Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.912
Filtrar
1.
J Colloid Interface Sci ; 672: 1-11, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38823218

RESUMO

In this work, we reported that by using a strong thiol ligand as the morphology-directing reagent, a series of Au nanoparticles with plate-like surface sub-structures could be successfully obtained via a one-pot seedless synthesis. The size and the density of the plates on the surface of Au can be readily tuned with the amount of the thiol ligand, resembling different roughness of the surface. Arising from the different surface roughness, the localized surface plasmon resonance (LSPR) of these shape and morphological alike Au nanoparticles can be continuously tuned within the visible-NIR region. The broad LSPR absorptions and feasible tunability make the Au nanoparticles suitable candidate for plasmonic-related applications. Interestingly, huge SERS enhancement was simultaneously achieved based on the specific surface roughness. Our results demonstrate the great potentials for tuning the LSPR and SERS of Au nanostructures through the engineering of the surface morphologies, which would assist for the design, synthesis, and applications of Au-based plasmonic nanomaterials in various fields.

2.
J Environ Manage ; 362: 121246, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38823298

RESUMO

Wind energy plays an important role in the sustainable energy transition towards a low-carbon society. Proper assessment of wind energy resources and accurate wind energy prediction are essential prerequisites for balancing electricity supply and demand. However, these remain challenging, especially for onshore wind farms over complex terrains, owing to the interplay between surface heterogeneities and intermittent turbulent flows in the planetary boundary layer. This study aimed to improve wind characteristic assessment and medium-term wind power forecasts over complex hilly terrain using a numerical weather prediction (NWP) model. The NWP model reproduced the wind speed distribution, duration, and spatio-temporal variabilities of the observed hub-height wind speed at 24 wind turbines in onshore wind farms when incorporating more realistic surface roughness effects, such as the subgrid-scale topography, roughness sublayer, and canopy height. This study also emphasizes the good features for machine learning that represent heterogeneities in the surface roughness elements in the atmospheric model. We showed that medium-term forecasting using the NWP model output and a simple artificial neural network (ANN) improved day-ahead wind power forecasts by 14% in terms of annual normalized mean absolute error. Our results suggest that better parameterizations of surface friction in atmospheric models are important for wind power forecasting and resource assessment using NWP models, especially when combined with machine learning techniques, and shed light on onshore wind power forecasting and wind energy assessment in mountainous regions.

3.
Dent Mater J ; 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38825451

RESUMO

Highly polished 3, 4, and 5 mol% yttria-stabilized zirconia and CAD/CAM composite resin samples were prepared, and the influence of surface roughness (Ra and Sa, 21 areas/group), wettability (contact angle and surface energy, 3 samples/group), and surface chemical composition (2 samples/group) on single-strain bacterial adhesion models (Porphyromonas gingivalis, Streptococcus oralis, Streptococcus sanguinis, Streptococcus gordonii, and Streptococcus mutans) were compared via fluorescent staining with graphical analysis (21 areas/group). Statistical analysis was performed using the Shapiro-Wilk test followed by one-way analysis of variance with Tukey's test or the Kruskal-Wallis test with Dunn's test (α=0.05) and linear regression. For dental zirconia with the same surface roughness, the yttria content did not significantly influence the initial bacterial adhesion. However, higher bacterial adhesion was detected for the composite resin owing to its high C, O, and Si contents. There was no correlation between surface energy and bacterial adhesion for any bacterial strain (p<0.005).

4.
Small ; : e2402297, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38837678

RESUMO

Hydrophobic polymer plates with smooth and rough surfaces are used as a stabilizer for cubic liquid marbles (LMs) to study the effect of surface roughness on their formation. The smooth and rough polymer plates can stabilize LMs using liquids with surface tensions of 72.8-26.6 and 72.8-22.9 mN m-1, respectively. It is clarified that the higher the surface roughness, the lower the surface tension of the liquids are stabilized to form the LMs. These results indicated that the introduction of surface roughness improves the hydrophobicity of the polymer plates and the rough polymer plates can stabilize LMs using liquids with a wider surface tension range. Electron microscopy studies and numerical analyses confirmed that the LMs can be formed, when the Cassie-Baxter wetting state, where θY>90° (θY: the contact angle on smooth surfaces) and θR>90° (θR: the contact angle on rough surfaces), and the metastable Cassie-Baxter wetting state, where θY<90° and θR>90°, are realized. Finally, the synthesis of cubic polymer particles are succeeded by free radical polymerization of the cubic LMs containing a hydrophobic vinyl monomer (dodecyl acrylate) in a solvent-free manner.

5.
Sci Rep ; 14(1): 13051, 2024 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844516

RESUMO

In this work, the surface of polyvinyl chloride PVC sheet was modified by blending it with sunflower seed oil SSO to obtain PVC sheet/SSO films of ratios 100/0, 90/10, 80/20, 70/30, 60/40, and 50/50 (v/v)% using the solution casting method. Various techniques were used to characterize the prepared films, besides the use of hemolysis assays and blood clot formation tests. FTIR spectra revealed that there was a good interaction between the PVC sheet and the oil. The dielectric measurement indicated that SSO addition enhanced the dielectric properties of the sheet. The study of dielectric relaxation times confirmed the interaction between SSO and the sheet. DC conductivity increased to 6 × 10-6 S/m, so it could be applied in antistatic applications. Also, SSO addition increased the value of the thermal stability. According to SEM micrographs, the film was roughened at a ratio of 60/40 and smoothed out at 50/50. This behavior was confirmed with roughness and contact angle measurement results, in which the film of ratio 60/40 had the highest value equal to (72.03°) and then decreased at 50/50 to (59.62°). These results were confirmed by XRD measurement as the crystallinity increased at the film ratio of 60/40 and decreased again at 50/50. Also, the ratio of 60/40 demonstrated a large decrease in thrombus weights along with a slight increase in hemolysis, which is within the acceptable range and has a high degree of biocompatibility, so this concentration is recommended to be used in blood bags applications.


Assuntos
Hemólise , Cloreto de Polivinila , Óleo de Girassol , Óleo de Girassol/química , Cloreto de Polivinila/química , Hemólise/efeitos dos fármacos , Espectroscopia de Infravermelho com Transformada de Fourier , Humanos , Animais , Coagulação Sanguínea/efeitos dos fármacos , Propriedades de Superfície , Óleos de Plantas/química
6.
Heliyon ; 10(11): e31849, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38845963

RESUMO

Ultra-precision turning is a crucial process in the manufacturing industry as it helps to produce parts with high dimensional accuracy, surface finish, and tolerance. The process is similar to traditional turning but is carried out under special circumstances to achieve greater precision and surface finish. The process can be applied to conventional structural materials, but the demand for machining hardened steels is increasing. The optimization of ultra-precision turning of AISI D2 using cubic boron nitride (CBN) tools is a crucial aspect in the field of high-quality machining. This study aims to evaluate the performance of the process and identify the optimal parameters that result in the best quality components while using a CBN tool's ultra-precision turning of AISI D2. Ultra-precision turning process factors such as cutting speed, feed, and depth of cut were experimentally investigated to enhance the response output, such as surface roughness and cutting force components. The full factorial experimental design was used for determining the process characteristics under different conditions, and experimental results were applied to search for the optimum response of machining performance. The optimization process was done by combining the hybrid genetic algorithm-response surface methodology (GA-RSM) and the Taguchi-grey relational analysis (GRA) statistical tools. These methods are useful in situations where the relationship between the input variables and the output responses is complex and non-linear. The results showed that a hybrid GA-RSM approach, combined with Taguchi-GRA statistical analysis, can effectively find optimal process parameters, leading to the best combination of surface roughness and cutting force. In hybrid Taguchi - GRA, the optimal cutting conditions were found to be a cutting speed of 175 m/min, a feed of 0.025 mm, and a depth of cut of 0.06 mm. The findings of this study provide valuable insights for the optimization of ultra-precision CBN turning operations, contribute to the development of precision manufacturing technology, and can be used as a reference for similar machining processes.

7.
Artigo em Inglês | MEDLINE | ID: mdl-38847079

RESUMO

Analytical calculations of absorption corrections for X-ray powder diffraction experiments on non-ideal samples with surface roughness, porosity or absorption contrasts from multiple phases require complex mathematical models to represent their material distribution. In a computational approach to this problem, a practicable ray-tracing algorithm is formulated which is capable of simulating angle-dependent absorption corrections in reflection geometry for any given rasterized sample model. Single or multiphase systems with arbitrary surface roughness, porosity and spatial distribution of the phases in any combination can be modeled on a voxel grid by assigning respective values to each voxel. The absorption corrections are calculated by tracing the attenuation of X-rays along their individual paths via a modified shear-warp algorithm. The algorithm is presented in detail and the results of simulated absorption corrections on samples with various surface modulations are discussed in the context of published experimental results.

8.
J Adv Prosthodont ; 16(2): 126-138, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38694195

RESUMO

PURPOSE: The aim of this study was to evaluate the influence of different 3D dental resins, using a manufacturer recommended printer and a third-party printer, on cellular responses of human gingival cells. MATERIALS AND METHODS: Three NextDent resins (Denture 3D+, C&B MFH and Crowntec) were used to produce specimens on printers NextDent 5100 (groups ND, NC and NT, respectively) and Phrozen Sonic Mini 4K (groups PD, PC and PT, respectively). Human gingival fibroblasts were cultured and biocompatibility was evaluated on days 1, 3 and 7. IL-6 and IL-8 concentrations were evaluated at 3 days using ELISA. Surface roughness was evaluated by a contact profilometer. SEM and fluorescence micrographs were analyzed at days 1 and 7. Statistical analyses were performed using SPSS and mean differences were tested using ANOVA and post-hoc Tukey tests (P < .05). RESULTS: There was an increase in cellular viability after 7 days in groups PC and PT, when compared to group PD. ND group resulted in higher concentration of IL-6 when compared to PT group. SEM and fluorescence micrographs showed less adhesion and thinner morphology of fibroblasts from group PD. No significant differences were found regarding surface roughness. CONCLUSION: The use of different printers or resins did not seem to influence surface roughness. NextDent 5100 and Phrozen Sonic Mini 4K produced resins with similar cellular responses in human gingival fibroblasts. However, Denture 3D+ resin resulted in significantly lower biocompatibility, when compared to C&B MFH and Crowntec resins. Further testing is required to support its long-term use, required for complete dentures.

9.
J Clin Pediatr Dent ; 48(3): 107-119, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38755989

RESUMO

This research study aimed to investigate the impact of probiotic mouthwash and kefir on the surface characteristics, specifically surface roughness and microhardness, of different restorative materials, as well as permanent and deciduous tooth enamels. Thirty disc-shaped specimens were prepared from composite resin (G-ænial Posterior (GP)), polyacid-modified composite resin (compomer) (Dyract-XP (DXP)), and resin-modified glass ionomer cement (Ionoseal (IS)). Additionally, thirty specimens of enamel were obtained from permanent teeth (PT) and thirty from deciduous teeth (DT) by embedding buccal and lingual sections, acquired through vertical sectioning of 15 permanent and 15 deciduous human tooth crowns in the mesiodistal orientation within acrylic resin blocks. The specimens were then categorized into three distinct groups and immersed for 14 days in one of the following solutions: distilled water, kefir or probiotic mouthwash. The mean surface roughness values of all specimens were assessed using an atomic force microscope, while the mean surface microhardness was measured using a Vickers hardness measuring instrument. The results revealed a statistically significant difference in mean surface roughness among the various restorative materials (p < 0.001). Among the restorative materials, the IS material exhibited notably higher mean surface roughness values than other restorative materials and tooth enamel, while no significant differences were observed between the PT and DT groups. Importantly, the main effect of the solutions under investigation was not statistically significant (p = 0.208). No significant difference was found between the surface roughness values of specimens subjected to the different solutions. When evaluating the effects of materials and solutions on microhardness, the main effects of material and solution variables and the influence of material-solution interactions were statistically significant (p < 0.001). Taken together, these results indicate that consistent use of kefir or probiotic mouthwashes may impact the surface properties of various restorative materials and tooth enamel.


Assuntos
Resinas Compostas , Esmalte Dentário , Restauração Dentária Permanente , Cimentos de Ionômeros de Vidro , Dureza , Probióticos , Propriedades de Superfície , Humanos , Esmalte Dentário/efeitos dos fármacos , Resinas Compostas/química , Cimentos de Ionômeros de Vidro/química , Restauração Dentária Permanente/métodos , Compômeros/química , Dente Decíduo , Antissépticos Bucais/química , Antissépticos Bucais/farmacologia , Teste de Materiais , Materiais Dentários/química
10.
Data Brief ; 54: 110477, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38756928

RESUMO

This paper introduces a comprehensive dataset focusing on the surface roughness and dimensional accuracy of 3D printed specimens derived from a hybrid manufacturing process. The design of these specimens incorporates surfaces oriented at 0˚, 45˚, and 90˚ angles for surface roughness testing, along with cylindrical, radial, and pocket areas to evaluate dimensional accuracy. Utilizing PLA material, the specimens undergo a printing phase followed by milling within the same machine, thereby enhancing both surface roughness and dimensional quality. Surface roughness data is gathered through a surface roughness tester, while dimensional accuracy is assessed using a digital vernier caliper. The dataset includes comparative analyses conducted before and after the hybrid manufacturing process, revealing notable improvements in both surface roughness and dimensional accuracy post-processing. These findings furnish valuable insights for researchers and engineers engaged in hybrid manufacturing processes involving PLA material, serving as a foundational resource for further investigations and advancements in the field.

11.
Bioelectrochemistry ; 159: 108731, 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38759479

RESUMO

Carbon steel microbiologically influenced corrosion (MIC) by sulfate reducing bacteria (SRB) is known to occur via extracellular electron transfer (EET). A higher biofilm sessile cell count leads to more electrons being harvested for sulfate reduction by SRB in energy production. Metal surface roughness can impact the severity of MIC by SRB because of varied biofilm attachment. C1018 carbon steel coupons (1.2 cm2 top working surface) polished to 36 grit (4.06 µm roughness which is relatively rough) and 600 grit (0.13 µm) were incubated in enriched artificial seawater inoculated with highly corrosive Desulfovibrio ferrophilus IS5 at 28 â„ƒ for 7 d and 30 d. It was found that after 7 d of SRB incubation, 36 grit coupons had a 11% higher sessile cell count at (2.0 ± 0.17) × 108 cells/cm2, 52% higher weight loss at 22.4 ± 5.9 mg/cm2 (1.48 ± 0.39 mm/a uniform corrosion rate), and 18% higher maximum pit depth at 53 µm compared with 600 grit coupons. However, after 30 d, the differences diminished. Electrochemical tests with transient information supported the weight loss data trends. This work suggests that a rougher surface facilitates initial biofilm establishment but provides no long-term advantage for increased biofilm growth.

12.
J Funct Biomater ; 15(5)2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38786636

RESUMO

Resin infiltration is an effective method to mask vestibular white spots. If needed, external bleaching is usually recommended before infiltration, whilst in clinical practice, this sequence may not always be feasible. This in vitro study evaluated the effect of bleaching after resin infiltration regarding surface roughness and color using bovine incisors. Unlike for the untreated specimens (control, n = 25), artificial caries lesions were created within the test group (n = 25) using a demineralization solution at 37 °C for five days (pH = 4.95). The lesions were subsequently infiltrated using a resin infiltrant (Icon, DMG, Hamburg, Germany), followed by polishing. Afterwards, all specimens were bleached with a 10% carbamide peroxide gel (Opalescence, Ultradent, South Jordan, UT, USA) for 8 h/day over a ten-day period. Between bleaching treatments, specimens were stored in an opaque container with moistened paper tissues at 37 °C. Surface roughness was measured using a profilometer, and color in the L*a*b* space was assessed spectrophotometrically before and after bleaching. Bleaching increased the L*-values of both infiltrated (mean ± SD; ΔL* = 3.52 ± 1.98) and untreated (control) specimens (ΔL* = 3.53 ± 2.30) without any significant difference between the groups (p = 0.983). Bleaching also induced a significant increase in the mean surface roughness of both infiltrated (p < 0.001) and untreated (p = 0.0134) teeth. In terms of clinical relevance; it can be concluded that bleaching resin-infiltrated enamel is as effective as bleaching sound enamel.

13.
J Biomed Mater Res B Appl Biomater ; 112(6): e35432, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38817034

RESUMO

To investigate how patterns generated by femtosecond (fs) laser and femtosecond laser power affect the surface roughness (Ra) and biaxial flexural strength (BFS) of monolithic zirconia. Eighty disk-shaped zirconia specimens were divided into eight subgroups (n = 10): Control (C), airborne-particle abrasion (APA), 400 mW fs laser (spiral [SP(400)], square [SQ(400)], circular [CI(400)]), and 700 mW fs laser ([SP(700)], [SQ(700)], [CI(700)]). Ra values were calculated by using a surface profilometer. One additional specimen per group was analyzed with scanning electron microscopy and x-ray diffractometry. BFS values were obtained by using the piston-on-3-ball test. One-way ANOVA and either Tukey's HSD (BFS) or Tamhane's T2 (Ra) tests were used to evaluate data (α = 0.05). Regardless of the pattern and power, fs laser groups had higher Ra than C and APA, while SP groups had lower Ra than CI and SQ groups (p ≤ 0.004). For each pattern, Ra increased with higher laser power (p < 0.001), while the laser power did not affect the BFS (p ≥ 0.793). CI and SQ groups had lower BFS than the other groups (p ≤ 0.040), whereas SP groups had similar BFS to C and APA (p ≥ 0.430). Fs laser microstructuring with spiral surface pattern increased the Ra without jeopardizing the BFS of zirconia. Thus, this treatment might be an option to roughen tested zirconia.


Assuntos
Lasers , Teste de Materiais , Propriedades de Superfície , Zircônio , Zircônio/química , Resistência à Flexão , Microscopia Eletrônica de Varredura
14.
J Prosthodont ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38820254

RESUMO

PURPOSE: To compare the impact of four effervescent vitamin tablets on the surface roughness, microhardness, and color of human enamel and contemporary composite resins. MATERIAL AND METHODS: Sixty enamel and a total of 240 anterior (Gradia Direct Anterior), posterior (Gradia Direct Posterior), and universal composite resin (Filtek Ultimate) specimens (n = 60 per group) were fabricated. Each group was subdivided into five subgroups (n = 12, per subgroup). The specimens were subsequently immersed in YOUPLUS, Redoxon, Sunlife Immuvit, and Sambucol effervescent vitamin solutions for 2 min per day over 30 days. Distilled water was used as control. Subsequently, surface roughness (Ra) was detected using a profilometer, and microhardness (VHN) was measured using a microhardness tester. A spectrophotometer device was used to record the L,a,b color coordinates of the specimens after 24 h, 7 days, and 30 days, and the color changes (ΔE00) of the groups were calculated. The data were analyzed by ANOVA, two-way ANOVA, Kruskal-Wallis, Levene's, and Fisher's least significant difference (LSD) tests (p < 0.05). SEM analysis was conducted on one randomly selected specimen per group (×1000). RESULTS: In terms of surface roughness, material X vitamin interactions were found significant (p < 0.05). The increase in Ra from 24 h to 30 days was found significant (p < 0.05) except for Gradia Direct Anterior X Redoxon, Sunlife Immuvit and Sambucol, Filtek Ultimate X Sunlife Immuvit and Sambucol, and all control groups. Ra changes were also concluded by SEM. Regarding VHNs, material X vitamin interactions were significant (p < 0.005), except for all Filtek Ultimate subgroups. The changes in VHNs of the groups from 24 h to 30 days were significant for all enamel and Gradia Direct Anterior X YOUPLUS, Gradia Posterior X YOUPLUS, Sunlife Immuvit, and Sambucol groups (p < 0.05). In terms of ΔE00, significant differences were observed between the 7 days and 30 days in the enamel (p = 0.047), Gradia Direct Anterior (p = 0.019), and Gradia Direct Posterior groups (p = 0.038). CONCLUSIONS: Daily consumption of effervescent vitamin tablets can increase surface roughness, decrease microhardness, and influence the color of human enamel and contemporary anterior, posterior, and universal composite resins after a 30-day period.

15.
Clin Oral Investig ; 28(5): 294, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38698252

RESUMO

OBJECTIVES: To compare ultrasonic scaler prototypes based on a planar piezoelectric transducer with different working frequencies featuring a titanium (Ti-20, Ti-28, and Ti-40) or stainless steel (SS-28) instrument, with a commercially available scaler (com-29) in terms of biofilm removal and reformation, dentine surface roughness and adhesion of periodontal fibroblasts. MATERIALS AND METHODS: A periodontal multi-species biofilm was formed on specimens with dentine slices. Thereafter specimens were instrumented with scalers in a periodontal pocket model or left untreated (control). The remaining biofilms were quantified and allowed to reform on instrumented dentine slices. In addition, fibroblasts were seeded for attachment evaluation after 72 h of incubation. Dentine surface roughness was analyzed before and after instrumentation. RESULTS: All tested instruments reduced the colony-forming unit (cfu) counts by about 3 to 4 log10 and the biofilm quantity (each p < 0.01 vs. control), but with no statistically significant difference between the instrumented groups. After 24-hour biofilm reformation, no differences in cfu counts were observed between any groups, but the biofilm quantity was about 50% in all instrumented groups compared to the control. The attachment of fibroblasts on instrumented dentine was significantly higher than on untreated dentine (p < 0.05), with the exception of Ti-20. The dentine surface roughness was not affected by any instrumentation. CONCLUSIONS: The planar piezoelectric scaler prototypes are able to efficiently remove biofilm without dentine surface alterations, regardless of the operating frequency or instrument material. CLINICAL RELEVANCE: Ultrasonic scalers based on a planar piezoelectric transducer might be an alternative to currently available ultrasonic scalers.


Assuntos
Biofilmes , Raspagem Dentária , Dentina , Fibroblastos , Ligamento Periodontal , Propriedades de Superfície , Titânio , Humanos , Raspagem Dentária/instrumentação , Técnicas In Vitro , Dentina/microbiologia , Ligamento Periodontal/citologia , Transdutores , Adesão Celular , Aço Inoxidável , Desenho de Equipamento , Terapia por Ultrassom/instrumentação
16.
J Breath Res ; 18(3)2024 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-38744271

RESUMO

Despite the widespread use of dental restorative materials, little information exists in the literature regarding their potential impact on bad breath. This in vitro study aims to fill this gap by investigating the influence of different restorative materials on the release of hydrogen sulfide (H2S). Thirteen diverse dental restorative materials, including composites, flowable composites, glass ionomer restorative materials, high-copper amalgam, and CAD-CAM blocks, were examined. Cellulose Sponge models were used as negative and positive control. All samples were prepared with a diameter of 5 mm and a height of 2 mm. Except for the negative control group, all samples were embedded into Allium cepa L., and the emitted H2S was measured using the Wintact W8802 hydrogen sulfide monitor. Surface roughness's effect on emission was explored by roughening the surfaces of CAD-CAM material samples, and gas emission was measured again. The data were statistically analyzed using the Kruskal-Wallis test and DSCF pairwise comparison tests. Fiber-reinforced flowable composite (EverX Flow), amalgam (Nova 70-caps), and certain composite materials (IPS Empress Direct, Tetric Evoceram, Admira Fusion X-tra) released higher H2S concentrations compared to the negative control. The H2S release period lasted longer in the same materials mentioned above, along with G-aenial Universal Injectable. Indirectly used materials, such as GC Cerasmart, Vita Enamic, and Vita YZ HT, demonstrated significantly lower emissions compared to other direct restoratives. Importantly, the surface roughness of indirect materials did not significantly affect peak H2S concentrations or release times. The study reveals variations in H2S release among restorative materials, suggesting potential advantages of indirect restorative materials in reducing H2S-induced halitosis. This comprehensive understanding of the relationship between restorative materials and halitosis can empower both dental professionals and patients to make well-informed treatment choices. Notably, there is evidence supporting the enhanced performance of indirect restorative materials for individuals affected by halitosis.


Assuntos
Materiais Dentários , Halitose , Sulfeto de Hidrogênio , Humanos , Halitose/terapia , Sulfeto de Hidrogênio/análise , Materiais Dentários/química , Técnicas In Vitro , Restauração Dentária Permanente/métodos , Resinas Compostas/química , Teste de Materiais , Amálgama Dentário/química , Propriedades de Superfície
17.
Materials (Basel) ; 17(9)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38730865

RESUMO

Cryogenic cooling has gathered significant attention in the manufacturing industry. There are inherent difficulties in machining materials that are difficult to machine because of high levels of hardness, abrasiveness, and heat conductivity. Increased tool wear, diminished surface finish, and reduced machining efficiency are the results of these problems, and traditional cooling solutions are insufficient to resolve them. The application of cryogenic cooling involves the use of extremely low temperatures, typically achieved by employing liquid nitrogen or other cryogenic fluids. This study reviews the current state of cryogenic cooling technology and its use in machining difficult-to-machine materials. In addition, this review encompasses a thorough examination of cryogenic cooling techniques, including their principles, mechanisms, and effects on machining performance. The recent literature was used to discuss difficult-to-machine materials and their machining properties. The role of cryogenic cooling in machining difficult materials was then discussed. Finally, the latest technologies and methods involved in cryogenic cooling condition were discussed in detail. The outcome demonstrated that the exploration of cryogenic cooling methods has gained prominence in the manufacturing industry due to their potential to address challenges associated with the machining of exotic alloys.

18.
BMC Oral Health ; 24(1): 546, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730400

RESUMO

BACKGROUND: Recently, a new generation of high-strength flowable dental composites has been introduced by manufacturers. The manufacturers claim that these materials have enhanced mechanical and physical properties and are suitable for use in a wide range of direct anterior and posterior restorations, even in high-stress bearing areas. AIM: The objective of this study was to assess certain physical and mechanical properties of these recently introduced high-strength flowable composites in comparison to conventional multipurpose dental composites. METHODS: Four types of high-strength flowable composites (Genial Universal FLO, Gaenial Universal Injectable, Beautifil Injectable, and Beautifil Flow Plus) were tested in experimental groups, while a nanohybrid conventional composite (Filtek Z350 XT) was used as the control. For flexure properties, ten rectangular samples (2 × 2 × 25 mm) were prepared from each composite material and subjected to 5000 cycles of thermocycling. Samples were then subjected to flexural strength testing using the universal testing machine. Another twenty disc-shaped specimens of dimensions (5 mm diameter × 2 mm thickness) were fabricated from each composite material for surface roughness (Ra) (n = 10) and hardness (VHN) test (n = 10). All samples underwent 5000 cycles of thermocycling before testing. Additionally, microleakage testing was conducted on 60 standardized class V cavities prepared on molar teeth and divided randomly into five groups (n = 12). Cavities were then filled with composite according to the manufacturer's instructions and subjected to thermocycling for 1000 cycles before testing using methylene blue solution and a stereomicroscope. RESULTS: All tested materials were comparable to the control group in terms of flexural strength and surface roughness (p > 0.05), with Gaenial Universal FLO exhibiting significantly higher flexural strength compared to the other flowable composite materials tested. However, all tested materials demonstrated significantly lower elastic modulus and surface hardness than the control group (p < 0.05). The control group exhibited higher microleakage scores, while the lowest scores were observed in the Gaenial Universal FLO material (p < 0.05) CONCLUSION: The physical and mechanical behaviors of the different high-strength flowable composites investigated in this study varied. Some of these materials may serve as suitable alternatives to conventional composites in specific applications, emphasizing the importance of dentists being familiar with material properties before making material selections.


Assuntos
Resinas Compostas , Infiltração Dentária , Resistência à Flexão , Dureza , Teste de Materiais , Propriedades de Superfície , Técnicas In Vitro , Humanos , Análise do Estresse Dentário , Materiais Dentários/química , Estresse Mecânico , Polietilenoglicóis , Ácidos Polimetacrílicos/química , Bis-Fenol A-Glicidil Metacrilato
19.
Saudi Dent J ; 36(5): 740-744, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38766290

RESUMO

Objective: This study assessed the impact of beverage temperature on the surface roughness, microhardness, and color stability of monoshade composite resin. Materials and Methods: A batch of 70 monoshade composite resin specimens manufactured by Charisma Diamond ONE (Kulzer, Hanau, Germany) was prepared. Initial readings for surface roughness, microhardness, and color were recorded. The specimens were then divided into seven groupings of ten each: Distilled water (control group), Nescafe coffee at 70 °C and 5 °C, Arabic coffee at 70 °C and 37 °C, and cola at 7 °C and 24 °C. These samples underwent 30-min daily immersion in their respective beverages for a duration of 30 days. Final measurements were then taken. A non-contact profilometer was used for measuring surface roughness, a Vickers microhardness machine from Contour GT-I (Bruker Nano GmbH, Berlin, Germany) for microhardness, and a Color-Eye 7000A Spectrophotometer (X-Rite, GretagMacbeth, Michigan USA) for color stability. Statistical analyses, including repeated measure ANOVA for microhardness, roughness, and color, were executed using SPSS version 23. Results: All beverages led to changes in composite color and properties. Notably, coffee at 70 °C resulted in significant discoloration of the composite resin surface (p < 0.0001). The beverage that most affected the surface hardness and roughness of the monoshade composite resin was cola at 7 °C (p = 0.008). Conclusion: The inherent chemicals in beverages, coupled with their temperatures, can influence the composite properties of resin, specifically surface discoloration, hardness, and roughness. Clinicians may, therefore, consider instructing patients about the potential negative effects of these beverages.

20.
Materials (Basel) ; 17(10)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38793276

RESUMO

The authors present the results of laboratory tests analysing the impact of selected cutting data and tool geometry on surface quality, chip type and cutting forces in the process of orthogonal turning of sintered cobalt. The selected cutting data are cutting speed and feed rate. During the experiments, the cutting speed was varied in the range of vc = 50-200 m/min and the feed rate in the range of f = 0.077-0.173 mm/rev. In order to measure and acquire cutting force values, a measuring setup was assembled. It consisted of a Kistler 2825A-02 piezoelectric dynamometer with a single-position tool holder, a Kistler 5070 signal amplifier and a PC with DynoWare software (Version 2825A, Kistler Group, Winterthur, Switzerland)). The measured surface quality parameters were Ra and Rz. The components of the cutting forces obtained in the experiment varied depending on the feed rate and cutting speed. The obtained test results will make it possible to determine the optimal parameters for machining and tool geometry in order to reduce the machine operating time and increase the life of the cutting insert during the turning of sintered cobalt, which will contribute to sustainable technology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...