predictive performance in the classification of ischemic stroke.


Assuntos
Mineração de Dados , Acidente Vascular Cerebral/patologia , Humanos , Máquina de Vetores de Suporte , Turquia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA