Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Sci Food Agric ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39017461

RESUMO

BACKGROUND: The gelation properties of surimi gel under various high temperatures (115, 118, and 121 °C) and sterilization intensities (F0 values of 3-7 min) were systematically investigated. A kinetic model detailed quality changes during heat treatment through mathematical analysis, elucidating mechanisms for gel quality degradation. RESULTS: Increased sterilization intensity significantly reduced the quality characteristics of surimi gel. Compared to the gel without sterilization treatment, when the sterilization intensity was increased to 7 min, the gel strength of the groups treated at 115 °C, 118 °C, and 121 °C decreased by 68.35%, 51.4%, and 51.71%, respectively, and the water-holding capacity decreased by 24.87%, 16.85%, and 22.5%, respectively. The hardness, chewiness, and whiteness of the gel also significantly decreased, and the changes in these indicators all conformed to a first-order kinetic model. Activation energy of 291.52 kJ mol-1 highlighted gel strength as the least heat-resistant. At equivalent sterilization intensities, 115 °C exhibited the poorest gel quality, followed by 121 °C, with 118 °C showing relatively better gel quality. Increased T22 and decreased PT22 suggested heightened water mobility and transition of immobilized water within the gel into free water. Protein degradation, weakened disulfide bonds and hydrophobic interaction, and protein conformation changes collectively led to a rough and incoherent gel network structure with large fissures, as verified by the results of scanning electron microscopy. Correlation analysis indicated potential for precise control over surimi gel quality by modulating physicochemical attributes. CONCLUSION: The outcomes may be beneficial to improve the production and quality control of ready-to-eat surimi-based products. © 2024 Society of Chemical Industry.

2.
J Sci Food Agric ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39011982

RESUMO

BACKGROUND: Future applications of high-internal-phase emulsions (HIPEs) are highly regarded, but poor freeze-thaw stability limits their utilization in frozen products. This study aimed to characterize the structure of chickpea protein microgel particles (HCPI) induced by NaCl and to assess its impact on the freeze-thaw stability of HIPEs. RESULTS: The results showed that NaCl induction (0-400 mmol L-1) increased the surface hydrophobicity (175.9-278.9) and interfacial adsorbed protein content (84.9%-91.3%) of HCPI. HIPEs prepared with HCPI induced by high concentration of NaCl exhibited superior flocculation index and centrifugal stability, and their freeze-thaw stability was better than that of natural chickpea protein. The increase in NaCl concentration reduced the droplet aggregation and coalescence index of the freeze-thaw emulsions, diminishing the precipitation of oil from the emulsion. Linear and nonlinear rheology showed that the strengthened gel structure (higher G' values) restricted water flow and counteracted the damage to the interfacial film by ice crystals at 100-400 mmol L-1 NaCl, thus improving the viscoelasticity of the freeze-thaw emulsions. Finally, the thawing loss of surimi gel with HCPI-200 HIPE was reduced by 2.04% compared to directly adding oil. CONCLUSION: This study provided a promising strategy to improve the freeze-thaw stability of HIPEs and reduce the thawing loss of frozen products. © 2024 Society of Chemical Industry.

3.
Food Chem ; 457: 140050, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38901348

RESUMO

Myofibrillar protein (MP) gels are susceptible to oxidation, which can be prevented by complexing with hydrophilic polyphenols, but may cause gel deterioration. Sodium metabisulfite (Na2S2O5) has been used to induce self-assembly of MP and analyze the impact of self-assembly on the quality of composite gels containing high amounts of (-)-epigallocatechin gallate (EGCG). Hydrophobic forces were confirmed as the main driver of self-assembly. Self-assembly reduced the size of the MP-EGCG complex to approximately 670 nm and increased the gel's hydrophobic force by approximately 3.6-fold. The maximum hardness of the Na2S2O5-treated MP-EGCG composite gel was 52.43 g/kg, which was approximately 49% greater than pure MP gel. After oxidative treatment, the Na2S2O5-treated MP-EGCG composite gel had considerably lower carbonyl and dityrosine levels (2.47-µmol/g protein and 450 a.u.) than the control (8.37-µmol/g protein and 964 a.u.). Therefore, Na2S2O5 shows potential as a cost-effective additive for alleviating MP limitations in the food industry.


Assuntos
Carpas , Catequina , Géis , Proteínas Musculares , Sulfitos , Animais , Géis/química , Sulfitos/química , Catequina/química , Catequina/análogos & derivados , Proteínas Musculares/química , Proteínas de Peixes/química , Interações Hidrofóbicas e Hidrofílicas , Oxirredução , Miofibrilas/química
4.
Food Chem ; 456: 139859, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-38870800

RESUMO

κ-Carrageenan (CG) was employed to mask the bitterness induced by 50% KCl in surimi gels to achieve salt reduction and gel performance improvement. The combination of KCl and CG (KCl + CG) yielded the increased textural characteristics and water-holding capacity (WHC) of surimi gels and facilitated the transition of free water to immobilized water. In addition, the KCl + CG supplement increased the turbidity and particle size of myofibrillar protein (MP) sols but decreased the surface hydrophobicity in a dose-dependent manner. The hydrophobic interactions and disulfide bonds played crucial roles in maintaining the stability of MP gels. The specific binding of potassium ions to the sulfate groups of CG limited the release and diffusion of potassium ions from the surimi gels during oral processing, effectively masking the bitterness perception and maintaining the saltiness perception. This study provides a promising strategy to reduce the utilization of sodium salt in surimi products.


Assuntos
Carragenina , Produtos Pesqueiros , Géis , Cloreto de Potássio , Paladar , Carragenina/química , Humanos , Géis/química , Cloreto de Potássio/química , Produtos Pesqueiros/análise , Animais , Percepção Gustatória , Interações Hidrofóbicas e Hidrofílicas , Adulto , Masculino , Feminino
5.
Food Chem X ; 22: 101451, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38803671

RESUMO

This study aimed to extract sturgeon oil (SO) from the sturgeon head and apply it to sturgeon meat to produce surimi gel. The effects of SO and its Pickering emulsion on the qualities of surimi gel were investigated. The results demonstrated that Pickering emulsions improved the quality deterioration of the gel caused by the direct addition of SO, especially the soy isolate protein (SPI) emulsion and the pea isolate protein (PPI) emulsion. Pickering emulsions contributed to a more uniform and compact network structure of the gel, improved the texture properties, enhanced the freeze-thaw stability, and reduced lipid oxidation. Additionally, compared to the addition of exogenous lipids such as peanut oil and linseed oil, SO and its Pickering emulsion better maintained the characteristic flavor of sturgeon surimi gel. This study provides valuable data and feasible ideas for expanding the utilization of sturgeon by-products and developing new types of surimi gel products.

6.
Ultrason Sonochem ; 107: 106911, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38761771

RESUMO

The hardness properties of unwashed surimi gel are considered as the qualities of gelation defect. This research investigated the effect of ultrasound-assisted first-stage thermal treatment (UATT) on the physicochemical properties of unwashed Silver Carp surimi gel, and the enhancement mechanism. UATT could reduce protein particle size, which significantly reduced from 142.22 µm to 106.70 µm after 30 min of UATT compared with the nature protein. This phenomenon can promote the protein crosslinking, resulting in the hardness of surimi gel increased by 15.08 %. Partially unfolded structure of myofibrillar protein and exposures of tryptophan to water, lead to the increase in the zeta potential absolute value, driven by UATT. The reduced SH group level and the conformational conversion of proteins from random coiling to α-helix and ß-sheet, which was in support of intermolecular interaction and gel network construction. The results are valuable for processing protein gels and other food products.


