Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Plants (Basel) ; 13(18)2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39339523

RESUMO

Coconut (Cocos nucifera L.) is an important agricultural commodity with substantial economic and nutritional value, widely used for various products, including coconut water. The sweetness is an important quality trait of coconut water, which is influenced by genetic and environmental factors. In this study, we utilized next-generation sequencing to identify genetic variations in the coconut genome associated with the sweetness of coconut water. Whole-genome resequencing of 49 coconut accessions, including diverse germplasm and an F2 population of 81 individuals, revealed ~27 M SNPs and ~1.5 M InDels. Sugar content measured by °Bx was highly variable across all accessions tested, with dwarf varieties generally sweeter. A comprehensive analysis of the sugar profiles revealed that sucrose was the major sugar contributing to sweetness. Allele mining of the 148 genes involved in sugar metabolism and transport and genotype-phenotype association tests revealed two significant SNPs in the hexose carrier protein (Cnu01G018720) and sucrose synthase (Cnu09G011120) genes associated with the higher sugar content in both the germplasm and F2 populations. This research provides valuable insights into the genetic basis of coconut sweetness and offers molecular markers for breeding programs aimed at improving coconut water quality. The identified variants can improve the selection process in breeding high-quality sweet coconut varieties and thus support the economic sustainability of coconut cultivation.

2.
J Plant Physiol ; 303: 154352, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39332324

RESUMO

Sucrose synthase (SuS) is a key enzyme in the regulation of sucrose metabolism in plants and participates in the reversible reaction of sucrose conversion to uridine diphosphate-glucose and fructose. It plays an important role in promoting taproot development, starch synthesis, cellulose synthesis, improving plant nitrogen fixation capacity, sugar metabolism, and fruit and seed development. Recent studies have shown that SuS responds to abiotic stresses such as drought stress, cold stress and waterlogging stress, especially in waterlogging stress. This paper provides a comprehensive review on the basic properties, physiological functions, and signal transduction pathways of SuS, aiming to establish a theoretical foundation for its further research.

3.
Sheng Wu Gong Cheng Xue Bao ; 40(9): 3127-3141, 2024 Sep 25.
Artigo em Chinês | MEDLINE | ID: mdl-39319729

RESUMO

Salidroside is a functional ingredient with wide applications in food and pharmaceutical fields. It is conventionally produced by extraction from plants, the application of which is limited by the scarcity of raw materials and cumbersome process. This study achieved the efficient production of salidroside by biosynthesis with tyrosol as the substrate. While utilizing glycosyltransferases for tyrosol glycosylation, we introduced sucrose synthase to construct the uridine diphosphate glucose (UDPG) recycling system. The glycosyltransferase UGT33 and sucrose synthase AtSUS were screened out by comparison, and the recombinant strain Escherichia coli BL21/pETDuet-AtSUS-UGT33 was constructed. The copy number of the gene was optimized and the optimal copy number ratio of glycosyltransferase to sucrose synthase was determined to be 3:1. The whole-cell transformation conditions (temperature, pH, inoculum amount, substrate concentration, and concentrations of metal ions) of the recombinant strain were optimized, and the highest yield of salidroside reached 8.17 g/L after fermentation under the optimal conditions in a 5 L fermenter for 24 h. This study provides a reference for the efficient production of salidroside by microorganisms.


Assuntos
Escherichia coli , Glucosídeos , Glucosiltransferases , Fenóis , Álcool Feniletílico , Uridina Difosfato Glucose , Fenóis/metabolismo , Glucosídeos/biossíntese , Glucosídeos/metabolismo , Álcool Feniletílico/metabolismo , Álcool Feniletílico/análogos & derivados , Escherichia coli/genética , Escherichia coli/metabolismo , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Uridina Difosfato Glucose/metabolismo , Glicosiltransferases/metabolismo , Glicosiltransferases/genética , Glicosilação , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Fermentação
4.
Protein Pept Lett ; 31(6): 479-489, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38963111

RESUMO

BACKGROUND: The mechanisms that control the accumulation of woody biomass are of great interest to the study. Invertase and sucrose synthase are enzymes that are vital for distributing carbon in various biosynthetic pathways. Karelian birch (Betula pendula var. carelica) is a form of silver birch (B. pendula Roth) and is characterized by disruption of the differentiation of cambium derivatives towards both the xylem and phloem, which leads to a change in the proportion of the conducting tissues' structural elements and the figured wood formation. We researched the expression profiles of genes encoding sucrose-cleaving enzymes (CWINV and SUS gene families) and genes encoding CVIF protein, which is responsible for the post-translational regulation of the cell wall invertase activity. OBJECTIVE: In our study, 16-year-old common silver birch (Betula pendula var. pendula) and Karelian birch were used for sampling non-figured and figured trunk section tissues, respectively. Samples were selected for the research based on the radial vector: non-conductive, conductive phloem, cambial zone - differentiating xylem - mature xylem. METHODS: The enzyme's activity was investigated by biochemical methods. RT-PCR method was used to determine the level of gene expression. Anatomical and morphological methods were used to determine the stage of differentiation of xylem cambial derivatives. RESULTS: Our research revealed a shift in the composition of xylem components in figured Karelian birch, characterized by increased parenchymatization and reduced vessel quantity. In all studied trunk tissues of Karelian birch, compared with common silver birch, an increase in the expression of the CWINV gene family and the SUS3 gene and a decrease in the expression of SUS4 were shown. CONCLUSION: Therefore, the increase in parenchymatization in figured Karelian birch is linked to a shift in sucrose metabolism towards the apoplastic pathway, indicated by a higher cell wall invertase activity and gene expression. The expression of the SUS4 gene correlates with the decrease in xylem increments and vessel proportion. The research findings will enhance our understanding of how sucrose breaking enzymes regulate secondary growth in woody plants and aid in developing practical timber cultivation methods.


Assuntos
Betula , Câmbio , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Sacarose , Xilema , Betula/genética , Betula/metabolismo , Betula/crescimento & desenvolvimento , Sacarose/metabolismo , Câmbio/genética , Câmbio/metabolismo , Câmbio/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Xilema/genética , Xilema/metabolismo , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , beta-Frutofuranosidase/genética , beta-Frutofuranosidase/metabolismo , Floema/genética , Floema/metabolismo
5.
J Proteomics ; 305: 105248, 2024 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-38964538

RESUMO

Lysine acetylation is a common post-translational modification of proteins in plants. Rosa roxburghii Tratt. is an economically important fruit tree known for its high nutritional value. However, the characteristics of acetylome-related proteins during fruit development in this crop remain unknown. This study aimed to explore the global acetylproteome of R. roxburghii fruit to identify key lysine-acetylated proteins associated with its quality traits. A total of 4280 acetylated proteins were identified, among them, 981 proteins exhibited differential acetylation (DA) while 19 proteins showed increased acetylation level consistently on individual sites. Functional classification revealed that these DA proteins were primarily associated with central metabolic pathways, carbohydrate metabolism, terpenoids and polyketides metabolism, lipid metabolism, and amino acid metabolism, highlighting the importance of lysine acetylation in fruit quality formation. Notably, the most significant up-regulated acetylation occurred in sucrose synthase (SuS1), a key enzyme in sucrose biosynthesis. Enzyme assays, RNA-seq and proteome analysis indicated that SuS activity, which was independent of its transcriptome and proteome level, may be enhanced by up-acetylation, ultimately increasing sucrose accumulation. Thus, these findings offer a better understanding of the global acetylproteome of R. roxburghii fruit, while also uncover a novel mechanism of acetylated SuS-mediated in sucrose metabolism in plant. SIGNIFICANCE: Rosa roxburghii Tratt. is an important horticultural crop whose commercial value is closely linked to its fruit quality. Acetylation modification is a post-translational mechanism observed in plants, which regulates the physiological functions and metabolic fluxes involved in various biological processes. The regulatory mechanism of lysine acetylation in the fruit quality formation in perennial woody plants has not been fully elucidated, while most of the research has primarily focused on annual crops. Therefore, this study, for the first time, uses Rosaceae fruits as the research material to elucidate the regulatory role of lysine-acetylated proteins in fruit development, identify key metabolic processes influencing fruit quality formation, and provide valuable insights for cultivation strategies.


Assuntos
Frutas , Lisina , Proteínas de Plantas , Proteoma , Rosa , Acetilação , Lisina/metabolismo , Frutas/metabolismo , Frutas/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Rosa/metabolismo , Sacarose/metabolismo , Processamento de Proteína Pós-Traducional , Proteômica/métodos , Regulação da Expressão Gênica de Plantas
6.
Plant J ; 119(5): 2385-2401, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38985498

RESUMO

ERFs (ethylene-responsive factors) are known to play a key role in orchestrating cold stress signal transduction. However, the regulatory mechanisms and target genes of most ERFs are far from being well deciphered. In this study, we identified a cold-induced ERF, designated as PtrERF110, from trifoliate orange (Poncirus trifoliata L. Raf., also known as Citrus trifoliata L.), an elite cold-hardy plant. PtrERF110 is a nuclear protein with transcriptional activation activity. Overexpression of PtrERF110 remarkably enhanced cold tolerance in lemon (Citrus limon) and tobacco (Nicotiana tabacum), whereas VIGS (virus-induced gene silencing)-mediated knockdown of PtrERF110 drastically impaired the cold tolerance. RNA sequence analysis revealed that PtrERF110 overexpression resulted in global transcriptional reprogramming of a range of stress-responsive genes. Three of the genes, including PtrERD6L16 (early responsive dehydration 6-like transporters), PtrSPS4 (sucrose phosphate synthase 4), and PtrUGT80B1 (UDP-glucose: sterol glycosyltransferases 80B1), were confirmed as direct targets of PtrERF110. Consistently, PtrERF110-overexpressing plants exhibited higher levels of sugars and sterols compared to their wild type counterparts, whereas the VIGS plants had an opposite trend. Exogenous supply of sucrose restored the cold tolerance of PtrERF110-silencing plants. In addition, knockdown of PtrSPS4, PtrERD6L16, and PtrUGT80B1 substantially impaired the cold tolerance of P. trifoliata. Taken together, our findings indicate that PtrERF110 positively modulates cold tolerance by directly regulating sugar and sterol synthesis through transcriptionally activating PtrERD6L16, PtrSPS4, and PtrUGT80B1. The regulatory modules (ERF110-ERD6L16/SPS4/UGT80B1) unraveled in this study advance our understanding of the molecular mechanisms underlying sugar and sterol accumulation in plants subjected to cold stress.


Assuntos
Citrus , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Fatores de Transcrição , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Citrus/genética , Citrus/fisiologia , Citrus/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Plantas Geneticamente Modificadas , Nicotiana/genética , Nicotiana/fisiologia , Nicotiana/metabolismo , Temperatura Baixa , Açúcares/metabolismo , Esteróis/metabolismo , Resposta ao Choque Frio/genética
7.
Physiol Plant ; 176(4): e14427, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39005156

RESUMO

The perennity of grassland species such as Lolium perenne greatly depends on their ability to regrow after cutting or grazing. Refoliation largely relies on the mobilization of fructans in the remaining tissues and on the associated sucrose synthesis and transport towards the basal leaf meristems. However, nothing is known yet about the sucrose synthesis pathway. Sucrose Phosphate Synthase (SPS) and Sucrose Synthase (SuS) activities, together with their transcripts, were monitored during the first hours after defoliation along the leaf axis of mature leaf sheaths and elongating leaf bases (ELB) where the leaf meristems are located. In leaf sheaths, which undergo a sink-source transition, fructan and sucrose contents declined while SPS and SuS activities increased, along with the expression of LpSPSA, LpSPSD.2, LpSuS1, LpSuS2, and LpSuS4. In ELB, which continue to act as a strong carbon sink, SPS and SuS activities increased to varying degrees while the expression of all the LpSPS and LpSuS genes decreased after defoliation. SPS and SuS both contribute to refoliation but are regulated differently depending on the source or sink status of the tissues. Together with fructan metabolism, they represent key determinants of ryegrass perennity and, more generally, of grassland sustainability.


Assuntos
Frutanos , Regulação da Expressão Gênica de Plantas , Glucosiltransferases , Pradaria , Lolium , Folhas de Planta , Proteínas de Plantas , Sacarose , Lolium/enzimologia , Lolium/genética , Lolium/metabolismo , Glucosiltransferases/metabolismo , Glucosiltransferases/genética , Folhas de Planta/metabolismo , Folhas de Planta/genética , Frutanos/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Sacarose/metabolismo
8.
AMB Express ; 14(1): 70, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38865019

RESUMO

High throughput screening (HTS) methods of enzyme variants are essential for the development of robust biocatalysts suited for low impact, industrial scale, biobased synthesis of a myriad of compounds. However, for the majority of enzyme classes, current screening methods have limited throughput, or need expensive substrates in combination with sophisticated setups. Here, we present a straightforward, high throughput selection system that couples sucrose synthase activity to growth. Enabling high throughput screening of this enzyme class holds the potential to facilitate the creation of robust variants, which in turn can significantly impact the future of cost effective industrial glycosylation.

9.
Plant Biotechnol J ; 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38943653

RESUMO

Grain chalkiness is an undesirable trait that negatively regulates grain yield and quality in rice. However, the regulatory mechanism underlying chalkiness is complex and remains unclear. We identified a positive regulator of white-belly rate (WBR). The WBR7 gene encodes sucrose synthase 3 (SUS3). A weak functional allele of WBR7 is beneficial in increasing grain yield and quality. During the domestication of indica rice, a functional G/A variation in the coding region of WBR7 resulted in an E541K amino acid substitution in the GT-4 glycosyltransferase domain, leading to a significant decrease in decomposition activity of WBR7A (allele in cultivar Jin23B) compared with WBR7G (allele in cultivar Beilu130). The NIL(J23B) and knockout line NIL(BL130)KO exhibited lower WBR7 decomposition activity than that of NIL(BL130) and NIL(J23B)COM, resulting in less sucrose decomposition and metabolism in the conducting organs. This caused more sucrose transportation to the endosperm, enhancing the synthesis of storage components in the endosperm and leading to decreased WBR. More sucrose was also transported to the anthers, providing sufficient substrate and energy supply for pollen maturation and germination, ultimately leading to an increase rate of seed setting and increased grain yield. Our findings elucidate a mechanism for enhancing rice yield and quality by modulating sucrose metabolism and allocation, and provides a valuable allele for improved rice quality.

10.
Int J Mol Sci ; 25(10)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38791109

RESUMO

Defoliation is an inevitable abiotic stress for forage and turf grasses because harvesting, grazing, and mowing are general processes for their production and management. Vegetative regrowth occurs upon defoliation, a crucial trait determining the productivity and persistence of these grasses. However, the information about the molecular regulation of this trait is limited because it is still challenging to perform molecular analyses in forage and turf grasses. Here, we used rice as a model to investigate vegetative regrowth upon defoliation at physiological and molecular levels. This study analyzed stubble and regrown leaves following periodic defoliation using two rice varieties with contrasting regrowth vigor. Vigorous regrowth was associated with maintained chlorophyll content and photosystem II performance; a restricted and promoted mRNA accumulation of sucrose synthase (SUS) I and III subfamilies, respectively; and reduced enzymatic activity of SUS. These results suggest that critical factors affecting vegetative regrowth upon defoliation are de novo carbohydrate synthesis by newly emerged leaves and proper carbohydrate management in leaves and stubble. Physiological and genetic analyses have demonstrated that the reduced sensitivity to and inhibited biosynthesis of cytokinin enhance regrowth vigor. Proper regulation of these metabolic and hormonal pathways identified in this study can lead to the development of new grass varieties with enhanced regrowth vigor following defoliation.


Assuntos
Metabolismo dos Carboidratos , Citocininas , Regulação da Expressão Gênica de Plantas , Glucosiltransferases , Oryza , Folhas de Planta , Proteínas de Plantas , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Oryza/genética , Folhas de Planta/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/genética , Citocininas/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Glucosiltransferases/metabolismo , Glucosiltransferases/genética , Clorofila/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo
11.
Plant Physiol Biochem ; 210: 108591, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38583314

RESUMO

Fresh lotus seeds are gaining favor with consumers for their crunchy texture and natural sweetness. However, the intricacies of sugar accumulation in lotus seeds remain elusive, which greatly hinders the quality improvement of fresh lotus seeds. This study endeavors to elucidate this mechanism by identifying and characterizing the sucrose synthase (SUS) gene family in lotus. Comprising five distinct members, namely NnSUS1 to NnSUS5, each gene within this family features a C-terminal glycosyl transferase1 (GT1) domain. Among them, NnSUS1 is the predominately expressed gene, showing high transcript abundance in the floral organs and cotyledons. NnSUS1 was continuously up-regulated from 6 to 18 days after pollination (DAP) in lotus cotyledons. Furthermore, NnSUS1 demonstrates co-expression relationships with numerous genes involved in starch and sucrose metabolism. To investigate the function of NnSUS1, a transient overexpression system was established in lotus cotyledons, which confirmed the gene's contribution to sugar accumulation. Specifically, transient overexpression of NnSUS1 in seed cotyledons leads to a significant increase in the levels of total soluble sugar, including sucrose and fructose. These findings provide valuable theoretical insights for improving sugar content in lotus seeds through molecular breeding methods.


Assuntos
Cotilédone , Glucosiltransferases , Lotus , Proteínas de Plantas , Cotilédone/genética , Cotilédone/metabolismo , Cotilédone/enzimologia , Regulação da Expressão Gênica de Plantas , Glucosiltransferases/metabolismo , Glucosiltransferases/genética , Lotus/genética , Lotus/enzimologia , Lotus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sementes/genética , Sementes/metabolismo , Sementes/enzimologia , Sacarose/metabolismo , Açúcares/metabolismo
12.
Plants (Basel) ; 13(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38475553

RESUMO

Sugarcane is a significant primitive source of sugar and energy worldwide. The progress in enhancing the sugar content in sugarcane cultivars remains limited due to an insufficient understanding of specific genes related to sucrose production. The present investigation examined the enzyme activities, levels of reducing and non-reducing sugars, and transcript expression using RT-qPCR to assess the gene expression associated with sucrose metabolism in a high-sucrose sugarcane clone (GXB9) in comparison to a low-sucrose sister clone (B9). Sucrose phosphate synthase (SPS), sucrose phosphate phosphatase (SPP), sucrose synthase (SuSy), cell wall invertase (CWI), soluble acid invertase (SAI), and neutral invertase (NI) are essential enzymes involved in sucrose metabolism in sugarcane. The activities of these enzymes were comparatively quantified and analyzed in immature and maturing internodes of the high- and low-sucrose clones. The results showed that the higher-sucrose-accumulating clone had greater sucrose concentrations than the low-sucrose-accumulating clone; however, maturing internodes had higher sucrose levels than immature internodes in both clones. Hexose concentrations were higher in immature internodes than in maturing internodes for both clones. The SPS and SPP enzymes activities were higher in the high-sucrose-storing clone than in the low-sucrose clone. SuSy activity was higher in the low-sucrose clone than in the high-sucrose clone; further, the degree of SuSy activity was higher in immature internodes than in maturing internodes for both clones. The SPS gene expression was considerably higher in mature internodes of the high-sucrose clones than the low-sucrose clone. Conversely, the SuSy gene exhibited up-regulated expression in the low-sucrose clone. The enhanced expression of SPS in the high-sucrose clone compared to the low-sucrose clone suggests that SPS plays a major role in the increased accumulation of sucrose. These findings provide the opportunity to improve sugarcane cultivars by regulating the activity of genes related to sucrose metabolism using transgenic techniques.

13.
Biotechnol Lett ; 46(2): 173-181, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38184486

RESUMO

OBJECTIVE: Salidroside is an important plant-derived aromatic compound with diverse biological properties. The main objective of this study was to synthesize salidroside from tyrosol using UDP-glucosyltransferase (UGT) with in situ regeneration of UDP-glucose (UDPG). RESULTS: The UDP-glucosyltransferase 85A1 (UGT85A1) from Arabidopsis thaliana, which showed high activity and regioselectivity towards tyrosol, was selected for the production of salidroside. Then, an in vitro cascade reaction for in situ regeneration of UDPG was constructed by coupling UGT85A1 to sucrose synthase from Glycine max (GmSuSy). The optimal UGT85A1-GmSuSy activity ratio of 1:2 was determined to balance the efficiency of salidroside production and UDP-glucose regeneration. Different cascade reaction conditions for salidroside production were also determined. Under the optimized condition, salidroside was produced at a titer of 6.0 g/L with a corresponding molar conversion of 99.6% and a specific productivity of 199.1 mg/L/h in a continuous feeding reactor. CONCLUSION: This is the highest salidroside titer ever reported so far using biocatalytic approach.


Assuntos
Glucosídeos , Glucosiltransferases , Fenóis , Álcool Feniletílico/análogos & derivados , Uridina Difosfato Glucose , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Biocatálise , Glucose
14.
PeerJ ; 11: e16667, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38111652

RESUMO

Background: Sugarcane (Saccharum spp.) is an economically significant crop for both the sugar and biofuel industries. Breeding sugarcane cultivars with high-performance agronomic traits is the most effective approach for meeting the rising demand for sugar and biofuels. Molecular markers associated with relevant agronomic traits could drastically reduce the time and resources required to develop new sugarcane varieties. Previous sugarcane candidate gene association analyses have found single nucleotide polymorphism (SNP) markers associated with sugar-related traits. This study aims to validate these associated SNP markers of six genes, including Lesion simulating disease 1 (LSD), Calreticulin (CALR), Sucrose synthase 1 (SUS1), DEAD-box ATP-dependent RNA helicase (RH), KANADI1 (KAN1), and Sodium/hydrogen exchanger 7 (NHX7), in a diverse population in 2-year and two-location evaluations. Methods: After genotyping of seven targeted SNP markers was performed by PCR Allelic Competitive Extension (PACE) SNP genotyping, the association with sugar-related traits and important cane yield component traits was determined on a set of 159 sugarcane genotypes. The marker-trait relationships were validated and identified by both t-test analysis and an association analysis based on the general linear model. Results: The mSoSUS1_SNPCh10.T/C and mSoKAN1_SNPCh7.T/C markers that were designed from the SUS1 and KAN1 genes, respectively, showed significant associations with different amounts of sugar-related traits and yield components. The mSoSUS1_SNPCh10.T/C marker was found to have more significant association with sugar-related traits, including pol, CCS, brix, fiber and sugar yield, with p values of 6.08 × 10-6 to 4.35 × 10-2, as well as some cane yield component traits with p values of 1.61 × 10-4 to 3.35 × 10-2. The significant association is consistent across four environments. Conclusion: Sucrose synthase (SUS) is considered a crucial enzyme involved in sucrose metabolism. This marker is a high potential functional marker that may be used in sugarcane breeding programs to select superior sugarcane with good fiber and high sugar contents.


Assuntos
Polimorfismo de Nucleotídeo Único , Saccharum , Polimorfismo de Nucleotídeo Único/genética , Saccharum/genética , Açúcares , Melhoramento Vegetal , Sacarose/metabolismo
15.
Int J Mol Sci ; 24(24)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38139109

RESUMO

Exogenous nitrogen and carbon can affect plant cell walls, which are composed of structural carbon. Sucrose synthase (SUS), invertase (INV), hexokinase (HXK), phosphoglucomutase (PGM), and UDP-glucose pyrophosphorylase (UGP) are the key enzymes of sucrose metabolism involved in cell wall synthesis. To understand whether these genes are regulated by carbon and nitrogen to participate in structural carbon biosynthesis, we performed genome-wide identification, analyzed their expression patterns under different carbon and nitrogen treatments, and conducted preliminary functional verification. Different concentrations of nitrogen and carbon were applied to poplar (Populus trichocarpa Torr. and Gray), which caused changes in cellulose, lignin, and hemicellulose contents. In poplar, 6 SUSs, 20 INVs, 6 HXKs, 4 PGMs, and 2 UGPs were identified. Moreover, the physicochemical properties, collinearity, and tissue specificity were analyzed. The correlation analysis showed that the expression levels of PtrSUS3/5, PtrNINV1/2/3/5/12, PtrCWINV3, PtrVINV2, PtrHXK5/6, PtrPGM1/2, and PtrUGP1 were positively correlated with the cellulose content. Meanwhile, the knockout of PtrNINV12 significantly reduced the cellulose content. This study could lay the foundation for revealing the functions of SUSs, INVs, HXKs, PGMs, and UGPs, which affected structural carbon synthesis regulated by nitrogen and carbon, proving that PtrNINV12 is involved in cell wall synthesis.


Assuntos
Populus , Populus/metabolismo , Celulose/metabolismo , Lignina/metabolismo , Carbono/metabolismo , Nitrogênio/metabolismo , Regulação da Expressão Gênica de Plantas
16.
New Phytol ; 240(6): 2386-2403, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37817383

RESUMO

Root hair is regarded as a pivotal complementary survival tactic for mycorrhizal plant like Abies beshanzuensis when symbiosis is disrupted. Relatively little is known about the mechanism underlying root hair morphogenesis in plant species that are strongly dependent on mycorrhizal symbiosis. Many of these species are endangered, and this knowledge is critical for ensuring their survival. Here, a MYB6/bHLH13-sucrose synthase 2 (AbSUS2) module was newly identified and characterized in A. beshanzuensis using bioinformatics, histochemistry, molecular biology, and transgenesis. Functional, expression pattern, and localization analysis showed that AbSUS2 participated in sucrose synthesis and was involved in root hair initiation in A. beshanzuensis. Additionally, the major enzymatic product of AbSUS2 was found to suppress root hair initiation in vitro. Our data further showed that a complex involving the transcription factors AbMYB6 and AbbHLH13 directly interacted with the promoter of AbSUS2 and strengthened its expression, thereby inhibiting root hair initiation in response to exogenous sucrose. Our findings offer novel insights into how root hair morphogenesis is regulated in mycorrhizal plants and also provide a new strategy for the preservation of endangered mycorrhizal plant species.


Assuntos
Abies , Micorrizas , Micorrizas/fisiologia , Simbiose , Sacarose/metabolismo , Açúcares/metabolismo , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
17.
Physiol Mol Biol Plants ; 29(8): 1081-1084, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37829702

RESUMO

Sucrose synthase (SUS), an enzyme that breaks down sucrose, is known to play an important role in the production of UDP-glucose and ADP-glucose. An established and highly debated theory holds that SUS is necessary for providing UDP-glucose and ADP-glucose for the biosynthesis of cellulose and starch, respectively. This article is focused on two recent reports which refuted the long-held theory that SUS is the sole regulator in cellulose and starch synthesis.

18.
Int J Mol Sci ; 24(15)2023 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-37569874

RESUMO

Sucrose synthases (SUS; EC 2.4.1.13) encoded by a small multigene family are the central system of sucrose metabolism and have important implications for carbon allocation and energy conservation in nonphotosynthetic cells of plants. Though the SUS family genes (SUSs) have been identified in several plants, they have not been explored in sweet potato. In this research, nine, seven and seven SUSs were identified in the cultivated sweet potato (Ipomoea batatas, 2n = 6x = 90) as well as its two diploid wild relatives I. trifida (2n = 2x = 30) and I. triloba (2n = 2x = 30), respectively, and divided into three subgroups according to their phylogenetic relationships. Their protein physicochemical properties, chromosomal localization, phylogenetic relationship, gene structure, promoter cis-elements, protein interaction network and expression patterns were systematically analyzed. The results indicated that the SUS gene family underwent segmental and tandem duplications during its evolution. The SUSs were highly expressed in sink organs. The IbSUSs especially IbSUS2, IbSUS5 and IbSUS7 might play vital roles in storage root development and starch biosynthesis. The SUSs could also respond to drought and salt stress responses and take part in hormone crosstalk. This work provides new insights for further understanding the functions of SUSs and candidate genes for improving yield, starch content, and abiotic stress tolerance in sweet potatoes.


Assuntos
Ipomoea batatas , Ipomoea batatas/metabolismo , Filogenia , Diploide , Amido/metabolismo , Sacarose/metabolismo , Regulação da Expressão Gênica de Plantas
19.
J Agric Food Chem ; 71(33): 12549-12557, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37552844

RESUMO

Nucleotide sugars are essential precursors for carbohydrate synthesis but are in scarce supply. Uridine diphosphate (UDP)-glucose is a core building block in nucleotide sugar preparation, making its efficient synthesis critical. Here, a process for producing valuable UDP-glucose and functional mannose from sucrose was established and improved via a semirational sucrose synthase (SuSy) design and the accurate D-mannose isomerase (MIase) cascade. Engineered SuSy exhibited enzyme activity 2.2-fold greater than that of the WT. The structural analysis identified a latch-hinge combination as the hotspot for enhancing enzyme activity. Coupling MIase, process optimization, and reaction kinetic analysis revealed that MIase addition during the high-speed UDP-glucose synthesis phase distinctly accelerated the entire process. The simultaneous triggering of enzyme modules halved the reaction time and significantly increased the UDP-glucose yield. A maximum UDP-glucose yield of 83%, space-time yield of 70 g/L/h, and mannose yield of 32% were achieved. This novel and efficient strategy for sucrose value-added exploitation has industrial promise.


Assuntos
Uridina Difosfato Glucose , Uridina Difosfato Glucose/química , Uridina Difosfato Glucose/metabolismo , Sacarose/química , Sacarose/metabolismo , Mutação , Cinética , Modelos Moleculares , Manose/química , Manose/metabolismo , Estrutura Terciária de Proteína
20.
Int J Biol Macromol ; 250: 126009, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37536414

RESUMO

Glycosyltransferases catalyze the regioselective glycosylation of polyphenolic compounds, increasing their solubility without altering their antioxidant properties. Leloir-type glycosyltransferases require UDP-glucose as a cofactor to glycosylate a hydroxyl of the polyphenol, which is expensive and unstable. To simplify these processes for industrial implementation, the preparation of self-sufficient heterogeneous biocatalysts is needed. In this study, a glycosyltransferase and a sucrose synthase (as an UDP-regenerating enzyme) were co-immobilized onto porous agarose-based supports coated with polycationic polymers: polyethylenimine and polyallylamine. In addition, the UDP cofactor was strongly ionically adsorbed and co-immobilized with the enzymes, eliminating the need to add it separately. Thus, the optimal self-sufficient heterogeneous biocatalyst was able to catalyze the glycosylation of three polyphenolic compounds (piceid, phloretin and quercetin) with in situ regeneration of the UDP-glucose, allowing multiple consecutive reaction cycles without the addition of exogenous cofactor. A TTN value of 50 (theoretical maximum) was obtained in the reaction of piceid glycosylation, after 5 reaction cycles, using the self-sufficient biocatalyst based on an improved sucrose synthase variant. This result was 5-fold higher than the obtained using soluble cofactor and the co-immobilized enzymes, and much higher than those reported in the literature for similar processes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA