Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 496
Filtrar
1.
Sci Total Environ ; 935: 173329, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38772482

RESUMO

The remediation of high-concentration thallium (Tl+) contaminated wastewater is a critical environmental concern. Current research emphasizes the effectiveness of adsorption and oxidation methods for Tl+ treatment, yet challenges persist in enhancing their performance. This study explores the feasibility of emergency Tl+ wastewater treatment and elucidates the mechanisms of Tl+ incorporation into mineral structures, with a focus on the struvite mineral as a framework for Tl+ integration via NH4+ ion exchange. To assess the efficacy and mechanisms of Tl+ immobilization, we utilized comprehensive analytical techniques, including X-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), Fourier-Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy with Energy-Dispersive X-ray Spectroscopy (SEM-EDS), Thermogravimetric Analysis (TG), and Density Functional Theory (DFT) calculations. The findings reveal that struvite adsorbs Tl+ onto its surface, followed by an ion exchange process between monovalent cations (NH4+/K+) within the structure and Tl+. Ultimately, Tl+ is incorporated in the form of a (NH4,Tl)MgPO4 solid solution within the structure, achieving a remarkable maximum incorporation capacity of 320.56 mg/g, which significantly surpasses the capacity of typical adsorbents. The findings demonstrate significant Tl+ incorporation, validating the approach for emergency wastewater treatment and suggesting the potential of mineralogy in environmental remediation. This research contributes to advancing heavy metal wastewater treatment strategies, offering a foundation for further investigation.

2.
Molecules ; 29(10)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38792046

RESUMO

In response to the need for improvement in the utilization of ammonium-rich solutions after the electrochemical reduction of nitrate (NO3--RR), this study combined phosphorus-containing wastewater and adopted the electrochemical precipitation method for the preparation of struvite (MAP) to simultaneously recover nitrogen and phosphorus resources. At a current density of 5 mA·cm-2 and an initial solution pH of 7.0, the recovery efficiencies for nitrogen and phosphorus can reach 47.15% and 88.66%, respectively. Under various experimental conditions, the generated struvite (MgNH4PO4·6H2O) exhibits a typical long prismatic structure. In solutions containing nitrate and nitrite, the coexisting ions have no significant effect on the final product, struvite. Finally, the characterization of the precipitate product by X-ray diffraction (XRD) revealed that its main component is struvite, with a high purity reaching 93.24%. Overall, this system can effectively recover ammonium nitrogen from the NO3--RR solution system after nitrate reduction, with certain application prospects for the recovery of ammonium nitrogen and phosphate.

3.
J Hazard Mater ; 472: 134430, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38718502

RESUMO

Electrolytic manganese residue (EMR), a solid waste generated during electrolytic manganese production, exhibits substantial leaching toxicity owing to its elevated levels of soluble Mn2+ and NH4+. The leaching and recovery of valuable metal ions and NH4+ from EMR are key to the hazard-free treatment and resource utilization of EMR. In this study, two-stage countercurrent leaching with water was used to leach Mn2+, Mg2+, and NH4+ from EMR. Subsequently, two-stage countercurrent extraction was conducted using α-hydroxy-2-ethylhexyl phosphinic acid (α-H-2-EHA) as an extractant to enrich Mn2+, and Mg2+, and NH4+ were recovered via coprecipitation. Based on the calculations for a single leaching-extraction process, the recoveries of Mn2+, Mg2+, and NH4+ ions exceeded 80%, 99%, and 90%, respectively. In addition, high-purity Mn3O4 with an Mn content of 71.61% and struvite were produced. This process represents a win-win strategy that facilitates the hazard-free treatment of EMR while simultaneously recovering valuable Mn2+, Mg2+, and NH4+ resources from waste. Thus, this study provides a novel approach to the hazard-free and resourceful management of solid waste. ENVIRONMENTAL IMPLICATION: Electrolytic manganese residue (EMR), a solid waste generated during electrolytic manganese production, poses significant environmental risks due to its soluble heavy metals and ammonia nitrogen content. Efforts have been made to address this issue, but there has been no mature industrial application due to cost or processing capacity constraints. In this work, solvent extraction was first used to enrich Mn2+ from EMR leachate, and a novel α­hydroxy­2­ethylhexyl phosphinic acid was used as extractant. High purity Mn3O4 and struvite was synthesized through this process. The win­win strategy offers a novel approach for the hazard­free and resourceful utilization of solid waste.

4.
Sci Total Environ ; 929: 172682, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38663600

RESUMO

Recycling of aqueous phase (AP) as a by-product after hydrothermal carbonization (HTC) of sewage sludge (SS) has been of interest. The combination of magnesium ammonium phosphate (MAP) or the so-called struvite crystallization and aqueous phase (AP) recirculation has great potential for resource recovery and hydrochar enhancement. In this study, both the aqueous phase of HTC after MAP recovery of NH4+-N (AP-MAP) and the untreated aqueous phase of HTC (AP-HTC) were reused for HTC of fresh SS, and both aqueous phases were recycled four times. The effects of the two AP cycles on the properties of AP and hydrochar at 200, 230, and 260 °C were studied, and the effect of temperature on the two AP cycles was similar. The hydrochar produced by the AP-MAP cycle had lower nitrogen content than that of the AP-HTC cycle due to the low ammonia nitrogen (NH4+-N) content, and the combustion performance was improved. MAP recovery reduces the accumulation of NH4+-N in the AP cycle and MAP is also a high-quality fertilizer. Therefore, the combination of MAP recovery and AP recycling provides a feasible technical approach for resource utilization, eutrophic AP treatment, and production of high-quality hydrochar in the HTC process of SS.

5.
Sci Total Environ ; 926: 172172, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38575019

RESUMO

To improve the retention and slow-release abilities of nitrogen (N) and phosphorus (P), an 82 %-purity struvite fertilizer (MAP-BC) was synthesized using magnesium-modified biochar and a solution with a 2:1 concentration ratio of NH4+ to PO43- at a pH of 8. Batch microscopic characterizations and soil column leaching experiments were conducted to study the retention and slow-release mechanisms and desorption kinetics of MAP-BC. The slow-release mechanism revealed that the dissolution rate of high-purity struvite was the dominant factor of NP slow release. The re-adsorption of NH4+ and PO43- by biochar and unconsumed MgO prolonged slow release. Mg2+ ionized by MgO could react with PO43- released from struvite to form Mg3(PO4)2. The internal biochar exhibited electrostatic attraction and pore restriction towards NH4+, while magnesium modification and nutrient loading formed a physical antioxidant barrier that ensured long-term release. The water diffusion experiment showed a higher cumulative release rate for PO43- compared to NH4+, whereas in soil column leaching, the trend was reversed, suggesting that soil's competitive adsorption facilitated the desorption of NH4+ from MAP-BC. During soil leaching, cumulative release rates of NH4+ and PO43- from chemical fertilizers were 3.55-3.62 times faster than those from MAP-BC. The dynamic test data for NH4+ and PO43- in MAP-BC fitted the Ritger-Peppas model best, predicting release periods of 163 days and 166 days, respectively. The leaching performances showed that MAP-BC reduced leaching solution volume by 5.58 % and significantly increased soil large aggregates content larger than 0.25 mm by 24.25 %. The soil nutrients retention and pH regulation by MAP-BC reduced leaching concentrations of NP. Furthermore, MAP-BC significantly enhanced plant growth, and it is more suitable as a NP source for long-term crops. Therefore, MAP-BC is expected to function as a long-term and slow-release fertilizer with the potential to minimize NP nutrient loss and replace part of quick-acting fertilizer.


Assuntos
Fertilizantes , Magnésio , Estruvita/química , Magnésio/química , Fertilizantes/análise , Óxido de Magnésio , Fósforo/química , Carvão Vegetal/química , Solo/química , Nitrogênio/análise
6.
Bioresour Technol ; 398: 130521, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432547

RESUMO

Wastewater resource recovery not only allows the extraction of value-added products and offsets the operational costs of wastewater treatment, but it is also conducive to alleviating adverse environmental issues due to energy and chemical inputs and associated emissions. A number of attractive compounds such as alginate-like polymers, struvite, polyhydroxyalkanoates, and sulfated polysaccharides, were found and successfully obtained from wastewater and have a wide range of application prospects. The aim of this work is to provide a comprehensive review of recent advances in recovery of these popular products from wastewater, and their physicochemical properties, main sources, and current recovery status are summarized. Various factors influencing the recovery performance of these materials are thoroughly discussed. Moreover, the research needs and future directions towards wastewater resource recovery are highlighted. This study can provide valuable insights for future research endeavors aiming to improve wastewater resource recovery through the retrieval of high value-added products.


Assuntos
Poli-Hidroxialcanoatos , Águas Residuárias , Esgotos , Eliminação de Resíduos Líquidos , Polissacarídeos
7.
Materials (Basel) ; 17(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38473622

RESUMO

Magnesium potassium phosphate cement (MKPC) is formed on the basis of acid-base reaction between dead burnt MgO and KH2PO4 in aqueous solution with K-struvite as the main cementitious phase. Due to the unique characteristics of these cements, they are suitable for special applications, especially the immobilization of radioactive metal cations and road repair projects at low temperature. However, there are few articles about the hydration mechanism of MKPC. In this study, the types, proportions and formation mechanism of MKPC crystalline phases under different magnesium to phosphorus (Mg/P) ratios were studied by means of AAS, ICP-OES, SEM, EDS and XRD refinement methods. Corresponding MD simulation works were used to explain the hydration mechanism. This study highlights the fact that crystalline phases distribution of MKPC could be adjusted and controlled by different Mg/P ratios for the design of the MKPC, and the key factor is the kinetic of K+.

8.
Sci Total Environ ; 924: 171636, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38485021

RESUMO

Struvite (MgNH4PO4·6H2O, Magnesium ammonium phosphate, MAP), recovered from wastewater, has potential application as a slow-release fertilizer. However, crystal size distribution (CSD) of recovered MAP typically lied in the range of 50-300 µm, due to fast nucleation rate and notably narrow metastable zone width (MSZW) of MAP, with purity levels 40-90 %. In order to control the rate of nucleation, a novel magnesium source with the form of MgHPO4·3H2O wrapped with Mg(OH)2 was prepared, referred to as P-3. This compound gradually released Mg2+ and PO43-, regulating solution concentration kept in MSZW to promote crystal growth. The inherent Mg(OH)2 within P-3 also acted as a pH regulator in wastewater, eliminating the necessity for additional acid or alkali adjustments during crystallization process. The MAP precipitated by P-3 exhibited an impressive CSD of 5000-7000 µm, with a maximum size reaching 10,000 µm. This represented the largest CSD reported in literature for recovered MAP from wastewater. The significance of the ultra-large MAP precipitated by P-3 lied in its enhanced resistance to impurity adsorption, resulting in MAP with a remarkable purity 97 %, under conditions of low heavy metal ion concentration approximately 5 mg/L. Furthermore, the removal efficiency of ammonia nitrogen (NH4+) can reach 92 %. In comparison, two other magnesium sources, soluble salts (MgCl2 and Na2HPO4, P-1) and a combination of insoluble salts (Mg(OH)2 and MgHPO4, P-2) were evaluated alongside P-3. The CSD of MAP precipitated from P-1, P-2 was both <100 µm, with purity levels of 90 and 92 % and NH4+ removal efficiency of 92 and 90 %, respectively. Importantly, the strategy of obtaining ultra-large size MAP from wastewater in this study provided novel insights into the crystallization of other insoluble salts with large sizes.

9.
Sci Total Environ ; 925: 171431, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38442755

RESUMO

This study addresses the pressing environmental concerns associated with the rapidly growing distillery industry, which is a significant contributor to wastewater generation. By focusing on the treatment of distillery wastewater using anaerobic digestion, this research explores the potential to convert organic materials into biofuels (methane). Moreover, the study aims to recover both methane and phosphorus from distillery wastewater in a single anaerobic reactor, which represents a novel and unexplored approach. Laboratory-scale experiments were conducted using mesophilic and thermophilic upflow anaerobic sludge blanket reactors. A key aspect of the study involved the implementation of a unique strategy: the mixing of centrate and spent caustic wastewater streams. This approach was intended to enhance treatment performance, manipulate the microbial community structure, and thereby optimizing the overall treatment performance. The integration of the centrate and spent caustic streams yielded remarkable co-benefits, resulting in significant biomethane production and efficient phosphorus precipitation. The study demonstrated a phosphorus removal efficiency of ∼60 % throughout the 130-140 days operation period. The recovery of phosphorus via the reactor sludge offers exciting opportunities for its utilization as a fertilizer or as a raw material within the phosphorus refinery industry. The biomethane produced during the treatment exhibits significant energy potential, estimated at 0.5 GJ/(m3 distillery wastewater).


Assuntos
Cáusticos , Águas Residuárias , Esgotos/química , Eliminação de Resíduos Líquidos/métodos , Anaerobiose , Fósforo , Biomineralização , Reatores Biológicos , Metano
10.
Int J Biol Macromol ; 266(Pt 1): 130998, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38521332

RESUMO

Although calcium­magnesium phosphate cements (CMPCs) have been widely applied to treating critical-size bone defects, their repair efficiency is unsatisfactory owing to their weak surface bioactivity and uncontrolled ion release. In this study, we lyophilized alginate sodium (AS) as a coating onto HAp/K-struvite (H@KSv) to develop AS/HAp/K-struvite (AH@KSv), which promotes bone regeneration. The compressive strength and hydrophilicity of AH@KSv significantly improved, leading to enhanced cell adhesion in vitro. Importantly, the SA coating enables continuous ions release of Mg2+ and Ca2+, finally leading to enhanced osteogenesis in vitro/vivo and different patterns of new bone ingrowth in vivo. Furthermore, these composites increased the expression levels of biomarkers of the TRPM7/PI3K/Akt signaling pathway via an equilibrium effect of Mg2+ to Ca2+. In conclusion, our study provides novel insights into the mechanisms of Mg-based biomaterials for bone regeneration.


Assuntos
Alginatos , Cimentos Ósseos , Regeneração Óssea , Fosfatos , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Canais de Cátion TRPM , Regeneração Óssea/efeitos dos fármacos , Canais de Cátion TRPM/metabolismo , Alginatos/química , Alginatos/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Fosfatos/química , Fosfatos/farmacologia , Cimentos Ósseos/química , Cimentos Ósseos/farmacologia , Osteogênese/efeitos dos fármacos , Compostos de Magnésio/química , Compostos de Magnésio/farmacologia , Fosfatos de Cálcio/química , Fosfatos de Cálcio/farmacologia , Adesão Celular/efeitos dos fármacos , Propriedades de Superfície , Camundongos , Ratos , Força Compressiva
11.
Sci Total Environ ; 926: 171805, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38508262

RESUMO

A pressing issue in contemporary society is the resource scarcity of phosphorus. Operating on the principle of electrochemical reactions between Mg as the anode and oxygen from air as the cathode, Mg-air batteries (MAB) have been employed to provide new prospects for phosphorus recovery in struvite form. Different phosphorus concentrations and reaction time impact struvite generation in MAB systems; however, the exact mechanism has rarely been investigated. We investigated how varying the initial phosphorus concentration and the reaction time affects phosphorus recovery, electricity generation, and the efficiency of struvite production in MAB. Additionally, we examine the impact of solid carbon sources on phosphorus transformation in sludge. The findings revealed that the incorporation of solid carbon sources facilitated the release of phosphate by changing phosphorus speciation. The electrolyte derived from the conditioned sludge filtrate exhibited a remarkable phosphorus removal efficiency of 91.7 % within 1 h, yielding the highest struvite purity of ∼70 %, whereas that using raw sludge filtrate or extending the reaction time was found to be less effective, even reducing struvite formation. Furthermore, different electrolytes influence the system's ability to passivate anode, and electrolytes with higher phosphorus concentrations have better electricity production performance. The results by Visual MINTEQ model confirmed that longer reaction times and lower initial phosphorus concentrations can negatively affect struvite formation by introducing Mg3(PO4)2 and Mg(OH)2. The integration of agricultural waste as carbon sources with MAB for phosphorus recovery represents a potential methodology for struvite recuperation from sewage sludge, thereby heralding a sustainable strategy for resource recovery.

12.
Bioresour Technol ; 399: 130617, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38513923

RESUMO

This study aimed to compare the effect of different phosphate additives including superphosphate (CP) and MP [Mg(OH)2 + H3PO4] on nitrogen conversion, humus fractions formation and bacterial community in food waste compost. The results showed the ratio of humic acid nitrogen in total nitrogen (HA-N/TN) in CP increased by 49 %. Ammonium nitrogen accumulation was increased by 75 % (CP) and 44 % (MP). Spectroscopic techniques proved that phosphate addition facilitated the formation of complex structures in HA. CP enhanced the dominance of Saccharomonospora, while Thermobifida and Bacillus were improved in MP. Structural equation modeling and network analysis demonstrated that ammonium nitrogen can be converted to HA-N and has positive effects on bacterial composition, reducing sugars and amino acids, especially in CP with more clustered network and synergic bacterial interactions. Therefore, the addition of phosphate provides a new idea to regulate the retained nitrogen toward humification in composting.


Assuntos
Compostos de Amônio , Compostagem , Eliminação de Resíduos , Substâncias Húmicas , Fosfatos , Carbono , Nitrogênio/química , Alimentos , Eliminação de Resíduos/métodos , Solo , Bactérias , Esqueleto/química , Esterco
13.
J Environ Manage ; 356: 120665, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38518498

RESUMO

Struvite precipitation from source-separated urine is crucial for waste utilization and sustainability. However, after precipitation, the high moisture content of struvite necessitates an additional drying process that can be costly and inefficient. In the present study, the performance of different drying methods-open sun drying, air drying, conventional drying (20-100 °C), and microwave drying (180-720 W) on the quality of struvite obtained from source-separated urine through electrocoagulation using Mg-Mg electrodes were evaluated. It was found that higher temperatures and power in the convective oven and microwave resulted in higher diffusivity (10-9-10-7 m2s-1), leading to reduced drying times. Different models were employed to comprehend the drying mechanism, and the one with the highest correlation coefficient (R2 = 0.99) and the lowest statistical values was selected. The key findings indicated that higher power and temperature levels were more cost-effective. However, characterization of the dried struvite using X-ray diffraction and Fourier-transformed infrared spectroscopy, disintegration of struvite crystals at temperatures above 60 °C in the conventional oven and 180 W in the microwave oven was observed. Based on the results, we conclude that sun drying is a cost-effective and environmentally friendly alternative for drying struvite without compromising its quality.


Assuntos
Dessecação , Estruvita , Análise Custo-Benefício , Dessecação/métodos , Temperatura , Difração de Raios X
14.
Materials (Basel) ; 17(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38399065

RESUMO

Struvite-K cements, also called magnesium potassium phosphate cements (MKPCs), are applicable for particular applications, especially the immobilization of radioactive Cs+ in the nuclear industry. This work focuses on how Cs+ affects the hydration mechanism of struvite-K cements because newberyite and brucite in the hydration products are deemed to be risky products that result in cracking. Experiments and molecular dynamics simulations showed that Cs+ promoted the diffusion of K+ to the surface of MgO, which greatly facilitates the formation of more K-struvite crystals, inhibiting the formation of newberyite and brucite. A total of 0.02 M Cs+ resulted in a 40.44%, 13.93%, 60.81%, and 32.18% reduction in the amount of newberyite and brucite, and the Cs immobilization rates were 99.07%, 99.84%, 99.87%, and 99.83% when the ratios of Mg/P were 1, 3, 5, and 7, respectively. This provides new evidence of stability for struvite-K cements on radioactive Cs+ immobilization. Surprisingly, another new crystal, [CsPO3·H2O]4, was found to be a dominating Cs-containing phase in Cs-immobilizing struvite-K cements, in addition to Cs-struvite.

15.
Environ Sci Pollut Res Int ; 31(11): 17481-17493, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38342832

RESUMO

Excessive phosphorus will lead to eutrophication in aquatic environment; the efficient removal of phosphorus is crucial for wastewater engineering and surface water management. This study aimed to fabricate a nanorod-like sepiolite-supported MgO (S-MgO) nanocomposite with high specific surface area for efficient phosphate removal using a facile microwave-assisted method and calcining processes. The impact of solution pH, adsorbent dosage, contact time, initial phosphate concentrations, Ca2+ addition, and N/P ratio on the phosphate removal was extensively examined by the batch experiments. The findings demonstrated that the S-MgO nanocomposite exhibited effective removal performance for low-level phosphate (0 ~ 2.0 mM) within the pH range of 3.0 ~ 10.0. Additionally, the nanocomposite can synchronously remove phosphate and ammonium in high-level nutrient conditions (> 2.0 mM), with the maximum removal capacities of 188.49 mg P/g and 89.78 mg N/g. Quantitative and qualitative analyses confirmed the successful harvesting of struvite in effluent with high-phosphate concentrations, with the mechanisms involved attributed to a synergistic combination of sorption and struvite crystallization. Due to its proficient phosphate removal efficiency, cost-effectiveness, and substantial removal capacity, the developed S-MgO nanocomposite exhibits promising potential for application in phosphorus removal from aquatic environments.


Assuntos
Silicatos de Magnésio , Nanocompostos , Poluentes Químicos da Água , Fósforo/química , Estruvita/química , Óxido de Magnésio , Nitrogênio , Fosfatos/química
16.
Bioengineering (Basel) ; 11(2)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38391631

RESUMO

This study investigated the synergistic integration of clean technologies, specifically anaerobic digestion (AD) and struvite precipitation, to enhance nutrient recovery from chicken manure (CM). The batch experiments were conducted using (i) anaerobically digested CM digestate, referred to as raw sample (RS), (ii) filtered digestate sample (FS), and (iii) a synthetically prepared control sample (CS). The research findings demonstrated that the initial ammonia concentration variations did not significantly impact the struvite precipitation yield in the RS and FS, showcasing the materials inertness process's robustness to changing ammonia concentrations. Notably, the study revealed that the highest nitrogen (N) recovery, associated with 86% and 88% ammonia removal in the CS and FS, was achieved at pH 11, underscoring the efficiency of nutrient recovery. The RS achieved the highest nitrogen recovery efficiency at pH 10, at 86.3%. In addition, the research highlighted the positive impact of reducing heavy metal levels (Zn, Cu, Pb, Ni, Cd, Cr and Fe) and improving the composition of the microbial community in the digestate. These findings offer valuable insights into sustainable manure and nutrient management practices, emphasizing the potential benefits for the agricultural sector and the broader circular economy. Future research directions include economic viability assessments, regulatory compliance evaluations, and knowledge dissemination to promote the widespread adoption of these clean technologies on a larger scale. The study marks a significant step toward addressing the environmental concerns associated with poultry farming and underscores the potential of integrating clean technologies for a more sustainable agricultural future.

17.
Water Res ; 252: 121239, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38335753

RESUMO

Limited mineralization of organic phosphorus to phosphate during the anaerobic digestion process poses a significant challenge in the development of cost-effective nutrient recovery strategies from anaerobically digested poultry wastewater (ADPW). This study investigated the influence of organic acids on phosphorus solubilization from ADPW, followed by its recycling in the form of struvite using a bubble column electrolytic reactor (BCER) without adding chemicals. The impact of seeding on the efficiency of PO43- and NH3-N recovery as well as the size distribution of recovered precipitates from the acid pre-treated ADPW was also evaluated. Pre-treatment of the ADPW with oxalic acid achieved complete solubilization of phosphorus, reaching ∼100% extraction efficiency at pH 2.5. The maximum removal efficiency of phosphate and ammonia-nitrogen from the ADPW were 88.9% and 90.1%, respectively, while the addition of 5 and 10 g/L struvite seed to the BCER increased PO43- removal efficiency by 9.6% and 11.5%, respectively. The value of the kinetic rate constant, k, increased from 0.0176 min-1 (unseeded) to 0.0198 min-1, 0.0307 min-1, and 0.0375 min-1 with the seed loading rate of 2, 5, and 10 g/L, respectively. Concurrently, the average particle size rose from 75.3 µm (unseeded) to 82.1 µm, 125.7 µm, and 148.9 µm, respectively. Results from XRD, FTIR, EDS, and dissolved chemical analysis revealed that the solid product obtained from the recovery process was a multi-nutrient fertilizer consisting of 94.7% struvite with negligible levels of heavy metals.


Assuntos
Aves Domésticas , Águas Residuárias , Animais , Estruvita , Fosfatos/análise , Fósforo/análise , Compostos Orgânicos , Nutrientes/análise , Precipitação Química
18.
Saudi Pharm J ; 32(3): 101967, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38362039

RESUMO

Phytotherapy, which involves the use of plant extracts and natural compounds for medicinal purposes, is indeed a promising alternative for managing urinary lithiasis. Many plants have been studied for their potential to prevent and treat kidney stones, and they may offer a more natural and potentially less harmful approach compared to conventional treatments. Additionally, phytotherapy may be more cost-effective. The aim of the present study was to investigate the antilithic potential of extracts and essential oils of Saussurea costus (Falc) Lipsch in two in vivo models, one on ethylene glycol-induced calcium oxalate crystal formation and the other to assess the effects of these extracts on magnesium oxide-induced struvite crystal formation. The experiment involved the administration of different doses of aqueous and ethanolic extracts of S. costus (200 and 400 mg/kg) and essential oils (25 and 50 mg/kg) to male Wistar rats, followed by the evaluation of various physiological, biochemical and histopathological parameters. The results demonstrated that the administration of S. costus essential oils and extracts had significant effects on the rats, influencing body weight, urine volume, crystal deposition, cytobacteriological examination of urine, and serum biochemical parameters. Histopathological examinations revealed varying impacts on the kidneys and livers of the treated rats. The findings suggest that S. costus extracts and essential oils may hold promise in inhibiting calcium oxalate crystal formation in vivo and influencing various physiological and biochemical parameters in rats. Overall, the 200 mg/kg ethanolic extract of S. costus demonstrated antilithiatic efficacy, did not exhibit signs of toxicity and reduced the number of crystals in the kidneys. Furthermore, the study did not find a significant effect on reducing struvite crystals.

19.
Waste Manag ; 177: 115-124, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38320451

RESUMO

Magnesium potassium phosphate cement (MKPC) is increasingly used in the solidification/stabilization (SS) of heavy metal (HM) pollutants. However, research on composite HM pollutants remains limited. In this study, four heavy metals (Pb/Zn/Cu/Cd) were individually and simultaneously introduced into MKPC systems with different magnesium/phosphorus (M/P) molar ratios. The introduction of HMs altered the extent of hydration and morphology of MgKPO4·6H2O. Among the MKPC pastes, those with M/P = 2 and 3 had the highest HM solidification efficiency and strength, respectively. The HM solidification efficiency of all specimens exceeded 99 %. In samples with M/P = 3, the codoping of four HMs slightly increased the M/P ratio, thereby increasing MgKPO4·6H2O content and enhancing strength. Pb could generate additional low-solubility precipitates, such as PbHPO4, Pb3 (PO4)2, Pb5 (OH) (PO4)3, and Pb (OH)2, which easily accumulated in pores and were encapsulated by MgKPO4·6H2O, leading to the highest solidification efficiency of Pb by MKPC. Pb and Cu could also form the composite phosphate products Pb2Cu (PO4)3 (OH)·4H2O, thus promoting the S/S effect of Cu. Therefore, the use of MKPC with M/P ratio of 2-3 for the S/S of complex pollutants containing Pb and Cu is a promising approach.


Assuntos
Poluentes Ambientais , Compostos de Magnésio , Metais Pesados , Compostos de Potássio , Magnésio , Potássio , Chumbo , Fosfatos
20.
Water Res ; 250: 121087, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38171180

RESUMO

The prevalence of struvite and other phosphate minerals in eutrophic environments has a significant effect on the transport and transformation of environmental heavy metals, but their competitive immobilization characteristics and mechanisms for heavy metals remain unclear. Three different sources of struvite (BS, CSHS, and CSS) were obtained respectively by biosynthesis and chemical synthesis with or without humic acid to investigate their competitive immobilization characteristics and mechanism of heavy metals in the Pb(II)-Cd(II)-Zn(II) composite system. The results showed that the immobilization of heavy metals by struvite is physico-chemical adsorption and the affinity (in descending order) is Pb(II) >> Cd(II)/Zn(II). Cd(II) promotes the immobilization of Pb(II)/Zn(II) by BS. The order of the selective strength by struvite for Pb(II) is BS >> CSS ≈ CSHS. The study indicates that the difference between struvite holding heavy metal ions is related to the material composition and heavy metal types, and BS shows best selective immobilization for Pb(II) in the Pb(II)-Cd(II)-Zn(II) composite system. This study provides a theoretical basis for understanding the environmental geochemical role and eco-environmental effects of struvite.


Assuntos
Cádmio , Metais Pesados , Estruvita , Chumbo , Adsorção , Metais Pesados/química , Zinco/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...