Assuntos
Carpas , Géis , Animais , Géis/química , Temperatura , Proteínas de Peixes/química , Produtos Pesqueiros/análise , Ondas Ultrassônicas , Miofibrilas/química , Proteínas Musculares/química , Manipulação de Alimentos/métodos
7.
Foods ; 13(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38472789

RESUMO

This study systematically investigates the impact of corn starch molecular structures on the quality attributes of surimi gel products. Employing molecular analyses to characterize corn starch, three amylopectin fractions (A, B1, and B2), categorized by the degree of polymerization ranges (6 < X ≤ 12, 12 < X ≤ 24, and 24 < X ≤ 36, respectively) were specifically focused on. The surimi gel quality was comprehensively assessed through texture profile analysis, nuclear magnetic resonance, scanning electron microscopy, stained section analysis, and Fourier transform infrared spectroscopy. Results indicated the substantial volume expansion of corn amylopectin upon water absorption, effectively occupying the surimi gel matrix and fostering the development of a more densely packed protein network. Starch gels with higher proportions of A, B1, and B2 exhibited improved hardness, chewiness, and bound water content in the resultant surimi gels. The weight-average molecular weight and peak molecular weight of corn starch showed a strong positive correlation with surimi gel hardness and chewiness. Notably, the secondary structure of proteins within the surimi gel was found to be independent of corn starch's molecular structure. This study provides valuable insights for optimizing formulations in surimi gel products, emphasizing the significance of elevated A, B1, and B2 content in corn starch as an optimal choice for crafting dense, chewy, water-retaining surimi gels.

8.
Food Chem ; 446: 138810, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38402769

RESUMO

The effect of a high internal phase emulsion (HIPE) on three-dimensional-printed surimi gel inks was studied. Increasing the concentration of collagen peptide decreased the particle size of HIPE droplets and improved the viscoelasticity and stability. For example, when the collagen peptide concentration was 5 wt%, the viscoelasticity of the HIPE was high, as indicated by the presence of small and uniform particles, which formed a monolayer in the outer layer of the oil droplets to form stable a HIPE. A HIPE was used as the filling material to fill the surimi gel network, which reduced the porosity of the network. Surimi protein and peptides have dual emulsifying effects on the stabilization of oil. After adding the emulsion, the texture, gel properties and rheological properties of the surimi were reduced, and its printing adaptability was improved. This study provides new ideas for the production of surimi and its application in 3D printing.


Assuntos
Óleos de Peixe , Tinta , Emulsões/química , Géis/química , Peptídeos , Impressão Tridimensional , Colágeno
9.
Foods ; 13(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38201197

RESUMO

The gel prepared using Nemipterus virgatus (N. virgatus) surimi alone still has some defects in texture and taste. Complexing with polysaccharides is an efficient strategy to enhance its gel properties. The main objective of this study was to analyze the relationship between the gel quality and molecular interaction of N. virgatus surimi gel after complexing with tapioca starch. The results make clear that the gel strength, hardness, and chewiness of surimi gel were increased by molecular interaction with tapioca starch. At the appropriate addition amount (12%, w/w), the surimi gel had an excellent gel strength (17.48 N), water-holding capacity (WHC) (89.01%), lower cooking loss rate (CLR) (0.95%), and shortened T2 relaxation time. Microstructure analysis indicated that the addition of tapioca starch facilitated even distribution in the gel network structure, resulting in a significant reduction in cavity diameter, with the minimum diameter reduced to 20.33 µm. In addition, tapioca starch enhanced the hydrogen bonding and hydrophobic interaction in the gel system and promoted the transformation of α-helix to ß-sheet (p < 0.05). Correlation analysis showed that the increased physicochemical properties of surimi gel were closely related to the enhanced noncovalent interactions. In conclusion, noncovalent complexation with tapioca starch is an efficient strategy to enhance the quality of surimi gel.

10.
J Sci Food Agric ; 104(3): 1347-1356, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37814156

RESUMO

BACKGROUND: The present study aimed to investigate the effects of large yellow croaker roe phospholipids (LYCRPLs) on the physical properties of surimi gels and to clarify their interaction mechanism with myofibrillar proteins (MPs) in terms of chemical forces and the spatial conformation. RESULTS: LYCRPLs could improve the gel strength, textural properties, rheological properties and water-holding capacity of surimi gels. Moreover, the interaction mechanism between LYCRPLs with MPs was revealed through intermolecular forces, Fourier transform infrared spectroscopy and ultraviolet visible absorption spectroscopy. The findings demonstrated that LYCRPLs enhanced the surface hydrophobicity and particle size of MPs, facilitating expansion and cross-linking of MPs. CONCLUSION: These results provide a theoretical basis for improving the characteristics of surimi gels and thus facilitate the application of LYCRPLs in the aquatic food industry. © 2023 Society of Chemical Industry.


Assuntos
Proteínas de Peixes , Perciformes , Animais , Proteínas de Peixes/química , Manipulação de Alimentos/métodos , Géis/química , Interações Hidrofóbicas e Hidrofílicas , Produtos Pesqueiros/análise
11.
J Sci Food Agric ; 104(2): 1132-1142, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37737024

RESUMO

BACKGROUND: Adding appropriate exogenous substances is an effective means to improve the quality of freshwater fish surimi. The present study investigated the effects of chicken breast on the gel properties of mixed minced meat products. RESULTS: With the increase in the proportion of chicken breast, the breaking force of mixed gels gradually increased. When the addition ratio was 30:70, the gel strength of mixed gels had the highest strength of 759.00 g cm-1 and also the highest water holding capacity of 87.36%. Compared with surimi gels (0:100), the hardness, adhesiveness and chewiness of mixed gels were significantly improved. The increase in the proportion of chicken breast increased the thermal stability of the mixed sol and improved the rheological properties of the mixed sol. When the proportion was 40:60, the area of immobile water (A22 ) in the mixed gel increased significantly, and the highest A22 was 3463.24. The hydrophobic interactions and disulfide bonds in the mixed gel were significantly increased as a result of the addition of chicken breast. The results of microstructure, electrophoresis and Raman spectroscopy indicated that the addition of chicken breast promoted the cross-linking of the proteins in mixed gels, which facilitated the transformation of the protein secondary structure from α-helical to ß-folded structure, thus forming a more uniform and orderly network structure. CONCLUSION: These results suggest that improving the gel properties of silver carp surimi by use of chicken breast has practical implications for the development of new blended products for surimi processing. © 2023 Society of Chemical Industry.


Assuntos
Carpas , Proteínas de Peixes , Animais , Proteínas de Peixes/química , Galinhas , Manipulação de Alimentos/métodos , Géis/química , Água , Produtos Pesqueiros/análise
12.
J Texture Stud ; 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37968073

RESUMO

The effect of soybean oil (SO) on freeze-thaw (F-T)-treated surimi was investigated and its related mechanism was revealed by molecular dynamics (MD) simulations. The results displayed that SO has a disrupting effect on the structure of fresh samples. However, in the F-T-treated samples, surimi gels supplemented with SO had a more uniform microstructure. Simultaneously, when SO was added from 0% to 7% in the F-T-treated samples, the gel strength increased from 46.66 to 51.86 N · mm $$ 46.66\ \mathrm{to}\ 51.86\;\mathrm{N}\cdotp \mathrm{mm} $$ (p < .05), the physically bound water was increased from 92.90% to 94.15% (p < .05), and storage modulus was increased from 5939 to 6523 Pa. Triglycerides of SO generated hydrophobic interactions with myosin mainly in carbon chains. Computational results from MD simulations illustrated that the structure of myosin combined with triglycerides was more stable than that of myosin alone during temperature fluctuations (-20 to 4°C). During ice crystal growth, triglycerides absorbed on the myosin surface inhibited the growth of surrounding ice crystals and mitigated the ice crystal growth rate (from 7.54 to 5.99 cm/s). The addition of SO during the F-T treatments allowed myosin to be less negatively affected by ice crystal formation and temperature fluctuations and ultimately contributed to the formation of a more uniform network gel structure.

13.
Food Chem X ; 19: 100820, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37780301

RESUMO

The processing of surimi products requires the addition of high levels of salt, which makes it a high-salt food that poses a risk to human health. The search for exogenous additives to reduce the salt content of surimi products while ensuring their quality characteristics is crucial. Therefore, the effect of different species of cellulose on enhancing the quality characteristics of low-salt surimi gels was investigated and the best-modified cellulose was identified. Carboxymethyl cellulose (CMC), hydroxypropyl methylcellulose (HPMC), and microcrystalline cellulose (MCC) were selected for this study to compare with high-salt control and low-salt control. The results showed that cellulose could induce conformational transitions of proteins and promote the formation of an ordered and dense surimi gel network and the minimum porosity of 15.935% was obtained in the MCC-treated group. The cellulose-treated group conferred good textural properties to the surimi gels, significantly improved gel strength and water retention capacity (p < 0.05), and reduced the amount of water lost after cooking treatment (p < 0.05). Low-field NMR results showed that cellulose reduced the release of water, converting more free water to immobile water, thus increasing the water proton density. The higher energy storage modulus G' in the presence of cellulose indicated a more stable surimi gel system dominated by springiness. In summary, cellulose could confer better quality characteristics to low-salt surimi gels and MCC performance was superior to other cellulose species. This study helps the understanding of the mechanism of cellulose-surimi action on the development of high-quality low-salt surimi gels.

14.
J Sci Food Agric ; 103(15): 7877-7887, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37467419

RESUMO

BACKGROUND: Frozen storage often leads to quality deterioration of surimi-based products. At present, most of the research focuses on improving the quality of surimi products by adding cryoprotectants, and there are few studies available on preparation technology. Therefore, the effects of different gelation-freezing treatments, high temperature heating-freezing treatment (HF), low temperature heating-high temperature heating-freezing treatment (LHF) and low temperature heating-freezing-high temperature heating treatment (LFH) on the quality changes of surimi gels containing hydroxypropyl distarch phosphate (HPDSP) during frozen storage were investigated. RESULTS: With the extension of frozen storage time, the quality of surimi gel in all groups decreased, but the quality of surimi gel with HPDSP was better than that of surimi gel without HPDSP. Compared with HF and LHF, the change range of breaking force, hardness, gumminess, whiteness and disulfide bond content of HPDSP-surimi gel treated with LFH was the least during the frozen storage. In the reheating process of LFH, HPDSP could absorb the water lost during freezing. Therefore, the change in the transverse relaxation time of HPDSP-surimi gels treated with LFH was smaller, with more immobile water and less free water and P22 of 96.81% and P23 of 0% at 16 weeks. In addition, the breaking deformation, cohesiveness, resilience, springiness and protein composition of surimi gels with and without HPDSP treated with HF, LHF and LFH did not change significantly during frozen storage. CONCLUSION: The combination of LFH and HPDSP could effectively reduce the quality change of surimi gel during frozen storage. © 2023 Society of Chemical Industry.


Assuntos
Crioprotetores , Água , Congelamento , Crioprotetores/farmacologia , Géis/química , Produtos Pesqueiros/análise , Manipulação de Alimentos , Proteínas de Peixes/química
15.
Int J Biol Macromol ; 248: 125899, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37479203

RESUMO

In this study, the gel properties of ultrasonic alone, curdlan treatment alone, and the combination of both at low-salt surimi levels were investigated, mainly in terms of textural properties, water holding capacity, water distribution, dynamic rheology, protein secondary structure, microstructure and correlation analysis. The results showed that the springiness, gel strength, water holding capacity and energy storage modulus (G') of the low-salt surimi gels without ultrasonic or curdlan treatment were lower than those of the high-salt concentration surimi gels. Compared with the 1 % low-salt group, the ultrasonic treatment combination with curdlan resulted in a significant improvement (p < 0.05) in the texture, water holding capacity and energy storage modulus (G') of the low-salt surimi at the same salt concentration. The gel strength increased significantly from 3386.360 g·mm to 5457.203 g·mm, but there was no significant improvement in whiteness (p > 0.05). In addition, ultrasonic treatment combined with curdlan promoted the shift of the α-helix to the random coil and the ß-turn angle shift, thus exposing the internal groups, enhancing protein intermolecular interactions, and promoting the orderly aggregation of proteins, resulting in a microstructure of dense, and obtained the lowest porosity of 14.534 %. The present study might be necessary for promoting the high-value use of aquatic surimi products and the development of low-salt foods.


Assuntos
Manipulação de Alimentos , Ultrassom , Animais , Manipulação de Alimentos/métodos , Peixes , Géis/química , Cloreto de Sódio , Água/análise , Produtos Pesqueiros/análise , Proteínas de Peixes/química
16.
J Texture Stud ; 54(4): 582-594, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37400374

RESUMO

The aim of this study was to compare the investigations of various contents of egg white protein (2.0%-8.0%, EWP), microbial transglutaminase (0.1%-0.4%, MTGase), and konjac glucomannan (0.5%-2.0%, KGM) on the gelling properties and rheological behavior of Trachypenaeus Curvirostris shrimp surimi gel (SSG), and assessed the modification mechanisms through the analysis of structure characteristics. The findings suggested that all modified SSG samples (expect SSG-KGM2.0% ) had the higher gelling properties and the denser network structure than those of unmodified SSG. Meanwhile, EWP could give SSG a better appearance than MTGase and KGM. Rheological results showed that SSG-EWP6% and SSG-KGM1.0% had the highest G' and G″, demonstrating that the formation of higher levels of elasticity and hardness. All modifications could increase gelation rates of SSG along with the reduction of G″ during the degeneration of protein. According to the FTIR results, three modification methods changed SSG protein conformation with the increasing α-helix and ß-sheet contents and the decreasing of random coil content. LF-NMR results indicated that more free water could be transformed into immobilized water in the modified SSG gels, which contributed to improve the gelling properties. Furthermore, molecular forces showed that EWP and KGM could further increase the hydrogen bonds and hydrophobic interaction in SSG gels, while MTGase could induce the formation of more disulfide bonds. Thus, compared with another two modifications, EWP modified SSG gels showed the highest gelling properties.


Assuntos
Água , Elasticidade , Interações Hidrofóbicas e Hidrofílicas , Dureza , Géis/química , Água/análise
17.
Foods ; 12(11)2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37297396

RESUMO

In order to develop low-salt and healthy surimi products, we limited the amount of NaCl to 0.5 g/100 g in this work and studied the effect of CaCl2 (0, 0.5, 1.0, 1.5, and 2.0 g/100 g) on the 3D printing quality of low-salt surimi gel. The results of rheology and the 3D printing showed that the surimi gel with 1.5 g/100 g of CaCl2 added could squeeze smoothly from the nozzle and had good self-support and stability. The results of the chemical structure, chemical interaction, water distribution, and microstructure showed that adding 1.5 g/100 g of CaCl2 could enhance the water-holding capacity and mechanical strength (the gel strength, hardness, springiness, etc.) by forming an orderly and uniform three-dimensional network structure, which limited the mobility of the water and promoted the formation of hydrogen bonds. In this study, we successfully replaced part of the salt in surimi with CaCl2 and obtained a low-salt 3D product with good printing performance and sensory properties, which could provide theoretical support for the development of healthy and nutritious surimi products.

18.
Carbohydr Polym ; 305: 120550, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36737199

RESUMO

Inulin is a prebiotic carbohydrate widely used in food industry due to its health benefits and unique rheological properties. For the first time, this study explores the potential of natural inulin as a sustainable food additive to enhance surimi gel characteristics, specifically focusing on understanding its molecular weight effects. The good solubility of inulin facilitates the conversion of α-helix to other secondary conformations which are favorable for protein denaturation and aggregation during gelation. Moreover, the abundant -OH groups at the surface of inulin can boost the chemical forces within surimi proteins to reinforce the gel network. Compared to short-chain inulin, long-chain inulin can alleviate proteolysis, enhance hydrophobic interactions and intertwine with myosin molecules, thereby reinforcing the gel network. A more viscous long-chain inulin solution formed within surimi gels fills the space between aggregated proteins and facilitates the lock of water molecules, improving the water-holding capacity (WHC). Thus, an addition of 12 % long-chain inulin leads to an enhanced hardness of surimi gel from 943 to 1593 and improved WHC from 72 % to 85 %. A new inulin-myosin interaction mechanism model is also proposed to provide useful guidelines for surimi processing and expanding the application of inulin within the food industries.


Assuntos
Produtos Pesqueiros , Inulina , Peso Molecular , Produtos Pesqueiros/análise , Géis/química , Manipulação de Alimentos , Miosinas , Água
19.
Int J Biol Macromol ; 221: 61-70, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36063896

RESUMO

This study aimed to evaluate the combined effect of κ-carrageenan and salted duck egg white powder (SDEWP) in improving the gel quality of threadfin bream surimi. Effects of κ-carrageenan at different levels (0-2 %) on gel properties of threadfin bream surimi without and with salted duck egg white powder at 3 % (protein equivalent) were investigated. A combination of 0.5 % κ-carrageenan and SDEWP increased breaking force of surimi gel by 139.7 % and deformation by 55.1 %, compared to the control (P < 0.05). The expressible moisture content (EMC) was decreased by 50.0 % in the surimi gel added with 0.5 % κ-carrageenan and SDEWP. Hardness, cohesiveness, gumminess, and chewiness of surimi gel were also improved (P < 0.05). However, springiness of surimi gel was not affected. SDEWP reduced proteolytic degradation in surimi gel. Surimi gel with augmented whiteness was attained when κ-carrageenan was added at higher levels. Microstructure of surimi gel shown that the gel became denser and more uniform when added with 0.5 % κ-carrageenan and SDEWP. Therefore, κ-carrageenan can be used to enhance the effectiveness of SDEWP and further improve the gel quality of threadfin bream surimi added with SDEWP.


Assuntos
Patos , Clara de Ovo , Animais , Clara de Ovo/química , Carragenina , Pós , Proteínas de Peixes/química , Manipulação de Alimentos , Peixes/metabolismo , Géis/química , Cloreto de Sódio
20.
Ultrason Sonochem ; 88: 106065, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35724484

RESUMO

This study was conducted to evaluate the effects of extra virgin olive (EVO) oil incorporation on the physicochemical properties and microstructure of surimi gels subjected to ultrasound-assisted water-bath heating. As the oil content was increased from 0 to 5 g/100 g, the breaking force and gel strength of the surimi gels significantly decreased, while the whiteness level exhibited the opposite tendency irrespective of the heating method. Compared with the traditional water-bath heating method, the ultrasonic heating promoted the unfolding of the α-helix structure and intensified the formation of ß-sheet content and non-covalent bonds (ionic bonds, hydrogen bonds, and disulfide bonds), especially disulfide bonds, which contributed to the further crosslinking of the proteins and to gelation, thereby improving the gels' strength. In addition, smaller cavities and compact microstructures were observed in the low-oil (≤3 g/100 g) surimi gels under ultrasonic treatment, which effectively prevented water migration in the gel network and resulted in a high water holding capacity and uniform water distribution. However, the ultrasonic treatment barely remedied the poor microstructures of the high-oil (>3 g/100 g) surimi gels owing to oil coalescence, which weakened the protein-protein interaction. In conclusion, ultrasonic treatment combined with water-bath heating significantly improved the gelation properties of the low-oil surimi gels, although it did not remarkably improve those of the high-oil gels. The choice of a suitable oil concentration could be of great importance for the production and functioning of surimi products via ultrasound-assisted treatments.


Assuntos
Produtos Pesqueiros , Proteínas de Peixes , Dissulfetos , Produtos Pesqueiros/análise , Proteínas de Peixes/química , Manipulação de Alimentos/métodos , Géis/química , Azeite de Oliva , Ultrassom , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA