Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.994
Filtrar
1.
Macromol Rapid Commun ; : e2400303, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38991017

RESUMO

One method to improve the properties of covalent adaptable networks (CANs) is to reinforce them with a fraction of permanent cross-links without sacrificing their (re)processability. Here, a simple method to synthesize poly(n-hexyl methacrylate) (PHMA) and poly(n-lauryl methacrylate) (PLMA) networks containing static dialkyl disulfide cross-links (utilizing bis(2-methacryloyl)oxyethyl disulfide, or DSDMA, as a permanent cross-linker) and dynamic dialkylamino sulfur-sulfur cross-links (utilizing BiTEMPS methacrylate as a dissociative dynamic covalent cross-linker) is presented. The robustness and (re)processability of the CANs are demonstrated, including the full recovery of cross-link density after recycling. The authors also investigate the effect of static cross-link content on the stress relaxation responses of the CANs with and without percolated, static cross-links. As PHMA and PLMA have very different activation energies of their respective cooperative segmental mobilities, it is shown that the dissociative CANs without percolated, static cross-links have activation energies of stress relaxation that are dominated by the dissociation of BiTEMPS methacrylate cross-links rather than by the cooperative relaxations of backbone segments, i.e., the alpha relaxation. In CANs with percolated, static cross-links, the segmental relaxation of side chains, i.e., the beta relaxation, is critical in allowing for large-scale stress relaxation and governs their activation energies of stress relaxation.

2.
Radiography (Lond) ; 30 Suppl 1: 74-80, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38991461

RESUMO

OBJECTIVES: Based on a narrative review of the literature to 1) assess the need for and 2) report methods to help deliver a sustainable approach to iodinated contrast media (ICM) administration. KEY FINDINGS: Acute ICM shortages have been noted in the literature. As demand for contrast-enhanced imaging continues to increase and access to raw materials becomes more limited, such events may increase. Evidence from the literature has documented a range of iodinated contrast reduction strategies. These include individualised contrast-media dosing, multi-dose bulk ICM vials, switching to alternative modalities or the increased use of non-contrast examinations. The optimisation of imaging parameters, the use of saline chasers, and alternative contrast agents should be further considered. Given the rising concerns regarding the presence and effects of ICMs in waste and drinking water, further consideration of strategies for managing waste and excreted ICMs are starting to emerge. CONCLUSIONS: Sustainable ICM practices are needed to help avoid supply shortages and to help protect our environment. Such practices must be led and supported locally, nationally, and internationally. Sustainable ICM practices must be reflected within professional Standards of Proficiencies and be adopted by all members of the multidisciplinary team. IMPLICATIONS FOR PRACTICE: Changes to working practices surrounding the sustainable use of ICMs will likely become commonplace. New methods to ensure optimised ICM dosage with minimal wastage will be more heavily featured in departmental practices. Correct disposal of waste and excreted ICMs will also form part of future changes to practice.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38991856

RESUMO

The choice of maintenance anesthetic during cardiopulmonary bypass has been a subject of ongoing debate. Systematic reviews on the topic have so far failed to demonstrate a difference between volatile agents and total intravenous anesthesia (TIVA) in terms of mortality, myocardial injury, and neurological outcomes. Studies using animal models and noncardiac surgical populations suggest numerous mechanisms whereby TIVA has been associated with more favorable outcomes. However, even if the different anesthetic methods are assumed to equivalent in terms of patient outcomes in the context of cardiac surgery, additional factors, namely variables of occupational exposure and environmental impact, strongly support the preferred use of TIVA.

4.
Sci Rep ; 14(1): 16021, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992055

RESUMO

Environmental conditions profoundly impact the health, welfare, and productivity of laying hens in commercial poultry farming. We investigated the association between microclimate variations, production indices, and histopathological responses to accidental Newcastle disease virus (NDV) infection within a controlled closed-house system. The study was conducted over seven months in a laying hen facility in Cairo, Egypt. Microclimate measurements included temperature, relative humidity (RH%), air velocity (AV), and the temperature humidity index (THI) that were obtained from specific locations on the front and back sides of the facility. Productivity indices, including the egg production percentage (EPP), egg weight (EW), average daily feed intake, and feed conversion ratio, were assessed monthly. During an NDV outbreak, humoral immune responses, gross pathology, and histopathological changes were evaluated. The results demonstrated significant (p < 0.05) variations in EPP and EW between the front and back sides except in April and May. AV had a significant (p = 0.006) positive effect (Beta = 0.346) on EW on the front side. On the back side, AV had a significant (p = 0.001) positive effect (Beta = 0.474) on EW, while it negatively influenced (p = 0.027) EPP (Beta = - 0.281). However, temperature, RH%, and THI had no impact and could not serve as predictors for EPP or EW on either farm side. The humoral immune response to NDV was consistent across microclimates, highlighting the resilience of hens. Histopathological examination revealed characteristic NDV-associated lesions, with no significant differences between the microclimates. This study underscores the significance of optimizing microclimate conditions to enhance laying performance by providing tailored environmental management strategies based on seasonal variations, ensuring consistent airflow, particularly near cooling pads and exhaust fans, and reinforcing the importance of biosecurity measures under field challenges with continuous monitoring and adjustment.


Assuntos
Galinhas , Doença de Newcastle , Vírus da Doença de Newcastle , Doenças das Aves Domésticas , Animais , Doença de Newcastle/virologia , Galinhas/virologia , Feminino , Vírus da Doença de Newcastle/fisiologia , Doenças das Aves Domésticas/virologia , Egito , Microclima , Temperatura
6.
J Biol Chem ; : 107546, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38992435

RESUMO

In seeding plants, biosynthesis of the phytohormone ethylene, which regulates processes including fruit ripening and senescence, is catalyzed by 1-aminocyclopropyl-1-carboxylic acid (ACC) oxidase. The plant pathogen Pseudomonas savastanoi (previously classified as: P. syringae) employs a different type of ethylene-forming enzyme (psEFE), though from the same structural superfamily as ACC oxidase, to catalyze ethylene formation from 2-oxoglutarate (2OG) in an arginine dependent manner. psEFE also catalyzes the more typical oxidation of arginine to give L-Δ1-pyrroline-5-carboxylate (P5C), a reaction coupled to oxidative decarboxylation of 2OG giving succinate and CO2. We report on the effects of C3 and/or C4 substituted 2OG derivatives on the reaction modes of psEFE. 1H NMR assays, including using the pure shift method, reveal that, within our limits of detection, none of the tested 2OG derivatives is converted to an alkene; some are converted to the corresponding ß-hydroxypropionate or succinate derivatives, with only the latter being coupled to arginine oxidation. The NMR results reveal that the nature of 2OG derivatization can affect the outcome of the bifurcating reaction, with some 2OG derivatives exclusively favoring the arginine oxidation pathway. Given that some of the tested 2OG derivatives are natural products, the results are of potential biological relevance. There are also opportunities for therapeutic or biocatalytic regulation of the outcomes of reactions catalyzed by 2OG-dependent oxygenases by the use of 2OG derivatives.

7.
Front Vet Sci ; 11: 1429218, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38993281

RESUMO

Introduction: Recently, increasing effort has been directed toward environmental sustainability in pet food. The aim of this study was to evaluate the extrusion parameters, nutrient digestibility, fecal characteristics, palatability and insulinemic and glycaemic curves of a complete diet for dogs in which the main carbohydrate source was a red lentil pasta by-product (LP). Methods: Five experimental diets were formulated: a basal diet (CO) based on rice and a poultry by-product meal; three experimental diets where LP substituted rice at 33, 66, or 100% (LP33, LP66, and LP100, respectively); and a diet formulated on 70% of the basal diet (CO) plus 30% LP (LPS) to evaluate the digestibility of LP ingredient. Results and discussion: The extruder pressure, hardness and bulk density of the kibble increased in a linear manner with increasing LP percentage (P < 0.05), without affecting starch gelatinization. According to polynomial contrast analysis, rice replacement with LP at 33 and 66% caused no reduction in apparent total tract digestibility coefficient (ATTDC), with similar or higher values compared with the CO diet. Nitrogen balance did not change (P > 0.05), but we observed a linear increase in feces production and moisture content as the LP inclusion rate rose and a linear decrease in feces pH (P < 0.05). Nevertheless, the fecal score was unaffected. Fecal acetate, propionate, total short-chain fatty acids (SCFA), branched-chain fatty acids, and lactate all increased linearly as the LP inclusion rate increased (P < 0.05), without altering ammonia concentration in feces. Feces concentrations of cadaverine, tyramine, histamine, and spermidine also increased in a linear manner with increasing LP inclusion (P < 0.05). The fermentation of LP dietary fiber by the gut microbiota increased the concentration of desirable fermentation by-products, including SCFA and spermidine. The post-prandial glucose and insulin responses were lower in the dogs fed the LP100 diet compared with CO, suggesting the possible use of this ingredient in diets designed to generate a low glycaemic response. Finally, the palatability study results showed a preference for the LP100 ration in both the "first choice" and the "consumption rate" evaluation (P < 0.05). This trial reveals how a by-product discarded from the human-grade food chain retains both its nutritional and organoleptic properties.

8.
Heliyon ; 10(11): e32306, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38947464

RESUMO

This study aims to conduct a bibliometric analysis to determine trends and emerging research directions of sustainable aviation between 2001 and 2023. 726 studies indexed in the Web of Science were examined through VOSviewer software. Science mapping and performance analyses were implemented to demonstrate a systematic quantitative review and the characteristics of the research area. Moreover, by using co-occurrence of keywords, citation, bibliographic coupling, co-authorship, and co-citation analyses, the trends of the research area were revealed in detail. Findings indicated that the publications on sustainable aviation literature were mainly conducted between 2020 and 2023. Research areas of the publications were mainly on "engineering" and "energy fuels". In terms of number of the publications, "International Journal of Sustainable Aviation Fuel" was the most productive source and Heyne was the most productive author. Co-occurrence analysis demonstrated that "sustainable aviation fuel" was the most frequently used keyword. Furthermore, sustainable aviation research has shifted in focus toward more challenging and technology-oriented research over time. Citation analysis indicated that the most cited author was Heyne, the most cited study was Ma et al.'s study on "Aviation biofuel from renewable resources: routes, opportunities and challenges" and the most cited sources was "Energy". Among countries, the U.S.A was the most cited country and Chinese Academy of Sciences was the most cited organization. Bibliographic analysis showed that Heyne was the author with the highest connection strength. Co-authorship analysis demonstrated that Washington State University was the most collaborative organization. Finally, co-citation analysis of cited references indicated that fundamental subjects and related references were mainly sustainable aviation fuel, production of sustainable aviation fuel and its use in aviation studies. It is anticipated that results of this study would contribute to sustainable aviation research and ensure guidance and new perspectives for future research topics and directions on sustainable aviation.

9.
Int J Biol Macromol ; 275(Pt 1): 133577, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38960254

RESUMO

The ongoing challenge of water scarcity persists alongside a concerning rise in water pollution driven by population expansion and industrial development. As a result, urgent measures are imperative to address the pressing need for a clean and sustainable water supply. In this study, a sustainable and green approach was utilized to prepare four chitosan-based sponges from a chemically modified chitosan with different alkyl chains in aqueous medium and at room temperature. The resulting sponges displayed excellent stability in water with outstanding dye removal efficiency. The adsorption capacity was associated with the alkyl chain length incorporated to the polymer backbone. All sponges displayed a high adsorption capacity of methyl orange (MO) ranges between 238 and 380 mg g-1, while a low capacity were obtained for methylene blue (MB) and Rhodamine B (RB). Competitive adsorption experiments were conducted on binary and ternary mixtures to assess the selective removal of MO from a mixture of dyes in which the separation factor was found to be ranging between 1.6 and 32. The adsorption kinetics isotherms of all sponges followed the pseudo-second-order, and the Langmuir model was found to be more suitable than the Freundlich for the adsorption of MO on the sponges. The chitosan-based sponges showed stable performance, robustness and reusability over 5 adsorption-desorption cycles, indicating their great potential for water treatment applications.

10.
Front Bioeng Biotechnol ; 12: 1426208, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962663

RESUMO

Phosphorus (P) is essential for biological systems, playing a pivotal role in energy metabolism and forming crucial structural components of DNA and RNA. Yet its bioavailable forms are scarce. Phytate, a major form of stored phosphorus in cereals and soils, is poorly bioavailable due to its complex structure. Phytases, enzymes that hydrolyze phytate to release useable phosphorus, are vital in overcoming this limitation and have significant biotechnological applications. This study employed novel method to isolate and characterize bacterial strains capable of metabolizing phytate as the sole carbon and phosphorus source from the Andes mountains soils. Ten strains from the genera Klebsiella and Chryseobacterium were isolated, with Chryseobacterium sp. CP-77 and Klebsiella pneumoniae CP-84 showing specific activities of 3.5 ± 0.4 nkat/mg and 40.8 ± 5 nkat/mg, respectively. Genomic sequencing revealed significant genetic diversity, suggesting CP-77 may represent a novel Chryseobacterium species. A fosmid library screening identified several phytase genes, including a 3-phytase in CP-77 and a glucose 1-phosphatase and 3-phytase in CP-84. Phylogenetic analysis confirmed the novelty of these enzymes. These findings highlight the potential of phytase-producing bacteria in sustainable agriculture by enhancing phosphorus bioavailability, reducing reliance on synthetic fertilizers, and contributing to environmental management. This study expands our biotechnological toolkit for microbial phosphorus management and underscores the importance of exploring poorly characterized environments for novel microbial functions. The integration of direct cultivation with metagenomic screening offers robust approaches for discovering microbial biocatalysts, promoting sustainable agricultural practices, and advancing environmental conservation.

11.
Nurs Philos ; 25(3): e12488, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38963874

RESUMO

Emancipatory practice development (ePD) is a practitioner-led research methodology which enables workplace transformation. Underpinned by the critical paradigm, ePD works through facilitation and workplace learning, with people in their local context on practice issues that are significant to them. Its purpose is to embed safe, person-centred learning cultures which transform individuals and workplaces. In this article, we critically reflect on a year-long ePD study in an acute care hospital ward. We explore the challenges of practice change within systems, building collective strength with frontline collaborations and leadership to sustain new learning cultures. Our work advances practice development dialogue through working closely with the underpinning theories. Our critique analyses how ePD can enact and sustain change within a complex system. We argue that ePD works to strengthen safety cultures by challenging antidemocratic practices through communicative action. By opening communicative spaces, ePD enables staff to collectively deliberate and reach consensus. Their raised awareness supports staff to resist ways of working which conspire against safe patient care. Sustainability of practice change is fostered by the co-operative democracies created within the frontline team and meso level enablement. We conclude that the democratising potential of ePDt generates staff agency at the frontline.


Assuntos
Local de Trabalho , Humanos , Local de Trabalho/psicologia , Local de Trabalho/normas , Democracia , Liderança , Cultura Organizacional
12.
J Environ Manage ; 365: 121603, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38963967

RESUMO

Water treatment has turned out to be more important in most societies due to the expansion of most economies and to advancement of industrialization. Developing efficient materials and technologies for water treatment is of high interest. Thin film nanocomposite membranes are regarded as the most effective membranes available for salts, hydrocarbon, and environmental pollutants removal. These membranes improve productivity while using less energy than conventional asymmetric membranes. Here, the polyvinylidene fluoride (PVDF) membranes have been successfully modified via dip single-step coating by silica-aminopropyl triethoxysilane/trimesic acid/melamine nanocomposite (Si-APTES-TA-MM). The developed membranes were evaluated for separating the emulsified oil/water mixture, the surface wettability of the membrane materials is therefore essential. During the conditioning step, that is when the freshwater was introduced, the prepared membrane reached a flux of about 27.77 L m-2 h-1. However, when the contaminated water was introduced, the flux reached 18 L m-2 h-1, alongside an applied pressure of 400 kPa. Interestingly, during the first 8 h of the filtration test, the membrane showed 90 % rejection for ions including Mg2+, and SO42- and ≈100 % for organic pollutants including pentane, isooctane, toluene, and hexadecane. Also, the membrane showed 98 % rejection for heavy metals including strontium, lead, and cobalt ions. As per the results, the membrane could be recommended as a promising candidate to be used for a mixture of salt ions, hydrocarbons, and mixtures of heavy metals from wastewater.

13.
J Acad Nutr Diet ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38964713

RESUMO

BACKGROUND: Systems thinking is recommended, but not required, for teaching food and water system sustainability in nutrition and dietetics education. OBJECTIVE: This study investigated systems thinking and sustainable, resilient, and healthy food and water systems (SRHFWS) in nutrition and dietetics programs. It examined program directors' practices, values, attitudes, confidence levels, and the relationships between systems thinking, teaching SRHFWS topics, confidence levels, and years of experience as a dietitian and program director. DESIGN: Conducted in September 2022, the study used a descriptive design with a validated 20-item Systems Thinking Scale (STS) and a researcher-designed survey with 1-5 Likert-type scales. PARTICIPANTS/SETTING: The online survey was distributed to 611 Accreditation Council for Education in Nutrition and Dietetics (ACEND) program directors, with a 27% (n=163) response. STATISTICAL ANALYSIS: Descriptive statistics (frequency, mean, standard deviation) were calculated using Excel. Inferential statistics were examined using R. ANOVA was used to compare experience as RDN and experience as a program director to confidence levels in teaching each SRHFWS topic. Linear regression was used determine the relationship between total STS score and demographic and programmatic variables. RESULTS: Seventy-seven percent of program directors scored high on the STS (mean score 65.2, on a 0-80 scale, SD 8.4), and more than 85% of directors agreed including systems thinking in dietetics was important. However, only 32.1% reported teaching systems thinking. Less than half of program directors agreed systems thinking was adequately addressed in ACEND standards, and nearly 80% of program directors agreed there was room to strengthen systems thinking content. Directors neither agreed nor disagreed there are adequate ACEND standards addressing SRHFWS and reported SRHFWS topics were inconsistently taught. Confidence levels were lowest for teaching economic and environmental topics. Awareness and use of resources developed by the Academy of Nutrition and Dietetics Foundation was low. CONCLUSIONS: Integration of systems thinking in nutrition and dietetics education presents promising opportunities to address complexity in the field. Applying systems thinking to teach SRHFWS may narrow the disparity between educators' perceived importance and program coverage. Enhancing program directors' awareness and utilization of Foundation resources and improved alignment between practice standards and accreditation standards may empower program directors to use systems thinking to teach sustainability-related challenges in nutrition and dietetics.

15.
Artigo em Inglês | MEDLINE | ID: mdl-38965654

RESUMO

Inspired by animals with a slippery epidermis, durable slippery antibiofouling coatings with liquid-like wetting buckled surfaces are successfully constructed in this study by combining dynamic-interfacial-release-induced buckling with self-assembled silicon-containing diblock copolymer (diBCP). The core diBCP material is polystyrene-block-poly(dimethylsiloxane) (PS-b-PDMS). Because silicon-containing polymers with intrinsic characters of low surface energy, they easily flow over and cover a surface after it has undergone controlled thermal treatment, generating a slippery wetting layer on which can eliminate polar interactions with biomolecules. Additionally, microbuckled patterns result in curved surfaces, which offer fewer points at which organisms can attach to the surface. Different from traditional slippery liquid-infused porous surfaces, the proposed liquid-like PDMS wetting layer, chemically bonded with PS, is stable and slippery but does not flow away. PS-b-PDMS diBCPs with various PDMS volume fractions are studied to compare the influence of PDMS segment length on antibiofouling performance. The surface characteristics of the diBCPs─ease of processing, transparency, and antibiofouling, anti-icing, and self-cleaning abilities─are examined under various conditions. Being able to fabricate ecofriendly silicon-based lubricant layers without needing to use fluorinated compounds and costly material precursors is an advantage in industrial practice.

16.
J Environ Manage ; 366: 121735, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38972189

RESUMO

By 2050, approximately 43 million tons of wind-turbine blade (WTB) waste materials will have accumulated, emphasizing the critical importance of effective waste management strategies for WTBs at the end of their life cycle to ensure sustainability. Comparing current WTB waste management methods, reuse emerges as a highly-sustainable method that can also serve as a sustainable solution to environmental challenges, including global warming and natural resource depletion associated with civil engineering activities. This paper presents a comprehensive review of sustainable solutions for reusing WTB waste materials in civil engineering applications. Repurposing WTB waste materials as structural elements in housing, urban furniture, recreational facilities, and slow-traffic infrastructure can be a viable option. WTB waste can also be utilized in powder, fiber, and aggregate forms as an eco-friendly material for construction and pavement (e.g., mortar, concrete, asphalt) to replace cement and natural resource aggregates while meeting necessary strength and performance standards. Through a detailed analysis of reusing WTB waste materials, economic and environmental challenges are also discussed. According to the findings, the properties of mortar, concrete, and asphalt can be affected by the type, shape, and content of fibers, polymers, and impurities present in the blades, as well as the cutting direction. Furthermore, while reuse is considered a sustainable end-of-life (EoL) option for WTB waste management from both economic and environmental perspectives, further research is required to fully understand the environmental consequences of this method.

17.
Surgeon ; 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38972805

RESUMO

BACKGROUND: Climate change has been identified by the World Health Organization (WHO) as the greatest existing threat to human health. Given the direct exposure of the upper aerodigestive system to pollutants, patients in otolaryngology are at high risk for increased disease burden in the setting of climate change and worsening air quality. Given this and the environmental impact of surgical care, it is essential for surgeons to understand their role in addressing climate health through quality-driven clinical initiatives, education, advocacy, and research. METHODS: A state-of-the-art review was performed of the existing literature on the otolaryngologic health impacts of climate change and environmental sustainability efforts in surgery with specific attention to studies in otolaryngology - head and neck surgery. FINDINGS: Climate variables including heat and air pollution are associated with increased incidence of allergic rhinitis, chronic rhinosinusitis and head and neck cancer. A number of studies have shown that sustainability initiatives in otolaryngology are safe and provide direct cost benefit. CONCLUSION: Surgeons have the opportunity to lead on climate health and sustainability to address the public health burden of climate change.

18.
Crit Rev Food Sci Nutr ; : 1-17, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38973295

RESUMO

With the increased environmental concerns and health awareness among consumers, there has been a notable interest in plant-based dairy alternatives. The plant-based yogurt market has experienced rapid expansion in recent years. Due to challenges related to cultivation, higher cost of production and lower protein content researchers have explored the viability of pulse-based yogurt which has arisen as an economically and nutritionally abundant solution. This review aims to examine the feasibility of utilizing pulse protein for yogurt production. The nutritional, antinutritional, and functional characteristics of various pulses were discussed in detail, alongside the modifications in these properties during the various stages of yogurt manufacturing. The review also sheds light on pivotal findings from existing literature and outlines challenges associated with the production of pulse-based yogurt. Pulses have emerged as promising base materials for yogurt manufacturing due to their favorable nutritional and functional characteristics. Further, the fermentation process can effectively reduce antinutritional components and enhance digestibility. Nonetheless, variations in sensorial and rheological properties were noted when different types of pulses were employed. This issue can be addressed by employing suitable combinations to achieve the desired properties in pulse-based yogurt.

19.
Comput Struct Biotechnol J ; 25: 105-126, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38974014

RESUMO

The adoption of innovative advanced materials holds vast potential, contingent upon addressing safety and sustainability concerns. The European Commission advocates the integration of Safe and Sustainable by Design (SSbD) principles early in the innovation process to streamline market introduction and mitigate costs. Within this framework, encompassing ecological, social, and economic factors is paramount. The NanoSafety Cluster (NSC) delineates key safety and sustainability areas, pinpointing unresolved issues and research gaps to steer the development of safe(r) materials. Leveraging FAIR data management and integration, alongside the alignment of regulatory aspects, fosters informed decision-making and innovation. Integrating circularity and sustainability mandates clear guidance, ensuring responsible innovation at every stage. Collaboration among stakeholders, anticipation of regulatory demands, and a commitment to sustainability are pivotal for translating SSbD into tangible advancements. Harmonizing standards and test guidelines, along with regulatory preparedness through an exchange platform, is imperative for governance and market readiness. By adhering to these principles, the effective and sustainable deployment of innovative materials can be realized, propelling positive transformation and societal acceptance.

20.
Sci Total Environ ; 946: 174373, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38964399

RESUMO

The contamination of water sources with heavy metals, dyes, and other pollutants poses significant challenges to environmental sustainability and public health. Traditional water treatment methods often exhibit limitations in effectively addressing these complex contaminants. In response, recent developments in nanotechnology have catalyzed the exploration of novel materials for water remediation, with nanoparticle-doped zeolites emerging as a promising solution. This comprehensive review synthesizes current literature on the integration of nanoparticles into zeolite frameworks for enhanced contaminant removal in water treatment applications. We delve into synthesis methodologies, elucidate mechanistic insights, and evaluate the efficacy of nanoparticle-doped zeolites in targeting specific pollutants, while also assessing considerations of material stability and environmental impact. The review underscores the superior adsorptive and catalytic properties of nanoparticle-doped zeolites, owing to their high surface area, tailored porosity, and enhanced ion-exchange capabilities. Furthermore, we highlight recent advancements in heavy metal and organic pollutant uptake facilitated by these materials. Additionally, we explore the catalytic degradation of contaminants through advanced oxidation processes, demonstrating the multifunctionality of nanoparticle-doped zeolites in water treatment. By providing a comprehensive analysis of existing research, this review aims to guide future developments in the field, promoting the sustainable utilization of nanoparticle-doped zeolites as efficient and versatile materials for water remediation endeavors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...