Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39358657

RESUMO

This study investigates the potential of ellagic acid (EA) to mitigate the effects of drought and aluminum (Al3+) stresses in maize by examining various morpho-physiochemical parameters and gene expressions. Maize (Zea mays L.) serves as a crucial global food source, but its growth and productivity are significantly hindered by drought and aluminum (Al3+) stresses, which lead to impaired root development, elevated levels of reactive oxygen species (ROS), diminished photosynthetic efficiency, and reduced water and mineral absorption. Recently, ellagic acid (EA), a polyphenolic compound with potent antioxidant properties, has been identified for its role in regulating plant growth and enhancing stress tolerance mechanisms. However, the specific mechanisms through which EA contributes to Al3+ and/or drought tolerance in plants remain largely unknown. The present study was conducted to examine the defensive role of EA (100 µg/mL) in some morpho-physiochemical parameters and the expression profiles of some stress-related genes (ZmCPK22, ZmXTH1, ZmHIPP4, ZmSGR, ZmpsbA, ZmAPX1, and ZmGST1) in drought (polyethylene glycol-6000 (PEG-6000), - 0.6 MPa) and aluminum chloride (AlCl3, 60 µM) stressed Zea mays Ada 523 grown in nutrient solution. Our results indicated that drought and aluminum chloride stresses affected root length, shoot height, H2O2 content, chlorophyll content (SPAD), electrolyte leakage (EL), and relative water content (RWC) of maize with several significant (P < 0.05) shifts up and down. Conversely, EA (100 µg/mL) treatment had a mitigating effect on these parameters. Moreover, EA also mitigated the antioxidant enzyme activities (superoxide dismutase (SOD), peroxidase (POD), and ascorbate peroxidase (APX)), and regulated the expressions of aforementioned genes. These findings determined that EA treatment could efficiently improve the gene expressions and morpho-physiochemical parameters under drought and/or Al3+ stresses, thereby increasing the seedlings' adaptability to these stresses.

2.
Microb Pathog ; 194: 106793, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39004154

RESUMO

Genetically, Listeria monocytogenes is closely related to non-L. monocytogenes (L. innocua, L. welshimeri, L. grayi, L. aquatica, and L. fleischimannii). This bacterium is well known for its resistance to harsh conditions including acidity, low temperatures, and high salt concentrations. This study explored the responses of 65 Listeria strains to stress conditions and characterized the prevalence of stress-related genes. The 65 Listeria strains were isolated from different environments and their viability was assessed in four different tests: independent tests for pH 3, 1 °C, and 5 % salt concentration and multiple resistance tests that combined pH 3, 1 °C, 5 % salt. From the data, the 65 strains were categorized into stress-resistant (56) or stress-sensitive groups (9), with approximately 4 log CFU/mL differences. The PCR assay analyzed the prevalence of two virulence genes prfA and inlA, and eight stress-related genes: three acid (gadB, gadC, and atpD), two low temperature (betL and opuCA) and three salt resistance genes (flaA, cysS, and fbp). Two low temperature (bet and opuCA) and salt resistance (fbp) genes were more prevalent in the stress-resistant strains than in the stress-sensitive Listeria group.


Assuntos
Temperatura Baixa , Listeria monocytogenes , Listeria , Estresse Fisiológico , Concentração de Íons de Hidrogênio , Listeria/genética , Listeria/efeitos dos fármacos , Listeria/classificação , Listeria/isolamento & purificação , Listeria monocytogenes/genética , Listeria monocytogenes/efeitos dos fármacos , Viabilidade Microbiana/efeitos dos fármacos , Fatores de Virulência/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Virulência/genética , Ácidos/farmacologia , Ácidos/metabolismo , Genes Bacterianos/genética , Temperatura , Cloreto de Sódio/metabolismo , Cloreto de Sódio/farmacologia
3.
Heliyon ; 10(13): e34046, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39071696

RESUMO

Background: The tumor microenvironment (TME) typically experiences oxidative stress (OS), marked by a high level of reactive oxygen species (ROS) that can impact tumor advancement and prognosis by modulating the behavior of tumor cells and various immune cells. Oxidative stress-related genes (OSRG) encompass a range of genes involved in ROS pathways, and their specific roles in breast cancer (BC) necessitate further investigation. Methods: Univariate Cox analysis was performed on genes linked to the OS pathway in the Gene Set Enrichment Analysis (GSEA) database, leading to the identification of 29 significant OSRG in BC. OSRG was divided into three distinct clusters according to the expression and the OSRG score based on the differentially expressed genes (DEGs) was further calculated by principal component analysis (PCA). The correlation between OSRG score and BC clinical features, mutation characteristics, immune checkpoints and immune cell infiltration was analyzed. Establish a multiariable Cox regression model to predict OSRG score effects on clinical characteristics. Results: Significant differences were observed in survival analysis, enriched pathways, and immune infiltration among the three OSRG clusters based on 29 genes. Gene clusters were identified through the final selected 395 DEGs, revealing three distinct OSRG expression patterns. An OSRG score model was constructed using DEGs, demonstrating a significant association between high OSRG score and poor prognosis. Significantly, immune checkpoint-related genes exhibited a notable upregulation in the high OSRG score cohort. Additionally, a positive correlation was observed between the OSRG score and tumor mutation burden (TMB) in BC. The OSRG score holds potential implications for clinical immunotherapy in BC patients, and a nomogram was constructed with robust predictive capability for evaluating patient prognosis. Conclusions: This study elucidated the features of OSRG within BC TME and their possible prognostic significance, offering valuable insights for the development of more targeted immunotherapy approaches for individuals with BC.

4.
Plants (Basel) ; 13(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38891309

RESUMO

Climate-change-related increases in the frequency and intensity of heatwaves affect viticulture, leading to losses in yield and grape quality. We assessed whether canopy-architecture manipulation mitigates the effects of summer stress in a Mediterranean vineyard. The Vitis vinifera L variety Muscat of Alexandria plants were monitored during 2019-2020. Two canopy shoot-positioning treatments were applied: vertical shoot positioning (VSP) and modulated shoot positioning (MSP). In MSP, the west-side upper foliage was released to promote partial shoot leaning, shading the clusters. Clusters were sampled at pea size (PS), veraison (VER), and full maturation (FM). Measurements included rachis anatomy and hydraulic conductance (Kh) and aquaporins (AQP) and stress-related genes expression in cluster tissues. The results show significant seasonal and interannual differences in Kh and vascular anatomy. At VER, the Kh of the rachis and rachis+pedicel and the xylem diameter decreased but were unaffected by treatments. The phloem-xylem ratio was either increased (2019) or reduced (2020) in MSP compared to VSP. Most AQPs were down-regulated at FM in pedicels and up-regulated at VER in pulp. A potential maturation shift in MSP was observed and confirmed by the up-regulation of several stress-related genes in all tissues. The study pinpoints the role of canopy architecture in berry-water relations and stress response during ripening.

5.
Cancer Rep (Hoboken) ; 7(4): e1978, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38599581

RESUMO

BACKGROUND AND AIMS: Oncogenesis and tumor development have been related to oxidative stress (OS). The potential diagnostic utility of OS genes in hepatocellular carcinoma (HCC), however, remains uncertain. As a result, this work aimed to create a novel OS related-genes signature that could be used to predict the survival of HCC patients and to screen OS related-genes drugs that might be used for HCC treatment. METHODS: We used The Cancer Genome Atlas (TCGA) database and the Gene Expression Omnibus (GEO) database to acquire mRNA expression profiles and clinical data for this research and the GeneCards database to obtain OS related-genes. Following that, biological functions from Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) were performed on differentially expressed OS-related genes (DEOSGs). Subsequently, the prognostic risk signature was constructed based on DEOSGs from the TCGA data that were screened by using univariate cox analysis, and the Least Absolute Shrinkage and Selection Operator (LASSO) regression, and multivariate cox analysis. At the same time, we developed a prognostic nomogram of HCC patients based on risk signature and clinical-pathological characteristics. The GEO data was used for validation. We used the receiver operating characteristic (ROC) curve, calibration curves, and Kaplan-Meier (KM) survival curves to examine the prediction value of the risk signature and nomogram. Finally, we screened the differentially expressed OS genes related drugs. RESULTS: We were able to recognize 9 OS genes linked to HCC prognosis. In addition, the KM curve revealed a statistically significant difference in overall survival (OS) between the high-risk and low-risk groups. The area under the curve (AUC) shows the independent prognostic value of the risk signature model. Meanwhile, the ROC curves and calibration curves show the strong prognostic power of the nomogram. The top three drugs with negative ratings were ZM-336372, lestaurtinib, and flunisolide, all of which inversely regulate different OS gene expressions. CONCLUSION: Our findings indicate that OS related-genes have a favorable prognostic value for HCC, which sheds new light on the relationship between oxidative stress and HCC, and suggests potential therapeutic strategies for HCC patients.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Estresse Oxidativo/genética , Nomogramas , Área Sob a Curva
6.
Clin Epigenetics ; 16(1): 44, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509601

RESUMO

BACKGROUND: The effects of adverse life events on physical and psychological health, with DNA methylation (DNAm) as a critical underlying mechanism, have been extensively studied. However, the epigenetic resemblance between mother and child in the context of neglectful caregiving, and whether it may be shaped by the emotional impact of maternal stressful events and the duration of co-residence (indexed by child age), remains unknown. The present study examined mother-child similarity in methylation profiles, considering the potential effect of mother adversity, mother empathy, neglect-control group, child age (an index of years of mother-child co-residence), and mother age. Using Illumina Epic arrays, we quantified DNAm in 115 mother-child saliva samples. We obtained a methylation similarity index by computing correlation coefficients between methylation profiles within dyads, for the entire epigenome, and five specific genes related to stress and empathy: NR3C1, FKPB5, OXTR, SCL6A4, and BDNF. RESULTS: The methylation profiles of the mother-child familial pairs significantly correlated as compared to mother-child random pairs for the entire epigenome and NR3C1, FKBP5, OXTR and BDNF genes. Next, multiple linear regression models observed associations of mother adversity, child age, and neglect-control group on mother-child methylation similarity, only significant in mother-child familial pairs, after correcting for multiple comparisons. Higher mother adversity was associated with lower mother-child methylation similarity for the epigenome-wide analysis, for the BDNF gene, and in the neglect-control group for the OXTR gene. In turn, being an older child (longer co-residence) was associated with higher mother-child methylation similarity. CONCLUSIONS: Mother adversity and co-residence time are modulating factors in the intergenerational methylation process that offer a window into development-dependent adaptations that can be affected by both hereditary and environmental factors, significantly observed only in biological dyads. A twofold implication for child well-being emerges, one is positive in that children of mothers exposed to life adversity or neglect did not necessarily inherit their methylation patterns. The other is concerning due to the influence of time spent living together, which affects similarity with the mother and potentially increases the risk of inheriting an epigenetic profile associated with future dysfunctional parenting patterns. This underscores the importance of the 'the earlier, the better' recommendation by the Child Protection System, which is not always followed.


Assuntos
Metilação de DNA , Mães , Feminino , Humanos , Criança , Adolescente , Mães/psicologia , Fator Neurotrófico Derivado do Encéfalo/genética , Epigenoma , Relações Mãe-Filho , Epigênese Genética
7.
Mol Cell Endocrinol ; 582: 112114, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38008372

RESUMO

In the pejerrey Odontesthes bonariensis (Atheriniformes, Atherinopsidae), exposure to high and low temperatures during the critical period of sex determination (CPSD) induce testicular and ovarian differentiation, respectively, regardless of the presence or not of the sex determining gene amhy, which is crucial for testis formation only at intermediate, sexually neutral temperatures. In this study we explored the existence of genotype-specific signaling of Crh (Corticotropin Releasing Hormone) family genes and their associated carrier protein, receptors, and other stress-related genes in response to temperature during the CPSD and the potential involvement of the central nervous system via the hypothalamus-pituitary-interrenal (HPI) axis in the sex determination of this species. The Crh family genes crhb, uts1, ucn3, the receptor crhr1 and the stress-related genes gr1, gr2, nr3c2 were transiently upregulated in the heads of pejerrey larvae during the CPSD by high temperature alone or in combination with other factors. Only crhr2 transcript abundance was not influenced by temperature but independently by time and genotype. In most cases, mRNA abundance was higher in the XX heads compared to that of XY individuals. The mRNAs of some of these genes were localized in the hypothalamus of pejerrey larvae during the CPSD. XX larvae also showed higher whole-body cortisol titers than the XY, downregulation of cyp19a1a and upregulation of the testis-related genes amhy/amha in trunks (gonads) and were 100% masculinized at the high temperature. In contrast, at the low temperature, crhbp and avt were upregulated in the heads, particularly the former in XY larvae. cyp19a1a and amhy/amha were up- and downregulated, respectively, in the gonads, and fish were 100% feminized. Signaling via the HPI axis was observed simultaneously with the first molecular signs of ongoing sex determination/differentiation in the gonads. Overall, the results strongly suggest a temperature-dependent, genotype-specific regulatory action of the brain involving the Crh family of stress-related genes on the process of environmental sex determination of pejerrey.


Assuntos
Aminocaproatos , Peixes , Gônadas , Animais , Masculino , Temperatura , Peixes/genética , Diferenciação Sexual/genética , Larva , Genótipo
8.
BMC Plant Biol ; 23(1): 628, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38062393

RESUMO

The effect of salt damage on plants is mainly caused by the toxic effect of Na+. Studies showed that the secretory carrier membrane proteins were associated with the Na+ transport. However, the salt tolerance mechanism of secretory carrier protein (SCAMP) in soybean was yet to be defined. In this study, ten potential SCAMP genes distributed in seven soybean chromosomes were identified in the soybean genome. The phylogenetic tree of SCAMP domain sequences of several plants can divide SCAMPs into two groups. Most GmSCAMPs genes contained multiple Box4, MYB and MYC cis-elements indicated they may respond to abiotic stresses. We found that GmSCAMP1, GmSCAMP2 and GmSCAMP4 expressed in several tissues and GmSCAMP5 was significantly induced by salt stress. GmSCAMP5 showed the same expression patterns under NaCl treatment in salt-tolerant and salt-sensitive soybean varieties, but the induced time of GmSCAMP5 in salt-tolerant variety was earlier than that of salt-sensitive variety. To further study the effect of GmSCAMP5 on the salt tolerance of soybean plants, compared to GmSCAMP5-RNAi and EV-Control plants, GmSCAMP5-OE had less wilted leave and higher SPAD value. Compared to empty vector control, less trypan blue staining was observed in GmSCAMP5-OE leaves while more staining in GmSCAMP5-RNAi leaves. The Na+ of GmSCAMP5-RNAi plants leaves under NaCl stress were significantly higher than that in EV-Control plants, while significantly lower Na+ in GmSCAMP5-OE plants than in that EV-Control plants. The contents of leaves K+ of GmSCAMP5-RNAi, EV-Control, and GmSCAMP5-OE plants under NaCl stress were opposite to that of leaves Na+ content. Finally, salt stress-related genes NHX1, CLC1, TIP1, SOD1, and SOS1 in transformed hairy root changed significantly compared with the empty control. The research will provide novel information for study the molecular regulation mechanism of soybean salt tolerance.


Assuntos
Glycine max , Tolerância ao Sal , Tolerância ao Sal/genética , Glycine max/genética , Filogenia , Cloreto de Sódio/farmacologia , Cloreto de Sódio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Proteínas de Transporte/genética , Regulação da Expressão Gênica de Plantas
9.
Int J Gen Med ; 16: 4805-4818, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37908757

RESUMO

Purpose: Acute Myocardial Infarction (AMI) is globally prevalent, with oxidative stress as a key contributor to its pathogenesis. This study aimed to explore oxidative stress-related genes as potential AMI biomarkers, elucidating their role in disease progression. Patients and Methods: Gene expression data from AMI samples in the Gene Expression Omnibus (GEO) database and oxidative stress-related genes (OSRGs) from the GeneCards database were extracted. Weighted Gene Co-expression Network Analysis (WGCNA) identified key module genes associated with AMI. Intersecting OSRGs, key module genes, and differentially expressed genes (DEGs) between AMI and normal samples led to the extraction of differentially expressed ORSGs (DE-ORSGs) related to AMI. Feature genes were mined using the Least Absolute Shrinkage and Selection Operator (LASSO) regression and Support Vector Machine (SVM) algorithm, followed by potential diagnostic value assessment using receiver operating characteristic (ROC) curves. Gene Set Enrichment Analysis (GSEA) was executed on the identified key genes. Immune infiltration levels were explored using the CIBERSORT algorithm, and a Transcription Factor (TF) -mRNA regulatory network of key genes was created. The key genes were validated using qRT-PCR. Results: We authenticated three key genes (MMP9, TGFBR3, and S100A12) from 6 DE-ORSGs identified in AMI. GSEA revealed that these key genes were enriched in immune-related signaling pathways. Immune infiltration analysis identified three differential immune cell types (resting NK cells, Monocytes, and M0 Macrophages) between AMI and normal groups. Correlation analysis revealed positive associations of MMP9 with M0 Macrophages and S100A12 with Monocytes and M0 Macrophages, whereas TGFBR3 was negatively related to Monocytes. A TF-mRNA regulatory network was generated based on these key genes. qRT-PCR validation confirmed the differential expression of S100A12 and TGFBR3 between AMI and control samples. Conclusion: TGFBR3, and S100A12 were identified as potential oxidative stress-related biomarkers in AMI, providing new insights for AMI diagnosis and treatment.

10.
Front Genet ; 14: 1252020, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37799143

RESUMO

Arachis hypogaea (peanut) is a leading oil and protein-providing crop with a major food source in many countries. It is mostly grown in tropical regions and is largely affected by abiotic and biotic stresses. Cysteine-rich receptor-like kinases (CRKs) is a family of transmembrane proteins that play important roles in regulating stress-signaling and defense mechanisms, enabling plants to tolerate stress conditions. However, almost no information is available regarding this gene family in Arachis hypogaea and its progenitors. This study conducts a pangenome-wide investigation of A. hypogaea and its two progenitors, A. duranensis and A. ipaensis CRK genes (AhCRKs, AdCRKs, and AiCRKs). The gene structure, conserved motif patterns, phylogenetic history, chromosomal distribution, and duplication were studied in detail, showing the intraspecies structural conservation and evolutionary patterns. Promoter cis-elements, protein-protein interactions, GO enrichment, and miRNA targets were also predicted, showing their potential functional conservation. Their expression in salt and drought stresses was also comprehensively studied. The CRKs identified were divided into three groups, phylogenetically. The expansion of this gene family in peanuts was caused by both types of duplication: tandem and segmental. Furthermore, positive as well as negative selection pressure directed the duplication process. The peanut CRK genes were also enriched in hormones, light, development, and stress-related elements. MicroRNA (miRNA) also targeted the AhCRK genes, which suggests the regulatory association of miRNAs in the expression of these genes. Transcriptome datasets showed that AhCRKs have varying expression levels under different abiotic stress conditions. Furthermore, the multi-stress responsiveness of the AhCRK genes was evaluated using a machine learning-based method, Random Forest (RF) classifier. The 3D structures of AhCRKs were also predicted. Our study can be utilized in developing a detailed understanding of the stress regulatory mechanisms of the CRK gene family in peanuts and its further studies to improve the genetic makeup of peanuts to thrive better under stress conditions.

11.
Artigo em Inglês | MEDLINE | ID: mdl-37605414

RESUMO

BACKGROUND: Periodontitis (PD) is a multifactorial inflammatory disease that is closely associated with periodontopathic bacteria. Numerous studies have demonstrated oxidative stress (OS) contributes to inflammation and is a prime factor in the development of PD. It is imperative to explore the function of newly discovered hub genes associated with OS in the advancement of PD, thereby identifying potential targets for therapeutic intervention. OBJECTIVES: The goal of the current study was to identify the oxidative -stress-related genes (OSRGs) associated with periodontitis (PD) development using an integrated bioinformatics method. METHODS: DEGs from GEO gene-expression data were identified using the "limma" package. We obtained OSRGs from GeneCards and utilized a Venn diagram to uncover differentially expressed OSRGs (DEOSRGs). After receiving the DEOSRGs, we employed Gene Ontology (GO), Kyoto Encyclopaedia of Genes and Genomes (KEGG), and protein-protein interaction (PPI) analytical tools to examine their possible functions and pathways in PD. Receiver operating characteristic (ROC) curves screened for hub genes of PD. RT-qPCR and western blot analysis were used to detect DEOSRG expression in mouse ligature-induced periodontitis gingival tissues. RESULTS: The investigation identified 273OSRGs. Based on PPI analysis, we recognized 20 OSRGs as hub genes. GO and KEGG enrichment analysis indicated that these hub genes were predominantly enriched in leukocyte migration, lymphocyte proliferation, and humoral immune response, and associated with leukocyte trans-endothelial migration, cytokine-cytokine receptor interaction, and NF-κB signaling pathway. Following ROC analysis, VCAM1, ITGAM, FCGR3A, IL1A, PECAM1, and VCAM1were identified as PD prognostic gene. RT-qPCR and western blot analyses confirmed that the expression ITGAM, FCGR3A, and PECAM1 were significantly elevated in the gingival tissues obtained from mice. CONCLUSION: This investigation revealed that ITGAM, FCGR3A, and PECAM1 may have a crucial function in the advancement of PD.

12.
EPMA J ; 14(3): 417-442, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37605652

RESUMO

Background: Idiopathic pulmonary fibrosis (IPF) is a rare interstitial lung disease with a poor prognosis that currently lacks effective treatment methods. Preventing the acute exacerbation of IPF, identifying the molecular subtypes of patients, providing personalized treatment, and developing individualized drugs are guidelines for predictive, preventive, and personalized medicine (PPPM / 3PM) to promote the development of IPF. Oxidative stress (OS) is an important pathological process of IPF. However, the relationship between the expression levels of oxidative stress-related genes (OSRGs) and clinical indices in patients with IPF is unclear; therefore, it is still a challenge to identify potential beneficiaries of antioxidant therapy. Because PPPM aims to recognize and manage diseases by integrating multiple methods, patient stratification and analysis based on OSRGs and identifying biomarkers can help achieve the above goals. Methods: Transcriptome data from 250 IPF patients were divided into training and validation sets. Core OSRGs were identified in the training set and subsequently clustered to identify oxidative stress-related subtypes. The oxidative stress scores, clinical characteristics, and expression levels of senescence-associated secretory phenotypes (SASPs) of different subtypes were compared to identify patients who were sensitive to antioxidant therapy to conduct differential gene functional enrichment analysis and predict potential therapeutic drugs. Diagnostic markers between subtypes were obtained by integrating multiple machine learning methods, their expression levels were tested in rat models with different degrees of pulmonary fibrosis and validation sets, and nomogram models were constructed. CIBERSORT, single-cell RNA sequencing, and immunofluorescence staining were used to explore the effects of OSRGs on the immune microenvironment. Results: Core OSRGs classified IPF into two subtypes. Patients classified into subtypes with low oxidative stress levels had better clinical scores, less severe fibrosis, and lower expression of SASP-related molecules. A reliable nomogram model based on five diagnostic markers was constructed, and these markers' expression stability was verified in animal experiments. The number of neutrophils in the immune microenvironment was significantly different between the two subtypes and was closely related to the degree of fibrosis. Conclusion: Within the framework of PPPM, this work comprehensively explored the role of OSRGs and their mediated cellular senescence and immune processes in the progress of IPF and assessed their capabilities aspredictors of high oxidative stress and disease progression,targets of the vicious loop between regulated pulmonary fibrosis and OS for targeted secondary and tertiary prevention, andreferences for personalized antioxidant and antifibrotic therapies. Supplementary Information: The online version contains supplementary material available at 10.1007/s13167-023-00334-4.

13.
Front Immunol ; 14: 1202298, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37554330

RESUMO

Diabetic nephropathy (DN) is the most prevalent microvascular consequence of diabetes and has recently risen to the position of the world's second biggest cause of end-stage renal diseases. Growing studies suggest that oxidative stress (OS) responses are connected to the advancement of DN. This study aimed to developed a novel diagnostic model based on OS-related genes. The differentially expressed oxidative stress-related genes (DE-OSRGs) experiments required two human gene expression datasets, which were given by the GEO database (GSE30528 and GSE96804, respectively). The potential diagnostic genes were identified using the SVM-RFE assays and the LASSO regression model. CIBERSORT was used to determine the compositional patterns of the 22 different kinds of immune cell fraction seen in DN. These estimates were based on the combined cohorts. DN serum samples and normal samples were both subjected to RT-PCR in order to investigate the degree to which certain genes were expressed. In this study, we were able to locate 774 DE-OSRGs in DN. The three marker genes (DUSP1, PRDX6 and S100A8) were discovered via machine learning on two different machines. The high diagnostic value was validated by ROC tests, which focused on distinguishing DN samples from normal samples. The results of the CIBERSORT study suggested that DUSP1, PRDX6, and S100A8 may be associated to the alterations that occur in the immunological microenvironment of DN patients. Besides, the results of RT-PCR indicated that the expression of DUSP1, PRDX6, and S100A8 was much lower in DN serum samples compared normal serum samples. The diagnostic value of the proposed model was likewise verified in our cohort, with an area under the curve of 9.946. Overall, DUSP1, PRDX6, and S100A8 were identified to be the three diagnostic characteristic genes of DN. It's possible that combining these genes will be effective in diagnosing DN and determining the extent of immune cell infiltration.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Humanos , Nefropatias Diabéticas/diagnóstico , Nefropatias Diabéticas/genética , Algoritmos , Bioensaio , Calgranulina A , Aprendizado de Máquina , Estresse Oxidativo/genética
14.
Antioxidants (Basel) ; 12(6)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37371925

RESUMO

The frequency of selected polymorphisms, one in each gene coding for proteins with antioxidative properties (CAT(rs1001179), SOD2(rs4880), GPX1(rs1050450), and NQO1(rs689452)), was compared between patients suffering from pain-related temporomandibular disorders (TMDp; n = 85) and control subjects (CTR; n = 85). The same was evaluated when participants were divided with respect to oral behavioural habits frequency into high-frequency parafunction (HFP; n = 98) and low-frequency parafunction (LFP; n = 72) groups. Another aim was to investigate whether polymorphisms in these genes can be associated with participants' psychological and psychosomatic characteristics. Polymorphisms were genotyped using the genomic DNA extracted from buccal mucosa swabs and real-time TaqMan genotyping assays. No differences in genotype distribution between TMDp patients and control subjects were found. Still, TMDp patients who were homozygous for minor allele A, related to the GPX1 polymorphism rs1050450, reported significantly more waking-state oral behaviours than GA + GG genotype carriers (score: 30 vs. 23, p = 0.019). The frequency of genotype AA for rs1050450 polymorphism was higher in HFP than in LFP participants (14.3% vs. 4.2%, p = 0.030). The most important predictors of waking-state oral behaviours were depression, anxiety, AA genotype (rs1050450), and female sex. The explored gene polymorphisms were not found to be significant risk factors for either TMDp or sleep-related oral behaviours. The association of waking-state oral behaviours with selected gene polymorphisms additionally supports previous assumptions that daytime bruxism is more closely linked to various stress manifestations, which might also be reflected through the variability related to the cellular antioxidative activity.

15.
Int J Mol Sci ; 24(11)2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-37298332

RESUMO

Low temperatures restrict the growth of the grapevine industry. The DREB transcription factors are involved in the abiotic stress response. Here, we isolated the VvDREB2A gene from Vitis vinifera cultivar 'Zuoyouhong' tissue culture seedlings. The full-length VvDREB2A cDNA was 1068 bp, encoding 355 amino acids, which contained an AP2 conserved domain belonging to the AP2 family. Using transient expression in leaves of tobacco, VvDREB2A was localized to the nucleus, and it potentiated transcriptional activity in yeasts. Expression analysis revealed that VvDREB2A was expressed in various grapevine tissues, with the highest expression in leaves. VvDREB2A was induced by cold and the stress-signaling molecules H2S, nitric oxide, and abscisic acid. Furthermore, VvDREB2A-overexpressing Arabidopsis was generated to analyze its function. Under cold stress, the Arabidopsis overexpressing lines exhibited better growth and higher survival rates than the wild type. The content of oxygen free radicals, hydrogen peroxide, and malondialdehyde decreased, and antioxidant enzyme activities were enhanced. The content of raffinose family oligosaccharides (RFO) also increased in the VvDREB2A-overexpressing lines. Moreover, the expression of cold stress-related genes (COR15A, COR27, COR6.6, and RD29A) was also enhanced. Taken together, as a transcription factor, VvDREB2A improves plants resistance to cold stress by scavenging reactive oxygen species, increasing the RFO amount, and inducing cold stress-related gene expression levels.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Vitis , Fatores de Transcrição/metabolismo , Vitis/metabolismo , Arabidopsis/metabolismo , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Temperatura Baixa , Estresse Fisiológico/genética , Resposta ao Choque Frio , Oligossacarídeos/metabolismo , Rafinose/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Proteínas Repressoras/genética , Proteínas de Arabidopsis/genética
16.
Plant Cell Physiol ; 64(8): 880-892, 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37233615

RESUMO

Electrical and calcium signals in plants are some of the basic carriers of information that are transmitted over a long distance. Together with reactive oxygen species (ROS) waves, electrical and calcium signals can participate in cell-to-cell signaling, conveying information about different stimuli, e.g. abiotic stress, pathogen infection or mechanical injury. There is no information on the ability of ROS to evoke systemic electrical or calcium signals in the model moss Physcomitrella nor on the relationships between these responses. Here, we show that the external application of hydrogen peroxide (H2O2) evokes electrical signals in the form of long-distance changes in the membrane potential, which transmit through the plant instantly after stimulation. The responses were calcium-dependent since their generation was inhibited by lanthanum, a calcium channel inhibitor (2 mM), and EDTA, a calcium chelator (0.5 mM). The electrical signals were partially dependent on glutamate receptor (GLR) ion channels since knocking-out the GLR genes only slightly reduced the amplitude of the responses. The basal part of the gametophyte, which is rich in protonema cells, was the most sensitive to H2O2. The measurements carried out on the protonema expressing fluorescent calcium biosensor GCaMP3 proved that calcium signals propagated slowly (>5 µm/s) and showed a decrement. We also demonstrate upregulation of a stress-related gene that appears in a distant section of the moss 8 min after the H2O2 treatment. The results help understand the importance of both types of signals in the transmission of information about the appearance of ROS in the plant cell apoplast.


Assuntos
Briófitas , Bryopsida , Cálcio , Peróxido de Hidrogênio/farmacologia , Espécies Reativas de Oxigênio , Comunicação Celular , Plantas
17.
J Agric Food Chem ; 71(6): 2773-2783, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36703540

RESUMO

Bacterial fruit blotch is one of the most destructing diseases of melon producing-regions. Here, zinc oxide quantum dots (ZnO QDs) were synthesized, and their antibacterial activity against Acidovorax citrulli was investigated. The results indicated that the obtained ZnO QDs displayed 5.7-fold higher antibacterial activity than a commercial Zn-based bactericide (zinc thiazole). Interestingly, the antibacterial activity of ZnO QDs irradiated with light was 1.8 times higher than that of the dark-treated group. It was because ZnO QDs could induce the generation of hydroxyl radicals and then up-regulate the expression of oxidative stress-related genes, finally leading to the loss of cell membrane integrity. A pot experiment demonstrated that foliar application of ZnO QDs significantly reduced the bacterial fruit blotch disease incidence (32.0%). Furthermore, the supply of ZnO QDs could improve the growth of infected melon seedlings by activating the antioxidant defense system. This work provides a promising light-activated quantum-bactericide for the management of pathogenic bacterial infections in melon crop protection.


Assuntos
Infecções Bacterianas , Cucurbitaceae , Pontos Quânticos , Óxido de Zinco , Óxido de Zinco/farmacologia , Plântula , Frutas/microbiologia , Antibacterianos/farmacologia
18.
Eur Arch Psychiatry Clin Neurosci ; 273(2): 347-356, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36001138

RESUMO

Healthcare workers experienced high degree of stress during COVID-19. Purpose of the present article is to compare mental health (depressive and Post-Traumatic-Stress-Disorders-PTSD-symptoms) and epigenetics aspects (degree of methylation of stress-related genes) in front-line healthcare professionals versus healthcare working in non-COVID-19 wards. Sixty-eight healthcare workers were included in the study: 39 were working in COVID-19 wards (cases) and 29 in non-COVID wards (controls). From all participants, demographic and clinical information were collected by an ad-hoc questionnaire. Depressive and PTSD symptoms were evaluated by the Patient Health Questionnaire-9 (PHQ-9) and the Impact of Event Scale-Revised (IES-R), respectively. Methylation analyses of 9 promoter/regulatory regions of genes known to be implicated in depression/PTSD (ADCYAP1, BDNF, CRHR1, DRD2, IGF2, LSD1/KDM1A, NR3C1, OXTR, SLC6A4) were performed on DNA from blood samples by the MassARRAY EpiTYPER platform, with MassCleave settings. Controls showed more frequent lifetime history of anxiety/depression with respect to cases (χ2 = 5.72, p = 0.03). On the contrary, cases versus controls presented higher PHQ-9 (t = 2.13, p = 0.04), PHQ-9 sleep item (t = 2.26, p = 0.03), IES-R total (t = 2.17, p = 0.03), IES-R intrusion (t = 2.46, p = 0.02), IES-R avoidance (t = 1.99, p = 0.05) mean total scores. Methylation levels at CRHR1, DRD2 and LSD1 genes was significantly higher in cases with respect to controls (p < 0.01, p = 0.03 and p = 0.03, respectively). Frontline health professionals experienced more negative effects on mental health during COVID-19 pandemic than non-frontline healthcare workers. Methylation levels were increased in genes regulating HPA axis (CRHR1) and dopamine neurotransmission (DRD2 and LSD1), thus supporting the involvement of these biological processes in depression/PTSD and indicating that methylation of these genes can be modulated by stress conditions, such as working as healthcare front-line during COVID-19 pandemic.


Assuntos
COVID-19 , Humanos , Saúde Mental , Projetos Piloto , Pandemias , SARS-CoV-2 , Metilação , Sistema Hipotálamo-Hipofisário , Ansiedade/psicologia , Sistema Hipófise-Suprarrenal , Pessoal de Saúde/psicologia , Depressão/etiologia , Depressão/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina , Histona Desmetilases
19.
Int J Mol Sci ; 23(22)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36430579

RESUMO

Emotional stress is believed to be associated with increased tumor progression. Stress-induced epigenetic modifications can contribute to the severity of disease and poor prognosis in cancer patients. The current study aimed to investigate the expression profiles along with the prognostic significance of psychological stress-related genes in metastatic breast cancer patients, to rationalize the molecular link between emotional stress and cancer progression. We profiled the expression of selected stress-associated genes (5-HTT, NR3C1, OXTR, and FKBP5) in breast cancer including the stress evaluation of all participants using the Questionnaire on Distress in Cancer Patients-short form (QSC-R10). A survival database, the Kaplan-Meier Plotter, was used to explore the prognostic significance of these genes in breast cancer. Our results showed relatively low expressions of 5-HTT (p = 0.02) and OXTR (p = 0.0387) in metastatic breast cancer patients as compared to the non-metastatic group of patients. The expression of NR3C1 was low in tumor grade III as compared to grade II (p = 0.04). Additionally, the expression of NR3C1 was significantly higher in patients with positive estrogen receptor status. However, no significant difference was found regarding FKBP5 expression in breast cancer. The results suggest a potential implication of these genes in breast cancer pathology and prognosis.


Assuntos
Neoplasias da Mama , Angústia Psicológica , Humanos , Feminino , Neoplasias da Mama/metabolismo , Prognóstico , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica , RNA Mensageiro/genética
20.
Osteoarthritis Cartilage ; 30(12): 1606-1615, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36096467

RESUMO

OBJECTIVE: To explore the association between oxidative stress (OS) and Kashin-Beck disease (KBD). METHODS: Terms associated with "KBD" and "OS" were searched in the six different databases up to October 2021. Stata 14.0 was used to pool the means and standard deviations using random-effect or fixed-effect model. The differentially expressed genes in the articular chondrocytes of KBD were identified, the OS related genes were identified by blasting with the GeneCards. The KEGG pathway and gene ontology enrichment analysis was conducted using STRING. RESULTS: The pooled SMD and 95% CI showed hair selenium (-4.59; -6.99, -2.19), blood selenium (-1.65; -2.86, -0.44) and glutathione peroxidases (-4.15; -6.97, -1.33) levels were decreased in KBD, whereas the malondialdehyde (1.12; 0.60, 1.64), nitric oxide (2.29; 1.31, 3.27), nitric oxide synthase (1.07; 0.81, 1.33) and inducible nitric oxide synthase (1.69; 0.62, 2.77) were increased compared with external controls. Meanwhile, hair selenium (-2.71; -5.32, -0.10) and glutathione peroxidases (-1.00; -1.78, -0.22) in KBD were decreased, whereas the malondialdehyde (1.42; 1.04, 1.80), nitric oxide (3.08; 1.93, 4.22) and inducible nitric oxide synthase (0.81; 0.00, 1.61) were elevated compared with internal controls. Enrichment analysis revealed apoptosis was significantly correlated with KBD. The significant biological processes revealed OS induced the release of cytochrome c from mitochondria. The cellular component of OS located in the mitochondrial outer membrane. CONCLUSIONS: The OS levels in KBD were significantly increased because of selenium deficiency, OS mainly occurred in mitochondrial outer membrane, released of cytochrome c from mitochondria, and induced apoptotic signaling pathway.


Assuntos
Doença de Kashin-Bek , Selênio , Humanos , Doença de Kashin-Bek/genética , Doença de Kashin-Bek/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Selênio/metabolismo , Biologia Computacional , Óxido Nítrico/metabolismo , Citocromos c/metabolismo , Citocromos c/farmacologia , Estresse Oxidativo , Malondialdeído/farmacologia , Glutationa/metabolismo , Glutationa/farmacologia , Peroxidases/metabolismo , Peroxidases/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA