Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.109
Filtrar
1.
J Agric Food Chem ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38832583

RESUMO

Keratinases is a special hydrolytic enzyme produced by microorganisms, which has the ability to catalyze the degradation of keratin. Currently, keratinases show great potential for application in many agricultural and industrial fields, such as biofermented feed, leather tanning, hair removal, and fertilizer production. However, these potentials have not yet been fully unleashed on an industrial scale. This paper reviews the sources, properties, and catalytic mechanisms of keratinases. Strategies for the molecular modification of keratinases are summarized and discussed in terms of improving the substrate specificity, thermostability, and pH tolerance of keratinases. The modification strategies are also enriched by the introduction of immobilized enzymes and directed evolution. In addition, the selection of modification strategies when facing specific industrial applications is discussed and prospects are provided. We believe that this review serves as a reference for the future quest to extend the application of keratinases from the laboratory to industry.

2.
Food Chem ; 456: 139624, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38850608

RESUMO

The limited availability of phospholipase A1 (PLA1) has posed significant challenges in enzymatic degumming. In this study, a novel PLA1 (UM2) was introduced to address this limitation, which had a unique thermo-responsive ability to switch phospholipase and lipase activities in response to temperature variations. Remarkably, UM2 displayed an unprecedented selectivity under optimized conditions, preferentially hydrolyzing phospholipids over triacylglycerols-a specificity superior to that of commercial PLA1. Moreover, UM2 demonstrated high efficiency in hydrolyzing phospholipids with a predilection for phosphatidylcholine (PC) and phosphatidylethanolamine (PE). A practical application of UM2 on crude flaxseed oil led to a dramatic reduction in phosphorus content, plummeting from an initial 384.06 mg/kg to 4.38 mg/kg. Broadening its industrial applicability, UM2 effectively performed enzymatic degumming for other distinct crude vegetable oils with a unique phospholipid composition. Collectively, these results highlighted the promising application of UM2 in the field of oil degumming.

3.
Planta ; 259(6): 152, 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38735012

RESUMO

MAIN CONCLUSION: Overexpression of Artemisia annua jasmonic acid carboxyl methyltransferase (AaJMT) leads to enhanced artemisinin content in Artemisia annua. Artemisinin-based combination therapies remain the sole deterrent against deadly disease malaria and Artemisia annua remains the only natural producer of artemisinin. In this study, the 1101 bp gene S-adenosyl-L-methionine (SAM): Artemisia annua jasmonic acid carboxyl methyltransferase (AaJMT), was characterised from A. annua, which converts jasmonic acid (JA) to methyl jasmonate (MeJA). From phylogenetic analysis, we confirmed that AaJMT shares a common ancestor with Arabidopsis thaliana, Eutrema japonica and has a close homology with JMT of Camellia sinensis. Further, the Clustal Omega depicted that the conserved motif I, motif III and motif SSSS (serine) required to bind SAM and JA, respectively, are present in AaJMT. The relative expression of AaJMT was induced by wounding, MeJA and salicylic acid (SA) treatments. Additionally, we found that the recombinant AaJMT protein catalyses the synthesis of MeJA from JA with a Km value of 37.16 µM. Moreover, site-directed mutagenesis of serine-151 in motif SSSS to tyrosine, asparagine-10 to threonine and glutamine-25 to histidine abolished the enzyme activity of AaJMT, thus indicating their determining role in JA substrate binding. The GC-MS analysis validated that mutant proteins of AaJMT were unable to convert JA into MeJA. Finally, the artemisinin biosynthetic and trichome developmental genes were upregulated in AaJMT overexpression transgenic lines, which in turn increased the artemisinin content.


Assuntos
Acetatos , Artemisia annua , Artemisininas , Ciclopentanos , Metiltransferases , Oxilipinas , Filogenia , Artemisia annua/genética , Artemisia annua/enzimologia , Artemisia annua/metabolismo , Ciclopentanos/metabolismo , Ciclopentanos/farmacologia , Artemisininas/metabolismo , Oxilipinas/metabolismo , Oxilipinas/farmacologia , Metiltransferases/metabolismo , Metiltransferases/genética , Acetatos/farmacologia , Acetatos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regulação da Expressão Gênica de Plantas , Ácido Salicílico/metabolismo
4.
Biochim Biophys Acta Gen Subj ; 1868(8): 130647, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38801837

RESUMO

BACKGROUND: Sialic acids are essential monosaccharides influencing several biological processes and disease states. The sialyltransferases catalyze the transfer of Sia residues to glycoconjugates playing critical roles in cellular recognition and signaling. Despite their importance, the molecular mechanisms underlying their substrate specificity, especially between different organisms, remain poorly understood. Recently, the human ST8Sia IV, a key enzyme in the synthesis of polysialic acids, was found to accept only CMP-Neu5Ac as a sugar-donor, whereas the whitefish Coregonus maraena enzyme showed a wider donor substrate specificity, accepting CMP-Neu5Ac, CMP-Neu5Gc, and CMP-Kdn. However, what causes these differences in donor substrate specificity is unknown. METHODS: Computational approaches were used to investigate the structural and biochemical determinants of the donor substrate specificity in ST8Sia IV. Accurate structural models of the human and fish ST8Sia IV catalytic domains and their complexes with three sialic acid donors (CMP-Neu5Ac, CMP-Neu5Gc, and CMP-Kdn) were generated. Subsequently, molecular dynamics simulations were conducted to analyze the stability and interactions within these complexes and identify differences in complex stability and substrate binding sites between the two ST8Sia IV. RESULTS: Our MD simulations revealed that the human enzyme effectively stabilizes CMP-Neu5Ac, whereas CMP-Neu5Gc and CMP-Kdn are unstable and explore different conformations. In contrast, the fish ST8Sia IV stabilizes all three donor substrates. Based on these data, we identified the key interacting residues for the different Sias parts of the substrate donors. GENERAL SIGNIFICANCE: This work advances our knowledge of the enzymatic mechanisms governing sialic acid transfer, shedding light on the evolutionary adaptations of sialyltransferases.

5.
J Biol Chem ; 300(6): 107343, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38705395

RESUMO

Rieske nonheme iron aromatic ring-hydroxylating oxygenases (RHOs) play pivotal roles in determining the substrate preferences of polycyclic aromatic hydrocarbon (PAH) degraders. However, their potential to degrade high molecular weight PAHs (HMW-PAHs) has been relatively unexplored. NarA2B2 is an RHO derived from a thermophilic Hydrogenibacillus sp. strain N12. In this study, we have identified four "hotspot" residues (V236, Y300, W316, and L375) that may hinder the catalytic capacity of NarA2B2 when it comes to HMW-PAHs. By employing structure-guided rational enzyme engineering, we successfully modified NarA2B2, resulting in NarA2B2 variants capable of catalyzing the degradation of six different types of HMW-PAHs, including pyrene, fluoranthene, chrysene, benzo[a]anthracene, benzo[b]fluoranthene, and benzo[a]pyrene. Three representative variants, NarA2B2W316I, NarA2B2Y300F-W316I, and NarA2B2V236A-W316I-L375F, not only maintain their abilities to degrade low-molecular-weight PAHs (LMW-PAHs) but also exhibited 2 to 4 times higher degradation efficiency for HMW-PAHs in comparison to another isozyme, NarAaAb. Computational analysis of the NarA2B2 variants predicts that these modifications alter the size and hydrophobicity of the active site pocket making it more suitable for HMW-PAHs. These findings provide a comprehensive understanding of the relationship between three-dimensional structure and functionality, thereby opening up possibilities for designing improved RHOs that can be more effectively used in the bioremediation of PAHs.

6.
FEBS J ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38646733

RESUMO

Aminopeptidases with varied substrate specificities are involved in different crucial physiological processes of cellular homeostasis. They also have wide applications in food and pharma industries. Within the bacterial cell, broad specificity aminopeptidases primarily participate in the recycling of amino acids by degrading oligopeptides generated via primary proteolysis mediated by cellular ATP-dependent proteases. However, in bacteria, a truly broad specificity enzyme, which can cleave off acidic, basic, Gly and hydrophobic amino acid residues, is extremely rare. Here, we report structure-function of a putative glycyl aminopeptidase (M61xc) from Xanthomonas campestris pv campestris (Xcc) belonging to the M61 peptidase family. The enzyme exhibits broad specificity and cleaves Ala, Leu, Asp, Glu, Met, Ser, Phe, Tyr, Gly, Arg, and Lys at the N terminus, optimally of peptides with a length of 3-7 amino acids. Further, we report the high-resolution crystal structure of M61xc in the apo form (2.1 Å) and bestatin-bound form (1.95 Å), detailing its catalytic and substrate preference mechanisms. Comparative analysis of enzyme activity in crude cell extracts from both wild-type and m61xc-knockout mutant strains of Xcc has elucidated the unique intracellular role of M61xc. This study suggests that M61xc is the exclusive enzyme in these bacteria that is responsible for liberating Asp/Glu residues from the N-termini of peptides. Also, in view of its broad specificity and peptide degradation ability, it could be considered equivalent to M1 or other oligomeric peptidases from families like M17, M18, M42 or S9, who have an important auxiliary role in post-proteasomal protein degradation in prokaryotes.

7.
Front Microbiol ; 15: 1376653, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38680917

RESUMO

The exchange of small molecules between the cell and the environment happens through transporter proteins. Besides nutrients and native metabolic products, xenobiotic molecules are also transported, however it is not well understood which transporters are involved. In this study, by combining exo-metabolome screening in yeast with transporter characterization in Xenopus oocytes, we mapped the activity of 30 yeast transporters toward six small non-toxic substrates. Firstly, using LC-MS, we determined 385 compounds from a chemical library that were imported and exported by S. cerevisiae. Of the 385 compounds transported by yeast, we selected six compounds (viz. sn-glycero-3-phosphocholine, 2,5-furandicarboxylic acid, 2-methylpyrazine, cefadroxil, acrylic acid, 2-benzoxazolol) for characterization against 30 S. cerevisiae xenobiotic transport proteins expressed in Xenopus oocytes. The compounds were selected to represent a diverse set of chemicals with a broad interest in applied microbiology. Twenty transporters showed activity toward one or more of the compounds. The tested transporter proteins were mostly promiscuous in equilibrative transport (i.e., facilitated diffusion). The compounds 2,5-furandicarboxylic acid, 2-methylpyrazine, cefadroxil, and sn-glycero-3-phosphocholine were transported equilibratively by transporters that could transport up to three of the compounds. In contrast, the compounds acrylic acid and 2-benzoxazolol, were strictly transported by dedicated transporters. The prevalence of promiscuous equilibrative transporters of non-native substrates has significant implications for strain development in biotechnology and offers an explanation as to why transporter engineering has been a challenge in metabolic engineering. The method described here can be generally applied to study the transport of other small non-toxic molecules. The yeast transporter library is available at AddGene (ID 79999).

8.
J Mol Biol ; 436(10): 168550, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38575054

RESUMO

The class 2 CRISPR-Cas9 and CRISPR-Cas12a systems, originally described as adaptive immune systems of bacteria and archaea, have emerged as versatile tools for genome-editing, with applications in biotechnology and medicine. However, significantly less is known about their substrate specificity, but such knowledge may provide instructive insights into their off-target cleavage and previously unrecognized mechanism of action. Here, we document that the Acidaminococcus sp. Cas12a (AsCas12a) binds preferentially, and independently of crRNA, to a suite of branched DNA structures, such as the Holliday junction (HJ), replication fork and D-loops, compared with single- or double-stranded DNA, and promotes their degradation. Further, our study revealed that AsCas12a binds to the HJ, specifically at the crossover region, protects it from DNase I cleavage and renders a pair of thymine residues in the HJ homologous core hypersensitive to KMnO4 oxidation, suggesting DNA melting and/or distortion. Notably, these structural changes enabled AsCas12a to resolve HJ into nonligatable intermediates, and subsequently their complete degradation. We further demonstrate that crRNA impedes HJ cleavage by AsCas12a, and that of Lachnospiraceae bacterium Cas12a, without affecting their DNA-binding ability. We identified a separation-of-function variant, which uncouples DNA-binding and DNA cleavage activities of AsCas12a. Importantly, we found robust evidence that AsCas12a endonuclease also has 3'-to-5' and 5'-to-3' exonuclease activity, and that these two activities synergistically promote degradation of DNA, yielding di- and mononucleotides. Collectively, this study significantly advances knowledge about the substrate specificity of AsCas12a and provides important insights into the degradation of different types of DNA substrates.


Assuntos
Acidaminococcus , Proteínas de Bactérias , Proteínas Associadas a CRISPR , Sistemas CRISPR-Cas , Endodesoxirribonucleases , Acidaminococcus/enzimologia , Acidaminococcus/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas Associadas a CRISPR/química , Proteínas Associadas a CRISPR/genética , DNA Cruciforme/química , Endodesoxirribonucleases/metabolismo , Endodesoxirribonucleases/química , Endodesoxirribonucleases/genética , Especificidade por Substrato
9.
New Phytol ; 242(6): 2775-2786, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38567688

RESUMO

Unlike 'white rot' (WR) wood-decomposing fungi that remove lignin to access cellulosic sugars, 'brown rot' (BR) fungi selectively extract sugars and leave lignin behind. The relative frequency and distribution of these fungal types (decay modes) have not been thoroughly assessed at a global scale; thus, the fate of one-third of Earth's aboveground carbon, wood lignin, remains unclear. Using c. 1.5 million fungal sporocarp and c. 30 million tree records from publicly accessible databases, we mapped and compared decay mode and tree type (conifer vs angiosperm) distributions. Additionally, we mined fungal record metadata to assess substrate specificity per decay mode. The global average for BR fungi proportion (BR/(BR + WR records)) was 13% and geographic variation was positively correlated (R2 = 0.45) with conifer trees proportion (conifer/(conifer + angiosperm records)). Most BR species (61%) were conifer, rather than angiosperm (22%), specialists. The reverse was true for WR (conifer: 19%; angiosperm: 62%). Global BR proportion patterns were predicted with greater accuracy using the relative distributions of individual tree species (R2 = 0.82), rather than tree type. Fungal decay mode distributions can be explained by tree type and, more importantly, tree species distributions, which our data suggest is due to strong substrate specificities.


Assuntos
Ecossistema , Traqueófitas , Traqueófitas/microbiologia , Fungos/fisiologia , Madeira/microbiologia , Especificidade da Espécie , Lignina/metabolismo , Geografia , Árvores/microbiologia
10.
New Phytol ; 242(6): 2669-2681, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38587066

RESUMO

Norspermine (Nspm), one of the uncommon polyamines (PAs), was detected in bryophytes and lycophytes; therefore, the aminopropyltransferases involved in the synthesis of Nspm were investigated. The enzymatic activity was evaluated by the transient high expression of various aminopropyltransferase genes in Nicotiana benthamiana, followed by quantification of PA distribution in the leaves using gas chromatography-mass spectrometry. The bryophyte orthologues of ACL5, which is known to synthesise thermospermine (Tspm) in flowering plants, were found to have strong Nspm synthesis activity. In addition, two ACL5 orthologous with different substrate specificities were conserved in Selaginella moellendorffii, one of which was involved in Tspm synthesis and the other in Nspm synthesis. Therefore, further detailed analysis using these two factors revealed that the ß-hairpin structural region consisting of ß-strands 1 and 2 at the N-terminus of ACL5 is involved in substrate specificity. Through functional analysis of a total of 40 ACL5 genes in 33 organisms, including algae, it was shown that ACL5 has changed its substrate specificity several times during plant evolution and diversification. Furthermore, it was strongly suggested that ACL5 acquired strict Tspm synthesis activity during the emergence of vascular plants, especially through major changes around the ß-hairpin structural region.


Assuntos
Espermina , Espermina/metabolismo , Espermina/análogos & derivados , Especificidade por Substrato , Filogenia , Nicotiana/genética , Nicotiana/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Regulação da Expressão Gênica de Plantas , Sequência de Aminoácidos
11.
Proc Natl Acad Sci U S A ; 121(14): e2320013121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38547060

RESUMO

Dephosphorylation of pSer51 of the α subunit of translation initiation factor 2 (eIF2αP) terminates signaling in the integrated stress response (ISR). A trimeric mammalian holophosphatase comprised of a protein phosphatase 1 (PP1) catalytic subunit, the conserved C-terminally located ~70 amino acid core of a substrate-specific regulatory subunit (PPP1R15A/GADD34 or PPP1R15B/CReP) and G-actin (an essential cofactor) efficiently dephosphorylate eIF2αP in vitro. Unlike their viral or invertebrate counterparts, with whom they share the conserved 70 residue core, the mammalian PPP1R15s are large proteins of more than 600 residues. Genetic and cellular observations point to a functional role for regions outside the conserved core of mammalian PPP1R15A in dephosphorylating its natural substrate, the eIF2 trimer. We have combined deep learning technology, all-atom molecular dynamics simulations, X-ray crystallography, and biochemistry to uncover binding of the γ subunit of eIF2 to a short helical peptide repeated four times in the functionally important N terminus of human PPP1R15A that extends past its conserved core. Binding entails insertion of Phe and Trp residues that project from one face of an α-helix formed by the conserved repeats of PPP1R15A into a hydrophobic groove exposed on the surface of eIF2γ in the eIF2 trimer. Replacing these conserved Phe and Trp residues with Ala compromises PPP1R15A function in cells and in vitro. These findings suggest mechanisms by which contacts between a distant subunit of eIF2 and elements of PPP1R15A distant to the holophosphatase active site contribute to dephosphorylation of eIF2αP by the core PPP1R15 holophosphatase and to efficient termination of the ISR in mammals.


Assuntos
Fator de Iniciação 2 em Eucariotos , Processamento de Proteína Pós-Traducional , Animais , Humanos , Actinas/metabolismo , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Fosforilação , Proteína Fosfatase 1/metabolismo
12.
J Biochem ; 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38498909

RESUMO

Glycogen debranching enzyme is a single polypeptide with distinct catalytic sites for 4-α-glucanotransferase and amylo-α-1,6-glucosidase. To allow phosphorylase to degrade the inner tiers of highly branched glycogen, 4-α-glucanotransferase converts the phosphorylase-limit biantennary branch G-G-G-G-(G-G-G-G↔)G-G- (G: D-glucose, hyphens: α-1,4-linkages; double-headed arrow: α-1,6-linkage) into the G-G-G-G-(G↔)G-G- residue, which is then subjected to amylo-α-1,6-glucosidase to release the remaining G↔ residue. However, while the essential side-chain structure of the 4-α-glucanotransferase donor substrate has been determined to be the G-G-G-G↔ residue (Watanabe, Y., et al. (2008) J. Biochem.  143, 435-440), its essential main-chain structure remains to be investigated. In this study, we probed the 4-α-glucanotransferase donor-binding region using novel fluorogenic dextrins Gm-(G4↔)G-Gn-F (F: 1-deoxy-1-[(2-pyridyl)amino]-D-glucitol) and maltohexaose (G6) as the donor and acceptor substrates, respectively. 4-α-Glucanotransferase exhibited maximum activity toward G4-(G4↔)G-F and G4-(G4↔)G-G-F, indicating that recognition of the G4-(G4↔)G- moiety was essential for full enzyme function. Notably, when the 4-α-glucanotransferase activity toward G4-(G4↔)G-G-F was taken as unity, those toward nonbranching dextrins were <0.001. This indicated that the disproportionation activities toward maltooligosaccharides (Gm) are abnormal behaviors of 4-α-glucanotransferase. Notably, however, these activities have been traditionally measured to identify the 4-α-glucanotransferase mutations causing glycogen storage disease type III. This study provides a basis for more accurate identification.

13.
Int J Mol Sci ; 25(6)2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38542160

RESUMO

Protein serine/threonine phosphatase 2A (PP2A) regulates diverse cellular processes via the formation of ~100 heterotrimeric holoenzymes. However, a scarcity of knowledge on substrate recognition by various PP2A holoenzymes has greatly prevented the deciphering of PP2A function in phosphorylation-mediated signaling in eukaryotes. The review summarized the contribution of B56 phosphorylation to PP2A-B56 function and proposed strategies for intervening B56 phosphorylation to treat diseases associated with PP2A-B56 dysfunction; it especially analyzed recent advancements in LxxIxEx B56-binding motifs that provide the molecular details of PP2A-B56 binding specificity and, on this basis, explored the emerging role of PP2A-B56 in the mitosis process, virus attack, and cancer development through LxxIxE motif-mediated PP2A-B56 targeting. This review provides theoretical support for discriminatingly targeting specific PP2A holoenzymes to guide PP2A activity against specific pathogenic drivers.


Assuntos
Proteína Fosfatase 2 , Transdução de Sinais , Fosforilação , Proteína Fosfatase 2/metabolismo , Ligação Proteica , Holoenzimas/metabolismo
14.
J Plant Res ; 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38520483

RESUMO

There is mounting evidence that reproductively isolated, but morphologically weakly differentiated species (so-called cryptic species) represent a substantial part of biological diversity, especially in bryophytes. We assessed the evolutionary history and ecological differentiation of a species pair, Dicranum brevifolium and D. septentrionale, which have overlapping ranges in the Holarctic. Despite their morphological similarity, we found similar genetic differentiation as between morphologically well-differentiated Dicranum species. Moreover, we detected gene tree discordance between plastid and nuclear markers, but neither of the two datasets resolved the two as sister species. The signal in trnL-trnF better reflects the morphological and ecological affinities and indicates a close relationship while ITS sequence data resolved the two taxa as phylogenetically distantly related. The discordance is probably unrelated to the ecological differentiation of D. septentrionale to colonise subneutral to alkaline substrates (vs. acidic in D. brevifolium), because this ability is rare in the genus and shared with D. acutifolium. This taxon is the closest relative of D. septentrionale according to the trnL-trnF data and does not share the discordance in ITS. We furthermore demonstrate that beside D. acutifolium, both D. septentrionale and D. brevifolium occur in the Alps but D. brevifolium is most likely rarer. Based on morphological analyses including factor analysis for mixed data of 45 traits we suggest treating the latter two as near-cryptic species and we recommend verifying morphological determinations molecularly.

15.
Int J Biol Macromol ; 263(Pt 1): 130688, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38458294

RESUMO

This study reports the rational engineering of the S1' substrate-binding pocket of a thermally-stable keratinase from Pseudomonas aeruginosa 4-3 (4-3Ker) to improve substrate specificity to typical keratinase (K/C > 0.5) and catalytic activity without compromising thermal stability for efficient keratin degradation. Of 10 chosen mutation hotspots in the S1' substrate-binding pocket, the top three mutations M128R, A138V, and V142I showing the best catalytic activity and substrate specificity were identified. Their double and triple combinatorial mutants synergistically overcame limitations of single mutants, fabricating an excellent M128R/A138V/V142I triple mutant which displayed a 1.21-fold increase in keratin catalytic activity, 1.10-fold enhancement in keratin/casein activity ratio, and a 3.13 °C increase in half-inactivation temperature compared to 4-3Ker. Molecular dynamics simulations revealed enhanced flexibility of critical amino acid residues at the substrate access tunnel, improved global protein rigidity, and heightened hydrophobicity within the active site likely underpinned the increased catalytic activity and substrate specificity. Additionally, the triple mutant improved the feather degradation rate by 32.86 % over the wild-type, far exceeding commercial keratinase in substrate specificity and thermal stability. This study exemplified engineering a typical keratinase with enhanced substrate specificity, catalytic activity, and thermal stability from thermally-stable 4-3Ker, providing a more robust tool for feather degradation.


Assuntos
Queratinas , Peptídeo Hidrolases , Queratinas/metabolismo , Especificidade por Substrato , Peptídeo Hidrolases/metabolismo , Temperatura , Concentração de Íons de Hidrogênio
16.
Appl Microbiol Biotechnol ; 108(1): 250, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38430417

RESUMO

The fungal diglycosidase α-rhamnosyl-ß-glucosidase I (αRßG I) from Acremonium sp. DSM 24697 catalyzes the glycosylation of various OH-acceptors using the citrus flavanone hesperidin. We successfully applied a one-pot biocatalysis process to synthesize 4-methylumbellipheryl rutinoside (4-MUR) and glyceryl rutinoside using a citrus peel residue as sugar donor. This residue, which contained 3.5 % [w/w] hesperidin, is the remaining of citrus processing after producing orange juice, essential oil, and peel-juice. The low-cost compound glycerol was utilized in the synthesis of glyceryl rutinoside. We implemented a simple method for the obtention of glyceryl rutinoside with 99 % yield, and its purification involving activated charcoal, which also facilitated the recovery of the by-product hesperetin through liquid-liquid extraction. This process presents a promising alternative for biorefinery operations, highlighting the valuable role of αRßG I in valorizing glycerol and agricultural by-products. KEYPOINTS: • αRßG I catalyzed the synthesis of rutinosides using a suspension of OPW as sugar donor. • The glycosylation of aliphatic polyalcohols by the αRßG I resulted in products bearing a single rutinose moiety. • αRßG I catalyzed the synthesis of glyceryl rutinoside with high glycosylation/hydrolysis selectivity (99 % yield).


Assuntos
Acremonium , Hesperidina , Hesperidina/química , Glicerol
17.
Crit Rev Biochem Mol Biol ; : 1-49, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38449437

RESUMO

Protein lysine methyltransferases (PKMTs) transfer up to three methyl groups to the side chains of lysine residues in proteins and fulfill important regulatory functions by controlling protein stability, localization and protein/protein interactions. The methylation reactions are highly regulated, and aberrant methylation of proteins is associated with several types of diseases including neurologic disorders, cardiovascular diseases, and various types of cancer. This review describes novel insights into the catalytic machinery of various PKMTs achieved by the combined application of biochemical experiments and simulation approaches during the last years, focusing on clinically relevant and well-studied enzymes of this group like DOT1L, SMYD1-3, SET7/9, G9a/GLP, SETD2, SUV420H2, NSD1/2, different MLLs and EZH2. Biochemical experiments have unraveled many mechanistic features of PKMTs concerning their substrate and product specificity, processivity and the effects of somatic mutations observed in PKMTs in cancer cells. Structural data additionally provided information about the substrate recognition, enzyme-substrate complex formation, and allowed for simulations of the substrate peptide interaction and mechanism of PKMTs with atomistic resolution by molecular dynamics and hybrid quantum mechanics/molecular mechanics methods. These simulation technologies uncovered important mechanistic details of the PKMT reaction mechanism including the processes responsible for the deprotonation of the target lysine residue, essential conformational changes of the PKMT upon substrate binding, but also rationalized regulatory principles like PKMT autoinhibition. Further developments are discussed that could bring us closer to a mechanistic understanding of catalysis of this important class of enzymes in the near future. The results described here illustrate the power of the investigation of enzyme mechanisms by the combined application of biochemical experiments and simulation technologies.

18.
Int J Biol Macromol ; 265(Pt 2): 131066, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38521339

RESUMO

Human rhinovirus 3C protease (HRV 3CP) has a high specificity against the substrate of LEVLFQ↓G at P1' site, which plays an important role in biotechnology and academia as a fusion tag removal tool. However, a non-ignorable limitation is that an extra residue of Gly would remain at the N terminus of the recombinant target protein after cleavage with HRV 3CP, thus potentially causing protein mis-functionality or immunogenicity. Here, we developed a combinatorial strategy by integrating structure-guided library design and high-throughput screening of eYESS approach for HRV 3CP engineering to expand its P1' specificity. Finally, a C3 variant was obtained, exhibiting a broad substrate P1' specificity to recognize 20 different amino acids with the highest activity against LEVLFQ↓M (kcat/KM = 3.72 ± 0.04 mM-1∙s-1). Further biochemical and NGS-mediated substrate profiling analysis showed that C3 variant still kept its substrate stringency at P1 site and good residue tolerance at P2' site, but with an expanded P1' specificity. Structural simulation of C3 indicated a reconstructed S1' binding pocket as well as new interactions with the substrates. Overall, our studies here prompt not only the practical applications and understanding of substrate recognition mechanisms of HRV 3CP, also provide new tools for other enzyme engineering.


Assuntos
Endopeptidases , Peptídeo Hidrolases , Humanos , Peptídeo Hidrolases/metabolismo , Frequência Cardíaca , Endopeptidases/metabolismo , Aminoácidos , Proteases Virais 3C/metabolismo , Proteínas Recombinantes/química , Especificidade por Substrato
19.
Photosynth Res ; 160(1): 45-53, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38530505

RESUMO

In the metabolic pathway of chlorophylls (Chls), an enzyme called STAY-GREEN or SGR catalyzes the removal of the central magnesium ion of Chls and their derivatives to their corresponding free bases, including pheophytins. The substrate specificity of SGR has been investigated through in vitro reactions using Chl-related molecules. However, information about the biochemical properties and reaction mechanisms of SGR and its substrate specificity remains elusive. In this study, we synthesized various Chl derivatives and investigated their in vitro dechelations using an SGR enzyme. Chl-a derivatives with the C3-vinyl group on the A-ring, which is commonly found as a substituent in natural substrates, and their analogs with ethyl, hydroxymethyl, formyl, and styryl groups at the C3-position were prepared as substrates. In vitro dechelatase reactions of these substrates were performed using an SGR enzyme derived from an Anaerolineae bacterium, allowing us to investigate their specificity. Reactivity was reduced for substrates with an electron-withdrawing formyl or sterically demanding styryl group at the C3-position. Furthermore, the Chl derivative with the C8-styryl group on the B-ring was less reactive for SGR dechelation than the C3-styryl substrate. These results indicate that the SGR enzyme recognizes substituents on the B-ring of substrates more than those on the A-ring.


Assuntos
Chloroflexi , Clorofila , Enzimas , Clorofila/metabolismo , Magnésio/química , Chloroflexi/metabolismo , Feofitinas
20.
J Biol Chem ; 300(5): 107215, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522518

RESUMO

Sugar absorption is crucial for life and relies on glucose transporters, including sodium-glucose cotransporters (SGLTs). Although the structure of SGLTs has been resolved, the substrate selectivity of SGLTs across diverse isoforms has not been determined owing to the complex substrate-recognition processes and limited analysis methods. Therefore, this study used voltage-clamp fluorometry (VCF) to explore the substrate-binding affinities of human SGLT1 in Xenopus oocytes. VCF analysis revealed high-affinity binding of D-glucose and D-galactose, which are known transported substrates. D-fructose, which is not a transported substrate, also bound to SGLT1, suggesting potential recognition despite the lack of transport activity. VCF analysis using the T287N mutant of the substrate-binding pocket, which has reduced D-glucose transport capacity, showed that its D-galactose-binding affinity exceeded its D-glucose-binding affinity. This suggests that the change in the VCF signal was due to substrate binding to the binding pocket. Both D-fructose and L-sorbose showed similar binding affinities, indicating that SGLT1 preferentially binds to pyranose-form sugars, including D-fructopyranose. Electrophysiological analysis confirmed that D-fructose binding did not affect the SGLT1 transport function. The significance of the VCF assay lies in its ability to measure sugar-protein interactions in living cells, thereby bridging the gap between structural analyses and functional characterizations of sugar transporters. Our findings also provide insights into SGLT substrate selectivity and the potential for developing medicines with reduced side effects by targeting non-glucose sugars with low bioreactivity.


Assuntos
Fluorometria , Glucose , Oócitos , Transportador 1 de Glucose-Sódio , Xenopus laevis , Transportador 1 de Glucose-Sódio/metabolismo , Transportador 1 de Glucose-Sódio/genética , Transportador 1 de Glucose-Sódio/química , Animais , Humanos , Fluorometria/métodos , Glucose/metabolismo , Oócitos/metabolismo , Ligação Proteica , Técnicas de Patch-Clamp , Galactose/metabolismo , Frutose/metabolismo , Frutose/química , Sítios de Ligação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...