Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 243
Filtrar
1.
Ecol Evol ; 14(8): e70116, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39114160

RESUMO

Improving our ability to monitor fragmented tropical ecosystems is a critical step in supporting the stewardship of these complex landscapes. We investigated the structural characteristics of vegetation classes in Ucayali, Peru, employing a co-production approach. The vegetation classes included three agricultural classes (mature oil palm, monocrop cacao, and agroforestry cacao plantations) and three forest regeneration classes (mature lowland forest, secondary lowland forest, and young lowland vegetation regrowth). We combined local knowledge with spaceborne lidar from NASA's Global Ecosystem Dynamics Investigation mission to classify vegetation and characterize the horizontal and vertical structure of each vegetation class. Mature lowland forest had consistently higher mean canopy height and lower canopy height variance than secondary lowland forest (µ = 29.40 m, sd = 6.89 m vs. µ = 20.82 m, sd = 9.15 m, respectively). The lower variance of mature forest could be attributed to the range of forest development ages in the secondary forest patches. However, secondary forests exhibited a similar vertical profile to mature forests, with each cumulative energy percentile increasing at similar rates. We also observed similar mean and standard deviations in relative height ratios (RH50/RH95) for mature forest, secondary forest, and oil palm even when removing the negative values from the relative height ratios and interpolating from above-ground returns only (mean RH50/RH95 of 0.58, 0.54, and 0.53 for mature forest, secondary forest, and oil palm, respectively) (p < .0001). This pattern differed from our original expectations based on local knowledge and existing tropical forest succession studies, pointing to opportunities for future work. Our findings suggest that lidar-based relative height metrics can complement local information and other remote sensing approaches that rely on optical imagery, which are limited by extensive cloud cover in the tropics. We show that characterizing ecosystem structure with a co-production approach can support addressing both the technical and social challenges of monitoring and managing fragmented tropical landscapes.

2.
Braz J Microbiol ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39028532

RESUMO

Mangroves are coastal environments that provide resources for adjacent ecosystems due to their high productivity, organic matter decomposition, and carbon cycling by microbial communities in sediments. Since the industrial revolution, the increase of Greenhouse Gases (GHG) released due to fossil fuel burning led to many environmental abnormalities such as an increase in average temperature and ocean acidification. Based on the hypothesis that climate change modifies the microbial diversity associated with decaying organic matter in mangrove sediments, this study aimed to evaluate the microbial diversity under simulated climate change conditions during the litter decomposition process and the emission of GHG. Thus, microcosms containing organic matter from the three main plant species found in mangroves throughout the State of São Paulo, Brazil (Rhizophora mangle, Laguncularia racemosa, and Avicennia schaueriana) were incubated simulating climate changes (increase in temperature and pH). The decay rate was higher in the first seven days of incubation, but the differences between the simulated treatments were minor. GHG fluxes were higher in the first ten days and higher in samples under increased temperature. The variation in time resulted in substantial impacts on α-diversity and community composition, initially with a greater abundance of Gammaproteobacteria for all plant species despite the climate conditions variations. The PCoA analysis reveals the chronological sequence in ß-diversity, indicating the increase of Deltaproteobacteria at the end of the process. The GHG emission varied in function of the organic matter source with an increase due to the elevated temperature, concurrent with the rise in the Deltaproteobacteria population. Thus, these results indicate that under the expected climate change scenario for the end of the century, the decomposition rate and GHG emissions will be potentially higher, leading to a harmful feedback loop of GHG production. This process can happen independently of an impact on the bacterial community structure due to these changes.

3.
Sci Total Environ ; 946: 174549, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-38972415

RESUMO

The impacts of grazing on rangelands have historically been studied within the framework of the equilibrium model, which predicts significant impacts of grazing on ecosystems. However, in recent decades, studies have observed a non-equilibrium pattern, suggesting that abiotic factors play a primary role compared to grazing. These studies are primarily focused on rangelands, despite animal husbandry occurring in other biomes, such as seasonally dry tropical forests. Our study examines the influence of goat grazing on biodiversity and forest succession in the Brazilian dry forest (Caatinga). Considering its high interannual precipitation variability, we hypothesize a response that aligns with the non-equilibrium paradigm. We established a gradient of grazing intensity and history in areas at different stages of vegetation succession. A survey of tree - shrub and herbaceous species was conducted at each site and the biomass of both strata was quantified. Linear mixed models and Permanova were employed to assess differences in richness, composition, structure, and biomass among the areas. Our results suggest that grazing (history and intensity) and forest fallow age did not affect species richness, but only species composition. Low and high grazing intensity drive ecosystems toward similar compositions, which align with the non-equilibrium model predictions. Biomass in the herbaceous layer remained unaffected by grazing history, intensity, or forest fallow age, whereas woody biomass was influenced by grazing intensity in older forest fallows. Although trees in low-intensity grazing sites were significantly taller compared to those in other levels, overall, grazing did not disrupt the natural succession process. Older forest fallows exhibited greater diversity and higher basal area compared to new forest fallows, irrespective of grazing intensity. Our findings suggest that: a) grazing has minimal effects on biodiversity and biomass due to non-equilibrium dynamics, and b) with appropriate management, grazing can coexist with the conservation of the Caatinga.


Assuntos
Biodiversidade , Florestas , Herbivoria , Brasil , Animais , Biomassa , Cabras , Monitoramento Ambiental , Árvores
4.
New Phytol ; 243(1): 132-144, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38742309

RESUMO

Nutrient limitation may constrain the ability of recovering and mature tropical forests to serve as a carbon sink. However, it is unclear to what extent trees can utilize nutrient acquisition strategies - especially root phosphatase enzymes and mycorrhizal symbioses - to overcome low nutrient availability across secondary succession. Using a large-scale, full factorial nitrogen and phosphorus fertilization experiment of 76 plots along a secondary successional gradient in lowland wet tropical forests of Panama, we tested the extent to which root phosphatase enzyme activity and mycorrhizal colonization are flexible, and if investment shifts over succession, reflective of changing nutrient limitation. We also conducted a meta-analysis to test how tropical trees adjust these strategies in response to nutrient additions and across succession. We find that tropical trees are dynamic, adjusting investment in strategies - particularly root phosphatase - in response to changing nutrient conditions through succession. These changes reflect a shift from strong nitrogen to weak phosphorus limitation over succession. Our meta-analysis findings were consistent with our field study; we found more predictable responses of root phosphatase than mycorrhizal colonization to nutrient availability. Our findings suggest that nutrient acquisition strategies respond to nutrient availability and demand in tropical forests, likely critical for alleviating nutrient limitation.


Assuntos
Florestas , Micorrizas , Nitrogênio , Nutrientes , Fósforo , Árvores , Clima Tropical , Fósforo/metabolismo , Nitrogênio/metabolismo , Micorrizas/fisiologia , Nutrientes/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Monoéster Fosfórico Hidrolases/metabolismo , Panamá
5.
Heliyon ; 10(9): e29908, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38699023

RESUMO

This study analyzes floristic and vegetation structure changes during forest succession after disturbances caused by small-scale gold mining in Madre de Dios (Peru). We compared the floristic and vegetation structure of a reference forest against three sites with different periods of abandonment after mining (5, 11 and 23-years). Three 20 × 60 m plots were defined on each site, and all tree species with a DBH >1 cm within the plots were inventoried. To evaluate species diversity and similarity, the Importance Value, effective numbers of species (0D, 1D, and 2D), and Chao-Jaccard similarity index were calculated. We used the Nonmetric multidimensional scaling for similarity ordination and the PERMANOVA test to evaluate differences in floristic composition. We recorded 129 tree species in the study areas and statistically significant differences between initial and intermediate stages were observed regarding floristic composition, basal area, height, and DBH. The transition from the initial successional stage to the reference forest produces an increase in basal area, species diversity, and floristic similarity. The 23-year-old stand had more species in common with the 11-year-old stand than the reference forest. Our results showed a high proportion of pioneer species and anemochory dispersal syndrome in the initial successional stages, but they decreased in later stages of the chronosequence. The floristic and structural attributes of forests throughout the chronosequence showed a fast recovery during secondary succession. After 23 years, the recovery of tree species density was 77 % of reference forest, while the relative recovery of species composition was much slower, on average 23 %. These results provide essential information to guide the selection of suitable species in ecological restoration projects after abandonment. Implementing forest restoration strategies based on reliable information to accelerate the process of vegetation succession is critical for recuperating areas degraded by gold mining at the Peruvian Amazon.

6.
Ecology ; 105(7): e4321, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38763891

RESUMO

Secondary tropical forests play an increasingly important role in carbon budgets and biodiversity conservation. Understanding successional trajectories is therefore imperative for guiding forest restoration and climate change mitigation efforts. Forest succession is driven by the demographic strategies-combinations of growth, mortality and recruitment rates-of the tree species in the community. However, our understanding of demographic diversity in tropical tree species stems almost exclusively from old-growth forests. Here, we assembled demographic information from repeated forest inventories along chronosequences in two wet (Costa Rica, Panama) and two dry (Mexico) Neotropical forests to assess whether the ranges of demographic strategies present in a community shift across succession. We calculated demographic rates for >500 tree species while controlling for canopy status to compare demographic diversity (i.e., the ranges of demographic strategies) in early successional (0-30 years), late successional (30-120 years) and old-growth forests using two-dimensional hypervolumes of pairs of demographic rates. Ranges of demographic strategies largely overlapped across successional stages, and early successional stages already covered the full spectrum of demographic strategies found in old-growth forests. An exception was a group of species characterized by exceptionally high mortality rates that was confined to early successional stages in the two wet forests. The range of demographic strategies did not expand with succession. Our results suggest that studies of long-term forest monitoring plots in old-growth forests, from which most of our current understanding of demographic strategies of tropical tree species is derived, are surprisingly representative of demographic diversity in general, but do not replace the need for further studies in secondary forests.


Assuntos
Florestas , Árvores , Clima Tropical , Panamá , México , Costa Rica , Biodiversidade
7.
Rev. biol. trop ; Rev. biol. trop;71(1)dic. 2023.
Artigo em Inglês | SaludCR, LILACS | ID: biblio-1514966

RESUMO

Introduction: The litterfall production, foliar nutrient dynamics and decomposition are essential to maintain nutrient cycling, soil fertility, and carbon regulation in terrestrial ecosystems. With several studies addressing the variation of these processes, their dynamics in tropical dry forests (TDFs) remain unclear, due to its complex interaction of biotic and abiotic factors. Objective: To evaluate litterfall, nutrient potential return and use efficiency, and decomposition variation in a TDF successional gradient in Tolima, Colombia. Methods: We quantified litterfall from November 2017 to October 2019 in 12 plots distributed in four successional stages: initial, early, intermediate, and late forests. We identified key tree species in foliar litter production and characterized the foliar decomposition of these species. At the community level, we quantified the C, N and P potential return, the N and P use efficiency, and the C:N and N:P ratio. Subsequently, we analyze relationships between vegetation characteristics and some soil chemical properties with these ecological processes. Results: We found that total litterfall in late forests (8.46 Mg ha-1 y-1) was double that found in initial forests (4.45 Mg ha-1 y-1). Decomposition was higher in initial (k = 1.28) compared to intermediate (k = 0.97) and late forests (k = 0.87). The nutrient potential return didn't change along succession, but it did show differences between study sites. The structural development and species richness favored litterfall, while soil chemical conditions influenced nutrient returns and decomposition. Conclusions: TDFs could recover key ecosystem function related to litterfall and nutrient dynamics after disturbances cessation; however, the soil quality is fundamental in return and release of nutrients.


Introducción: La producción de hojarasca, la dinámica de nutrientes foliares y la descomposición son esenciales para mantener el ciclo de nutrientes, la fertilidad del suelo y la regulación del carbono en ecosistemas terrestres. Con diversos estudios que abordan estos procesos, su variación en los bosques secos tropicales (BSTs) permanece incierta, por su compleja interacción de factores bióticos y abióticos. Objetivo: Evaluar la caída de hojarasca, el retorno potencial de nutrientes y eficiencia de uso, y la variación en descomposición en un gradiente sucesional de un BST en Tolima, Colombia. Métodos: Cuantificamos la caída de hojarasca entre noviembre 2017 y octubre 2019 en 12 parcelas distribuidas en cuatro estados sucesionales: bosque inicial, temprano, intermedio y tardío. Identificamos las especies arbóreas clave en la producción de hojarasca y caracterizamos la descomposición foliar de estas especies. A nivel comunitario, cuantificamos el retorno potencial de C, N y P, la eficiencia de uso de N y P y la relación C:N y N:P. Posteriormente, analizamos las relaciones entre las características de la vegetación y algunas propiedades químicas del suelo con estos procesos ecológicos. Resultados: Encontramos que la caída total de hojarasca en los bosques tardíos (8.46 Mg ha-1 año-1) fue el doble de la hallada en bosques iniciales (4.45 Mg ha-1 año-1). La descomposición fue mayor en bosques iniciales (k = 1.28) en comparación con bosques intermedios (k = 0.97) y tardíos (k = 0.87). El retorno potencial de nutrientes no cambió con el avance de la sucesión vegetal, pero exhibió diferencias entre los sitios de estudio. El desarrollo estructural y la riqueza de especies favorecieron la caída de hojarasca, mientras que las condiciones químicas del suelo influyeron en el retorno de nutrientes y descomposición. Conclusiones: Los BSTs tienen la capacidad de recuperar la función ecosistémica de aporte de hojarasca fina, retorno y liberación de nutrientes después del cese de alteraciones antrópicas; sin embargo, la calidad del suelo es fundamental en el retorno y liberación de nutrientes.


Assuntos
Análise do Solo , Nutrientes/análise , Ecossistema Tropical , Serrapilheira , Florestas , Colômbia , Substâncias Húmicas/análise
8.
PeerJ ; 11: e15712, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37456898

RESUMO

Coleopterans are the most diverse animal group on Earth and constitute good indicators of environmental change. However, little information is available about Coleopteran communities' responses to disturbance and land-use change. Tropical dry forests have undergone especially extensive anthropogenic impacts in the past decades. This has led to mosaic landscapes consisting of areas of primary forest surrounded by pastures, agricultural fields and secondary forests, which negatively impacts many taxonomic groups. However, such impacts have not been assessed for most arthropod groups. In this work, we compared the abundance, richness and diversity of Coleopteran morphospecies in four different successional stages in a tropical dry forest in western Mexico, to answer the question: How do Coleopteran assemblages associate with vegetation change over the course of forest succession? In addition, we assessed the family composition and trophic guilds for the four successional stages. We found 971 Coleopterans belonging to 107 morphospecies distributed in 28 families. Coleopteran abundance and richness were greatest for pastures than for latter successional stages, and the most abundant family was Chrysomelidae, with 29% of the individuals. Herbivores were the most abundant guild, accounting for 57% of the individuals, followed by predators (22%) and saprophages (21%) beetles. Given the high diversity and richness found throughout the successional chronosequence of the studied tropical dry forest, in order to have the maximum number of species associated with tropical dry forests, large tracts of forest should be preserved so that successional dynamics are able to occur naturally.


Assuntos
Artrópodes , Besouros , Animais , Ecossistema , Biodiversidade , México , Florestas
9.
Environ Entomol ; 52(4): 606-617, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37452672

RESUMO

Forest fires in North America are becoming larger in area and burning with higher severity as a result of climate change and land management practices. High-severity, stand-replacement fires can inflict major changes to forest insect communities, potentially extirpating many species through altered post-fire habitat resources. We assessed forest-dwelling macrolepidopteran moth communities in mixed conifer and ponderosa pine forests during the first year after the 2011 Las Conchas fire in New Mexico, USA. We deployed blacklight traps in replicated burned and unburned stands during June, July, and August in 2012. We collected 9,478 individuals, representing 211 species and 8 families. Noctuidae (124 species) and Geometridae (53) comprised the majority of the taxa, followed by Erebidae (21), Sphingidae (5), Notodontidae (3), Lasiocampidae (2), Saturniidae (2), and Drepanidae (1). Moth communities (species composition and abundances) in each forest type (mixed conifer vs. ponderosa pine) were statistically distinguishable, but shared 56.4% (119) of observed species. Overall, compared to unburned forests, post-fire moth communities in both forest types had significantly lower numbers of individuals, species richness and diversity, and lower evenness in ponderosa pine forests. As expected, categorizing moth taxa by larval host plant taxa revealed that reductions of moth populations following fire were associated with the elimination or reduction of available larval host plants (particularly conifers, oaks, and junipers). We predict that future moth community succession will likely parallel the overall transformation from a forested landscape to a montane meadow/grassland ecosystem, with continued reduction in tree-feeding species and increasing dominance by forb/grass-feeding species.


Assuntos
Incêndios , Mariposas , Traqueófitas , Incêndios Florestais , Animais , Ecossistema , New Mexico , Florestas
10.
PeerJ ; 11: e15438, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37250723

RESUMO

Background: Vegetation structure is defined as the temporal and spatial distribution of plant species in a particular site. Vegetation structure includes vertical and horizontal distribution and has been widely used as an indicator of successional changes. Ecological succession plays an essential role in the determination of the mechanisms that structure plant communities under anthropogenic disturbances. After an anthropogenic disturbance, such as grazing, forests follow changes in the original composition and vegetation structure, which eventually could restore some of their attributes to become mature forests again. To know how the time of abandonment affects woody plant communities, we ask the following questions: (1) How does the species richness, diversity, and vertical structure (A index) change concerning the time of abandonment? (2) Are species similarities among woody vegetation communities determined by land abandonment? (3) Which woody species have the highest ecological importance in each successional stage? Methods: We explored how successional stages after land abandonment mediated the species richness, species diversity (alpha and beta), and ecological importance value index on four areas of Tamaulipan thornscrub. We selected four areas that differed in time of abandonment: 10, 20, 30, and >30 years. The first three areas were used for cattle grazing, whereas the >30-year area was selected as a control since it does not have a record of disturbance by cattle grazing or agriculture. During the summer of 2012, we randomly established four square plots (40 m × 40 m) in each area, separated at least 200 m from each other. In each plot, we recorded all woody individuals per species with a basal diameter ≥1 cm at 10 cm above ground level. We estimated species richness indices, species diversity (alpha and beta), and ecological importance value index. Results: We recorded 27 woody species belonging to 23 genera and 15 families. Fabaceae accounted for 40% of the species. Acacia farnesiana was the most important and abundant species in the first three successional stages. We suggested that older successional stages of Tamaulipan thornscrub promote woody plant communities, characterized by a higher complex structure than younger communities. We observed the highest species similarity between the sites with a closer time of abandonment, while the lowest similarity was shown between the sites with extreme time of abandonment. We conclude that Tamaulipan thornscrub shows a similar trend of ecological succession to other dry forests and the time of abandonment has a high mediation on plant dynamics in the Tamaulipan thornscrub. Also, we stand out the importance of secondary forests for Tamaulipan thornscrub woody plant communities. Finally, we recommended future studies include aspects of regeneration speed, the proximity of mature vegetation, and the interactions of plants with their seed dispersers.


Assuntos
Biodiversidade , Fabaceae , Animais , Bovinos , México , Florestas , Plantas , Madeira
11.
J Soil Sci Plant Nutr ; 23(2): 1438-1448, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36855557

RESUMO

The COVID-19 epidemic, food and water insecurity, and the climate emergency have impacted the lives of billions of people worldwide. Ecosystems play a crucial role in tackling these problems. Hence, it is a prime necessity to keep the ecosystems safe and sustainably manage the resources. But this would not suffice for the protection and sustainable management of our surviving natural landscapes and oceans; we also need to restore the planet's devastated ecosystems and the enormous benefits they give. Mining exerts a lot of pressure on the land resources further depleting the fertility of the soil. The overburdened dumps are devoid of the nutrients which turns natural succession at a slow pace. The restoration of the degraded mined areas is essential to re-establish the ecological balance so that a self-sustaining ecosystem can be maintained. The plantation of selected species of plants could be a sustainable and organic tool for the restoration of the degraded mined land. In today's context, various ways regarding ecological restoration are suggested, but the native plant species plantation is the best tool for restoring the degraded land at a quicker pace. The present paper reviews the importance of the native plant species and their efficacy in restoring degraded mined land based on area and time of succession and climax.

12.
Am J Bot ; 110(3): 1-11, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36696584

RESUMO

PREMISE: Climate change may lead to C stress (negative C balance) in trees. Because nonstructural carbohydrates (NSC) are required during metabolic reactivation in the spring, C stress might delay budbreak timing. This effect is expected to be greater in shade-intolerant than in shade-tolerant species, owing to the faster C economy in the shade-intolerant. METHODS: We experimentally induced C stress in saplings of six temperate tree species that differed in their light requirements by exposing them to either full light or shade from summer to spring, then recorded the date of first budbreak for the individuals. Because the levels of C reserves that represent effective C stress may differ among species, we estimated the degree of C stress by recording survival during the experiment and measuring whole-sapling NSC concentrations after budbreak. RESULTS: Shade reduced NSC concentrations and increased the sugar fraction in the NSC in all species. In the shade, shade-intolerant species had higher mortality and generally lower NSC concentrations than the shade-tolerant species, indicating a trend for more severe C stress in species with faster C economy. In shade-intolerant species, budbreak started earlier and proceeded faster in full light than in shade, but in shade-tolerant species budbreak was delayed in full light. The effects of the light environments on budbreak were not greater in shade-intolerant than in shade-tolerant species. CONCLUSIONS: Our study reveals a correspondence between budbreak responses to light and the light requirements of the species. This finding confirms that C metabolism has a significant role in triggering budbreak and demonstrates that whether C stress accelerates or delays budbreak depends on the species' light requirements.


Assuntos
Carbono , Árvores , Carbono/metabolismo , Árvores/metabolismo , Estações do Ano , Folhas de Planta/metabolismo
13.
Philos Trans R Soc Lond B Biol Sci ; 378(1867): 20210072, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36373928

RESUMO

Under the UN-Decade of Ecosystem Restoration and Bonn Challenge, second-growth forest is promoted as a global solution to climate change, degradation and associated losses of biodiversity and ecosystem services. Second growth is often invaded by alien tree species and understanding how this impacts carbon stock and biodiversity recovery is key for restoration planning. We assessed carbon stock and tree diversity recovery in second growth invaded by two Acacia species and non-invaded second growth, with associated edge effects, in the Brazilian Atlantic Forest. Carbon stock recovery in non-invaded forests was threefold lower than in invaded forests. Increasingly isolated, fragmented and deforested areas had low carbon stocks when non-invaded, whereas the opposite was true when invaded. Non-invaded forests recovered threefold to sixfold higher taxonomic, phylogenetic and functional diversity than invaded forest. Higher species turnover and lower nestedness in non-invaded than invaded forests underpinned higher abundance of threatened and endemic species in non-invaded forest. Non-invaded forests presented positive relationships between carbon and biodiversity, whereas in the invaded forests we did not detect any relationship, indicating that more carbon does not equal more biodiversity in landscapes with high vulnerability to invasive acacias. To deliver on combined climate change and biodiversity goals, restoration planning and management must consider biological invasion risk. This article is part of the theme issue 'Understanding forest landscape restoration: reinforcing scientific foundations for the UN Decade on Ecosystem Restoration'.


Assuntos
Acacia , Ecossistema , Espécies Introduzidas , Carbono , Filogenia , Florestas , Biodiversidade , Conservação dos Recursos Naturais
14.
Tree Physiol ; 43(5): 781-793, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-36585840

RESUMO

Many tropical species live close to their thermal limits within a narrow niche. Here, we investigate the ecophysiological limits of the tropical tree Podocarpus trinitensis, which is endemic to Trinidad and Tobago where most populations exist as isolated stands on hilltops. Five wild stands from a range of elevations were compared in the field with measurements of leaf temperature, canopy cover, stomatal conductance (gs), chlorophyll content and several chlorophyll fluorescence parameters. A parallel greenhouse experiment was used to acclimate seedlings to 'CONTROL' and 'HEAT' treatments (with mid-day air temperatures of 34.5 and 37 °C respectively), after which the above parameters were measured along with photosynthetic light and temperature response curves, leaf morphology and in vitro Fv/Fm thermostability. There was a positive association between improved physiological performance and elevation. In the high elevation sites, leaf temperatures were significantly lower while most of the physiological parameters were higher (gs, chlorophyll content, ɸ PSII, ETRmax and Isat90). In the greenhouse, HEAT and CONTROL plants were similar for most parameters, except leaf temperature (which was coupled with air temperature) and leaf mass per unit area (which was higher in HEAT plants). Temperature response curves showed an optimum temperature for photosynthesis of 30 ± 0.5 °C (TOpt) and in vitro Fv/Fm indicated a critical temperature of 47.4 ± 0.38 °C for HEAT and 48.2 ± 0.24 °C for CONTROL (T50), with no indication of heat acclimation. Podocarpus trinitensis was found to be shade tolerant. In the field, seedlings established under a close canopy (>95% canopy cover) and had a low light saturation point (LCP). In the greenhouse, where more light was available, seedlings retained a low light compensation point, light saturation point (LSP) and maximum photosynthetic rate (Amax). The results suggest that P. trinitensis is moderately heat tolerant with the higher elevation sites being more habitable, but stands are also able to survive near sea level under a closed canopy. The narrow niche, along with the 30 ± 0.5 °C optimum temperature for photosynthesis and the lack of thermal plasticity in critical temperature, suggests that P. trinitensis has little room to acclimate to temperatures higher than those currently experienced.


Assuntos
Traqueófitas , Árvores , Árvores/fisiologia , Fotossíntese/fisiologia , Clorofila , Folhas de Planta/fisiologia , Temperatura , Plântula/fisiologia
15.
Biol Rev Camb Philos Soc ; 98(2): 662-676, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36453621

RESUMO

Naturally regenerating forests or secondary forests (SFs) are a promising strategy for restoring large expanses of tropical forests at low cost and with high environmental benefits. This expectation is supported by the high resilience of tropical forests after natural disturbances, yet this resilience can be severely reduced by human impacts. Assessing the characteristics of SFs and their ecological integrity (EI) is essential to evaluating their role for conservation, restoration, and provisioning of ecosystem services. In this study, we aim to propose a concept and indicators that allow the assessment and classification of the EI of SFs. To this end, we review the literature to assess how EI has been addressed in different ecosystems and which indicators of EI are most commonly used for tropical forests. Building upon this knowledge we propose a modification of the concept of EI to embrace SFs and suggest indicators of EI that can be applied to different successional stages or stand ages. Additionally, we relate these indicators to ecosystem service provision in order to support the practical application of the theory. EI is generally defined as the ability of ecosystems to support and maintain composition, structure and function similar to the reference conditions of an undisturbed ecosystem. This definition does not consider the temporal dynamics of recovering ecosystems, such as SFs. Therefore, we suggest incorporation of an optimal successional trajectory as a reference in addition to the old-growth forest reference. The optimal successional trajectory represents the maximum EI that can be attained at each successional stage in a given region and enables the evaluation of EI at any given age class. We further suggest a list of indicators, the main ones being: compositional indicators (species diversity/richness and indicator species); structural indicators (basal area, heterogeneity of basal area and canopy cover); function indicators (tree growth and mortality); and landscape proxies (landscape heterogeneity, landscape connectivity). Finally, we discuss how this approach can assist in defining the value of SF patches to provide ecosystem services, restore forests and contribute to ecosystem conservation.


Assuntos
Ecossistema , Florestas , Humanos , Árvores , Clima Tropical , Biodiversidade
16.
Rev. biol. trop ; Rev. biol. trop;70(1)dic. 2022.
Artigo em Espanhol | LILACS, SaludCR | ID: biblio-1423030

RESUMO

Introducción: La minería de oro a cielo abierto ocasiona impactos drásticos sobre los bosques naturales en regiones tropicales de alta biodiversidad, y la eficiencia de "revegetación", un proceso de resembrar y reconstruir el suelo, continúa siendo poco estudiado. Objetivo: Evaluar el efecto del tiempo sucesional y la distancia al bosque de referencia sobre la estructura biológica y composición de especies en minas de oro revegetadas. Métodos: Realizamos inventarios de vegetación en minas abandonadas en el bosque tropical lluvioso de Chocó, Colombia. Las minas contaban con 6, 10, 15, 19 y 24 años de sucesión natural. En cada escenario, establecimos cuatro parcelas de 2×50 m: a 50 m y 100 m de distancia desde el borde bosque-mina (ecotono). Resultados: Se identificaron 300 especies (193 géneros y 75 familias). La riqueza, diversidad y equitatividad cambian poco con el tiempo sucesional en las minas, pero alcanzan valores superiores en el bosque de referencia. La composición de especies es similar entre las minas con distinto tiempo sucesional, pero difiere ampliamente del bosque de referencia (solo 7 % de semejanza). La calidad del sustrato y las estrategias reproductivas de plantas herbáceas (principalmente Cyperaceae y Melastomataceae) y arbóreas (Cespedesia spathulata y Miconia reducens) que crecen espontáneamente en las minas, juegan un papel importante en la revegetación natural temprana. Conclusiones: 24 años de sucesión natural es poco tiempo para apreciar una recuperación sustancial de la vegetación en las minas si se compara con el bosque, y la distancia desde el ecotono parece no tener efecto significativo; sin embargo, la calidad de sustrato y estrategias reproductivas de plantas herbáceas son importantes en la etapa temprana de recuperación de las áreas impactadas por la minería de oro en Chocó.


Introduction: Open pit gold mining causes drastic impacts on natural forests in tropical regions of high biodiversity, and the efficacy of "revegetation", a process of replanting and rebuilding the soil, is still poorly studied. Objective: To evaluate the effect of successional time, and distance to the reference forest, on the biological structure and species composition of revegetated gold mines. Methods: We inventoried the adjacent forest and abandoned gold mines in the tropical rain forest of Chocó, Colombia. The mines had 6, 10, 15, 19 and 24 years of natural succession. In each scenario, we set four 2 × 50 m plots: two 50 m and two 100 m from the forest-mine edge (ecotone). Results: We identified 300 plant species (193 genera, 75 families). The richness, diversity and evenness changed little with successional time in the mines but reached higher values in the forest. The species composition was similar between the mines with different successional times but differed widely from the forest (only 7 % similarity). The substrate quality and reproductive strategies of herbaceous plants (mainly Cyperaceae and Melastomataceae) and trees (Cespedesia spathulata and Miconia reducens) that grow spontaneously in the mines, play an important role on the early natural revegetation. Conclusions: The 24 years of natural succession have been insufficient to reach a community of a complexity similar to that of the forest, and distance from the ecotone has no significant effect; however, the substrate quality and reproductive strategies of herbaceous plants are important in the early stages of mine recovery in the Chocó.


Assuntos
Recuperação e Remediação Ambiental/estatística & dados numéricos , Mineração , Colômbia
17.
Front Microbiol ; 13: 994524, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36406426

RESUMO

Cocoa beans fermentation is a spontaneous process, essential for the generation of quality starting material for fine chocolate production. The understanding of this process has been studied by the application of high-throughput sequencing technologies, which grants a better assessment of the different microbial taxa and their genes involved in this microbial succession. The present study used shotgun metagenomics to determine the enzyme-coding genes of the microbiota found in two different groups of cocoa beans varieties during the fermentation process. The statistical evaluation of the most abundant genes in each group and time studied allowed us to identify the potential metabolic pathways involved in the success of the different microorganisms. The results showed that, albeit the distinction between the initial (0 h) microbiota of each varietal group was clear, throughout fermentation (24-144 h) this difference disappeared, indicating the existence of selection pressures. Changes in the microbiota enzyme-coding genes over time pointed to the distinct ordering of fermentation at 24-48 h (T1), 72-96 h (T2), and 120-144 h (T3). At T1, the significantly more abundant enzyme-coding genes were related to threonine metabolism and those genes related to the glycolytic pathway, explained by the abundance of sugars in the medium. At T2, the genes linked to the metabolism of ceramides and hopanoids lipids were clearly dominant, which are associated with the resistance of microbial species to extreme temperatures and pH values. In T3, genes linked to trehalose metabolism, related to the response to heat stress, dominated. The results obtained in this study provided insights into the potential functionality of microbial community succession correlated to gene function, which could improve cocoa processing practices to ensure the production of more stable quality end products.

18.
BMC Biol ; 20(1): 262, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36447225

RESUMO

BACKGROUND: During range expansion in spatially distributed habitats, organisms differ from one another in terms of their patterns of localization versus propagation. To exploit locations or explore the landscape? This is the competition-colonization trade-off, a dichotomy at the core of ecological succession. In bacterial communities, this trade-off is a fundamental mechanism towards understanding spatio-temporal fluxes in microbiome composition. RESULTS: Using microfluidics devices as structured bacterial habitats, we show that, in a synthetic two-species community of motile strains, Escherichia coli is a fugitive species, whereas Pseudomonas aeruginosa is a slower colonizer but superior competitor. We provide evidence highlighting the role of succession and the relevance of this trade-off in the community assembly of bacteria in spatially distributed patchy landscapes. Furthermore, aggregation-dependent priority effects enhance coexistence which is not possible in well-mixed environments. CONCLUSIONS: Our findings underscore the interplay between micron-scale landscape structure and dispersal in shaping biodiversity patterns in microbial ecosystems. Understanding this interplay is key to unleash the technological revolution of microbiome applications.


Assuntos
Infecções por Escherichia coli , Microbiota , Humanos , Biodiversidade , Escherichia coli , Pseudomonas aeruginosa
19.
Plants (Basel) ; 11(22)2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36432756

RESUMO

Coastal dunes are sensitive indicators of climate change: it is expected that higher precipitation and warmer temperature will promote vegetation growth and sand stabilization. Alternatively, dunes may become active during severe droughts, which would reduce plant cover and increase sand mobility. Consequently, it is relevant to explore community shifts and self-organization processes to better understand how coastal dunes vegetation will respond to these projected changes. Primary succession allows the exploration of community assembly and reorganization processes. We focused on three environmental variables (bare sand, temperature, and precipitation) and five successional groups (facilitators, colonizers, sand binders, nucleators, and competitors). For 25 years (from 1991 to 2016), species turnover was monitored in 150 permanent plots (4 × 4 m) placed on an initially mobile dune system located on the coast of the Gulf of Mexico. The spatiotemporal dynamics observed during primary succession were consistent with the facilitation nucleation model. As late colonizers grew and expanded, psammophytes became locally extinct. The spatial patterns revealed that ecological succession did not occur evenly on the dunes. In addition, the increased mean yearly temperature during the last decades seemed to be associated with the accelerated increment in plant cover and species richness, which had not been registered before in Mexico.

20.
Oecologia ; 199(4): 979-994, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35930046

RESUMO

The Anthropocene is a time of unprecedented and accelerating rates of environmental change that includes press (e.g., climate change) and pulse disturbances (e.g., cyclonic storms, land use change) that interact to affect spatiotemporal dynamics in the density, distribution, and biodiversity of organisms. We leverage three decades of spatially explicit data on the density of a tropical folivore (Lamponius portoricensis [Insecta, Phasmida]) in a hurricane-mediated ecosystem (montane rainforest of Puerto Rico), along with associated environmental attributes, to disentangle the effects of interacting disturbances at multiple spatial scales. Spatiotemporal variation in density at a small spatial scale is affected by disturbance-related characteristics (hurricane severity, time after most recent major hurricane, ambient temperature, and understory temperature), legacies of previous land use, and understory habitat structure. Nonetheless, only a small proportion of spatiotemporal variation in density was related to those characteristics. In contrast, the majority of interannual variation in mean density at a larger scale was related to disturbance characteristics and understory habitat structure. These factors combine to affect a weak and declining trend in the density of L. portoricensis over time. The low resistance of L. portoricensis to Hurricane Hugo, as compared to Hurricanes Georges and Maria, likely arose because a drought followed Hurricane Hugo. The disturbance regime of the region is predicted to include increases in ambient temperatures, frequency of high-intensity storms, and frequency of droughts. Such trends may combine to threaten the conservation status of L. portoricensis, and other species with which it shares similar life history characteristics.


Assuntos
Tempestades Ciclônicas , Ecossistema , Biodiversidade , Florestas , Dinâmica Populacional , Porto Rico , Floresta Úmida , Análise Espaço-Temporal , Árvores/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA