Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 231
Filtrar
1.
Mol Genet Genomics ; 299(1): 82, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39196386

RESUMO

Blue mold, caused by Penicillium italicum, is one of the main postharvest diseases of citrus fruits during storage and marketing. The pathogenic mechanism remains largely unclear. To explore the potential pathogenesis-related genes of this pathogen, a T-DNA insertion library of P. italicum PI5 was established via Agrobacterium tumefaciens-mediated transformation (ATMT). The system yielded 200-250 transformants per million conidia, and the transformants were genetically stable after five generations of successive subcultures on hygromycin-free media. 2700 transformants were obtained to generate a T-DNA insertion library of P. italicum. Only a few of the 200 randomly selected mutants exhibited significantly weakened virulence on citrus fruits, with two mutants displaying attenuated sporulation. The T-DNA in the two mutants existed as a single copy. Moreover, the mutant genes PiBla (PITC_048370) and PiFTF1 (PITC_077280) identified may be involved in conidia production by regulating expressions of the key regulatory components for conidiogenesis. These results demonstrated that the ATMT system is useful to obtain mutants of P. italicum for further investigation of the molecular mechanisms of pathogenicity and the obtained two pathogenesis-related genes might be novel loci associated with pathogenesis and conidia production.


Assuntos
Agrobacterium tumefaciens , Penicillium , Transformação Genética , Penicillium/genética , Penicillium/patogenicidade , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/patogenicidade , Citrus/microbiologia , Virulência/genética , Mutação , Esporos Fúngicos/genética , Esporos Fúngicos/patogenicidade , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , DNA Bacteriano/genética , Mutagênese Insercional , Genes Fúngicos/genética
2.
Gene ; 923: 148577, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-38762016

RESUMO

Agrobacteria-mediated transformation is widely used in plant genetic engineering to introduce exogenous genes and create mutant lines through random T-DNA insertion and gene disruption. When T-DNA fragments are inserted into the plant genome, it could cause chromosomal abnormalities. In this study, we investigated the genetic basis of pleiotropic phenotypes observed in the T-DNA insertion mutant lnc161. We discovered that there are four T-DNA insertions present in the lnc161 genome, which disrupted the genes LNC161 (AT3G05035), AT3G57400, AT5G05630, and AT5G16450, respectively. However, none of these insertions were the causative mutation that leads to the lnc161 phenotypes. Strikingly, through genetic analyses and high throughput sequencing, we found an inversion of about 19.8 Mb sequences between LNC161 and AT3G57400. Moreover, the sequences between AT5G05630 and AT5G16450 (about 3.7 Mb) were translocated from chromosome 5 to chromosome 3, adjacent to the inversion sequences, and were duplicated. This duplication led to an up-regulation of genes expression in this region, potentially resulting in pleiotropic morphological traits in lnc161. Overall, this study provides a case showing complex chromosomal re-arrangement induced by T-DNA insertion.


Assuntos
Arabidopsis , Inversão Cromossômica , DNA Bacteriano , Duplicação Gênica , Mutagênese Insercional , Inversão Cromossômica/genética , Arabidopsis/genética , DNA Bacteriano/genética , Cromossomos de Plantas/genética , Genoma de Planta , Fenótipo , Regulação da Expressão Gênica de Plantas
3.
Data Brief ; 54: 110309, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38559820

RESUMO

The present work reports on the determination of localization of T-DNA insertion in Arabidopsis thaliana SALK_146824C line. The line is characterized as deficient in GDP-l-galactose phosphorylase 1 (VTC2) gene encodes a protein involved in ascorbate biosynthesis. Primer pairs allow to distinguishing SALK_146824C from wild type plants and to the exact localization of the insertion were designed used. Sanger sequencing confirmed the location of the T-DNA insertion in the sixth exon of the gene. RT-PCR data shows nearly undetectable levels of VTC2 mRNA expression level in SALK_146824C line as compared with wild type plants of Columbia-0 line. Localization of the primer pair upstream and downstream the T-DNA insertion did not affect the expression values.

4.
Front Microbiol ; 15: 1352989, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38435693

RESUMO

Purpureocillium lavendulum is an important biocontrol agent against plant-parasitic nematodes, primarily infecting them with conidia. However, research on the regulatory genes and pathways involved in its conidiation is still limited. In this study, we employed Agrobacterium tumefaciens-mediated genetic transformation to generate 4,870 random T-DNA insertion mutants of P. lavendulum. Among these mutants, 131 strains exhibited abnormal conidiation, and further in-depth investigations were conducted on two strains (designated as #5-197 and #5-119) that showed significantly reduced conidiation. Through whole-genome re-sequencing and genome walking, we identified the T-DNA insertion sites in these strains and determined the corresponding genes affected by the insertions, namely Plhffp and Plpif1. Both genes were knocked out through homologous recombination, and phenotypic analysis revealed a significant difference in conidiation between the knockout strains and the wild-type strain (ku80). Upon complementation of the ΔPlpif1 strain with the corresponding wildtype allele, conidiation was restored to a level comparable to ku80, providing further evidence of the involvement of this gene in conidiation regulation in P. lavendulum. The knockout of Plhffp or Plpif1 reduced the antioxidant capacity of P. lavendulum, and the absence of Plhffp also resulted in decreased resistance to SDS, suggesting that this gene may be involved in the integrity of the cell wall. RT-qPCR showed that knockout of Plhffp or Plpif1 altered expression levels of several known genes associated with conidiation. Additionally, the analysis of nematode infection assays with Caenorhabditis elegans indicated that the knockout of Plhffp and Plpif1 indirectly reduced the pathogenicity of P. lavendulum towards the nematodes. The results demonstrate that Agrobacterium tumefaciens - mediated T-DNA insertion mutagenesis, gene knockout, and complementation can be highly effective for identifying functionally important genes in P. lavendulum.

5.
PNAS Nexus ; 3(3): pgae094, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38463035

RESUMO

A practical and powerful approach for genome editing in plants is delivery of CRISPR reagents via Agrobacterium tumefaciens transformation. The double-strand break (DSB)-inducing enzyme is expressed from a transferred segment of bacterial DNA, the T-DNA, which upon transformation integrates at random locations into the host genome or is captured at the self-inflicted DSB site. To develop efficient strategies for precise genome editing, it is thus important to define the mechanisms that repair CRISPR-induced DSBs, as well as those that govern random and targeted integration of T-DNA. In this study, we present a detailed and comprehensive genetic analysis of Cas9-induced DSB repair and T-DNA capture in the model plant Arabidopsis thaliana. We found that classical nonhomologous end joining (cNHEJ) and polymerase theta-mediated end joining (TMEJ) are both, and in part redundantly, acting on CRISPR-induced DSBs to produce very different mutational outcomes. We used newly developed CISGUIDE technology to establish that 8% of mutant alleles have captured T-DNA at the induced break site. In addition, we find T-DNA shards within genomic DSB repair sites indicative of frequent temporary interactions during TMEJ. Analysis of thousands of plant genome-T-DNA junctions, followed up by genetic dissection, further reveals that TMEJ is responsible for attaching the 3' end of T-DNA to a CRISPR-induced DSB, while the 5' end can be attached via TMEJ as well as cNHEJ. By identifying the mechanisms that act to connect recombinogenic ends of DNA molecules at chromosomal breaks, and quantifying their contributions, our study supports the development of tailor-made strategies toward predictable engineering of crop plants.

6.
J Exp Bot ; 75(11): 3248-3258, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38477707

RESUMO

T-DNA transformation is prevalent in Arabidopsis research and has expanded to a broad range of crops and model plants. While major progress has been made in optimizing the Agrobacterium-mediated transformation process for various species, a variety of pitfalls associated with the T-DNA insertion may lead to the misinterpretation of T-DNA mutant analysis. Indeed, secondary mutagenesis either on the integration site or elsewhere in the genome, together with epigenetic interactions between T-DNA inserts or frequent genomic rearrangements, can be tricky to differentiate from the effect of the knockout of the gene of interest. These are mainly the case for genomic rearrangements that become balanced in filial generations without consequential phenotypical defects, which may be confusing particularly for studies that aim to investigate fertility and gametogenesis. As a cautionary note to the plant research community studying gametogenesis, we here report an overview of the consequences of T-DNA-induced secondary mutagenesis with emphasis on the genomic imbalance on gametogenesis. Additionally, we present a simple guideline to evaluate the T-DNA-mutagenized transgenic lines to decrease the risk of faulty analysis with minimal experimental effort.


Assuntos
DNA Bacteriano , DNA Bacteriano/genética , Mutagênese , Arabidopsis/genética , Plantas Geneticamente Modificadas/genética , Reprodução/genética
7.
Front Plant Sci ; 15: 1330429, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38419775

RESUMO

Before the commercialization of genetically modified crops, the events carrying the novel DNA must be thoroughly evaluated for agronomic, nutritional, and molecular characteristics. Over the years, polymerase chain reaction-based methods, Southern blot, and short-read sequencing techniques have been utilized for collecting molecular characterization data. Multiple genomic applications are necessary to determine the insert location, flanking sequence analysis, characterization of the inserted DNA, and determination of any interruption of native genes. These techniques are time-consuming and labor-intensive, making it difficult to characterize multiple events. Current advances in sequencing technologies are enabling whole-genomic sequencing of modified crops to obtain full molecular characterization. However, in polyploids, such as the tetraploid potato, it is a challenge to obtain whole-genomic sequencing coverage that meets the regulatory approval of the genetic modification. Here we describe an alternative to labor-intensive applications with a novel procedure using Samplix Xdrop® enrichment technology and next-generation Nanopore sequencing technology to more efficiently characterize the T-DNA insertions of four genetically modified potato events developed by the Feed the Future Global Biotech Potato Partnership: DIA_MSU_UB015, DIA_MSU_UB255, GRA_MSU_UG234, and GRA_MSU_UG265 (derived from regionally important varieties Diamant and Granola). Using the Xdrop® /Nanopore technique, we obtained a very high sequence read coverage within the T-DNA and junction regions. In three of the four events, we were able to use the data to confirm single T-DNA insertions, identify insert locations, identify flanking sequences, and characterize the inserted T-DNA. We further used the characterization data to identify native gene interruption and confirm the stability of the T-DNA across clonal cycles. These results demonstrate the functionality of using the Xdrop® /Nanopore technique for T-DNA characterization. This research will contribute to meeting regulatory safety and regulatory approval requirements for commercialization with small shareholder farmers in target countries within our partnership.

8.
Plant J ; 118(1): 255-262, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38402589

RESUMO

Precise genetic modification can be achieved via a sequence homology-mediated process known as gene targeting (GT). Whilst established for genome engineering purposes, the application of GT in plants still suffers from a low efficiency for which an explanation is currently lacking. Recently reported reduced rates of GT in A. thaliana deficient in polymerase theta (Polθ), a core component of theta-mediated end joining (TMEJ) of DNA breaks, have led to the suggestion of a direct involvement of this enzyme in the homology-directed process. Here, by monitoring homology-driven gene conversion in plants with CRISPR reagent and donor sequences pre-integrated at random sites in the genome (in planta GT), we demonstrate that Polθ action is not required for GT, but instead suppresses the process, likely by promoting the repair of the DNA break by end-joining. This finding indicates that lack of donor integration explains the previously established reduced GT rates seen upon transformation of Polθ-deficient plants. Our study additionally provides insight into ectopic gene targeting (EGT), recombination events between donor and target that do not map to the target locus. EGT, which occurs at similar frequencies as "true" GT during transformation, was rare in our in planta GT experiments arguing that EGT predominantly results from target locus recombination with nonintegrated T-DNA molecules. By describing mechanistic features of GT our study provides directions for the improvement of precise genetic modification of plants.


Assuntos
Arabidopsis , Arabidopsis/genética , Marcação de Genes/métodos , Edição de Genes , Plantas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Reparo do DNA por Junção de Extremidades/genética
9.
Plant J ; 117(1): 161-176, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37773774

RESUMO

Agrobacterium-mediated transformation enables random transfer-DNA (T-DNA) insertion into plant genomes. T-DNA insertion into a gene's exons, introns or untranscribed regions close to the start or stop codon can disrupt gene function. Such T-DNA mutants have been useful for reverse genetics analysis, especially in Arabidopsis thaliana. As T-DNAs are inserted into genomic DNA, they are generally believed to be stably inherited. Here, we report a phenomenon of reversion of intronic T-DNA mutant phenotypes. From a suppressor screen using intronic T-DNA pi4kß1,2 double mutant, we recovered intragenic mutants of pi4kß1, which suppressed the autoimmunity of the double mutant. These mutants carried deletions in the intronic T-DNAs, resulting in elevated transcription of normal PI4Kß1. Such reversion of T-DNA insertional mutant phenotype stresses the need for caution when using intronic T-DNA mutants and reiterates the importance of using irreversible null mutant alleles in genetic analyses.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Íntrons/genética , Mutagênese Insercional , Arabidopsis/genética , DNA Bacteriano/genética , Fenótipo
10.
Plant J ; 117(2): 342-363, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37831618

RESUMO

Attenuated strains of the naturally occurring plant pathogen Agrobacterium tumefaciens can transfer virtually any DNA sequence of interest to model plants and crops. This has made Agrobacterium-mediated transformation (AMT) one of the most commonly used tools in agricultural biotechnology. Understanding AMT, and its functional consequences, is of fundamental importance given that it sits at the intersection of many fundamental fields of study, including plant-microbe interactions, DNA repair/genome stability, and epigenetic regulation of gene expression. Despite extensive research and use of AMT over the last 40 years, the extent of genomic disruption associated with integrating exogenous DNA into plant genomes using this method remains underappreciated. However, new technologies like long-read sequencing make this disruption more apparent, complementing previous findings from multiple research groups that have tackled this question in the past. In this review, we cover progress on the molecular mechanisms involved in Agrobacterium-mediated DNA integration into plant genomes. We also discuss localized mutations at the site of insertion and describe the structure of these DNA insertions, which can range from single copy insertions to large concatemers, consisting of complex DNA originating from different sources. Finally, we discuss the prevalence of large-scale genomic rearrangements associated with the integration of DNA during AMT with examples. Understanding the intended and unintended effects of AMT on genome stability is critical to all plant researchers who use this methodology to generate new genetic variants.


Assuntos
Epigênese Genética , Plantas , Plantas/genética , Plantas/microbiologia , Agrobacterium tumefaciens/genética , Genômica , DNA , Instabilidade Genômica/genética , Transformação Genética , DNA Bacteriano/genética , Plantas Geneticamente Modificadas/genética
11.
Front Genome Ed ; 5: 1251557, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37908969

RESUMO

Genome editing in plants typically relies on T-DNA plasmids that are mobilized by Agrobacterium-mediated transformation to deliver the CRISPR/Cas machinery. Here, we introduce a series of CRISPR/Cas9 T-DNA vectors for minimal settings, such as teaching labs. Gene-specific targeting sequences can be inserted as annealed short oligonucleotides in a single straightforward cloning step. Fluorescent markers expressed in mature seeds enable reliable selection of transgenic or transgene-free individuals using a combination of inexpensive LED lamps and colored-glass alternative filters. Testing these tools on the Arabidopsis GROWTH-REGULATING FACTOR (GRF) genes, we were able to create a collection of predicted null mutations in all nine family members with little effort. We then explored the effects of simultaneously targeting two, four and eight GRF genes on the rate of induced mutations at each target locus. In our hands, multiplexing was associated with pronounced disparities: while mutation rates at some loci remained consistently high, mutation rates at other loci dropped dramatically with increasing number of single guide RNA species, thereby preventing a systematic mutagenesis of the family.

12.
J Fungi (Basel) ; 9(11)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37998873

RESUMO

Blue mold, a postharvest disease of pome fruits, is caused by the filamentous fungus Penicillium expansum. In addition to the economic losses caused by P. expansum, food safety can be compromised, as this pathogen is mycotoxigenic. In this study, forward and reverse genetic approaches were used to identify genes involved in blue mold infection in apple fruits. For this, we generated a random T-DNA insertional mutant library. A total of 448 transformants were generated and screened for the reduced decay phenotype on apples. Of these mutants, six (T-193, T-275, T-434, T-588, T-625, and T-711) were selected for continued studies and five unique genes were identified of interest. In addition, two deletion mutants (Δt-625 and Δt-588) and a knockdown strain (t-434KD) were generated for three loci. Data show that the ∆t-588 mutant phenocopied the T-DNA insertion mutant and had virulence penalties during apple fruit decay. We hypothesize that this locus encodes a glyoxalase due to bioinformatic predictions, thus contributing to reduced colony diameter when grown in methylglyoxal (MG). This work presents novel members of signaling networks and additional genetic factors that regulate fungal virulence in the blue mold fungus during apple fruit decay.

13.
Front Plant Sci ; 14: 1221790, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37900763

RESUMO

Early determination of transgenic plants that are homozygous for a single locus T-DNA insert is highly desirable in most fundamental and applied transgenic research. This study aimed to build on an accurate, rapid, and reliable quantitative real-time PCR (qPCR) method to fast-track the development of multiple homozygous transgenic rice lines in the T1 generation, with low copy number to single T-DNA insert for further analyses. Here, a well-established qPCR protocol, based on the OsSBE4 reference gene and the nos terminator, was optimized in the transgenic Japonica rice cultivar Nipponbare, to distinguish homozygous single-insert plants with 100% accuracy. This method was successfully adapted to transgenic Indica rice plants carrying three different T-DNAs, without any modifications to quickly develop homozygous rice plants in the T1 generation. The accuracy of this qPCR method when applied to transgenic Indica rice approached 100% in 12 putative transgenic lines. Moreover, this protocol also successfully detected homozygous single-locus T-DNA transgenic rice plants with two-transgene T-DNAs, a feature likely to become more popular in future transgenic research. The assay was developed utilizing universal primers targeting common sequence elements of gene cassettes (the nos terminator). This assay could therefore be applied to other transgenic plants carrying the nos terminator. All procedures described here use standardized qPCR reaction conditions and relatively inexpensive dyes, such as SYBR Green, thus the qPCR method could be cost-effective and suitable for lower budget laboratories that are involved in rice transgenic research.

14.
Planta ; 258(4): 81, 2023 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-37715842

RESUMO

MAIN CONCLUSION: The genus Camellia underwent extensive natural transformation by Agrobacterium. Over a period of 15 million years, at least 12 different inserts accumulated in 72 investigated Camellia species. Like a wide variety of other wild and cultivated plants, Camellia species carry cellular T-DNA sequences (cT-DNAs) in their nuclear genomes, resulting from natural Agrobacterium-mediated transformation. Short and long DNA sequencing reads of 435 accessions belonging to 72 Camellia species (representing 12 out of 14 sections) were investigated for the occurrence of cT-DNA insertions. In all, 12 different cT-DNAs were recovered, either completely or partially, called CaTA to CaTL. Divergence analysis of internal cT-DNA repeats revealed that the insertion events span a period from 0.075 to 15 Mio years ago, and yielded an average transformation frequency of one event per 1.25 Mio years. The two oldest inserts, CaTA and CaTD, have been modified by spontaneous deletions and inversions, and by insertion of various plant sequences. In those cases where enough accessions were available (C. japonica, C. oleifera, C. chekiangoleosa, C. sasanqua and C. pitardii), the younger cT-DNA inserts showed a patchy distribution among different accessions of each species, indicating that they are not genetically fixed. It could be shown that Camellia breeding has led to intersectional transfer of cT-DNAs. Altogether, the cT-DNAs cover 374 kb, and carry 47 open reading frames (ORFs). Two Camellia cT-DNA genes, CaTH-orf358 and CaTK-orf8, represent new types of T-DNA genes. With its large number of cT-DNA sequences, the genus Camellia constitutes an interesting model for the study of natural Agrobacterium transformants.


Assuntos
Camellia , Melhoramento Vegetal , Agrobacterium/genética , Camellia/genética , Fases de Leitura Aberta , Análise de Sequência de DNA
15.
Front Microbiol ; 14: 1220116, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37547676

RESUMO

Fruit rot caused by Colletotrichum magnum is a crucial watermelon disease threatening the production and quality. To understand the pathogenic mechanism of C. magnum, we optimized the Agrobacterium tumefaciens-mediated transformation system (ATMT) for genetic transformation of C. magnum. The transformation efficiency of ATMT was an average of around 245 transformants per 100 million conidia. Southern blot analysis indicated that approximately 75% of the mutants contained a single copy of T-DNA. Pathogenicity test revealed that three mutants completely lost pathogenicity. The T-DNA integration sites (TISs) of three mutants were Identified. In mutant Cm699, the TISs were found in the intron region of the gene, which encoded a protein containing AP-2 complex subunit σ, and simultaneous gene deletions were observed. Two deleted genes encoded the transcription initiation protein SPT3 and a hypothetical protein, respectively. In mutant Cm854, the TISs were found in the 5'-flanking regions of a gene that was similar to the MYO5 encoding Myosin I of Pyricularia oryzae (78%). In mutant Cm1078, the T-DNA was integrated into the exon regions of two adjacent genes. One was 5'-3' exoribonuclease 1 encoding gene while the other encoded a WD-repeat protein retinoblastoma binding protein 4, the homolog of the MSl1 of Saccharomyces cerevisiae.

16.
Methods Mol Biol ; 2686: 131-162, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37540357

RESUMO

The flower is a hallmark feature that has contributed to the evolutionary success of land plants. Diverse mutagenic agents have been employed as a tool to genetically perturb flower development and identify genes involved in floral patterning and morphogenesis. Since the initial studies to identify genes governing processes such as floral organ specification, mutagenesis in sensitized backgrounds has been used to isolate enhancers and suppressors to further probe the molecular basis of floral development. Here, we first describe two commonly employed methods for mutagenesis (using ethyl methanesulfonate (EMS) or T-DNAs as mutagens), and then describe three methods for identifying a mutation that leads to phenotypic alterations: traditional map-based cloning, modified high-efficiency thermal asymmetric interlaced PCR (mhiTAIL-PCR), and deep sequencing in the plant model Arabidopsis thaliana.


Assuntos
Arabidopsis , Arabidopsis/genética , Testes Genéticos , Mutação , Mutagênese , Mutagênicos
17.
Transgenic Res ; 32(5): 487-496, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37540410

RESUMO

ß1,3-galactose is the component of outer-chain elongation of complex N-glycans that, together with α1,4-fucose, forms Lewis a structures in plants. Previous studies have revealed that N-glycan maturation is mediated by sequential attachment of ß1,3-galactose and α1,4-fucose by individual ß1,3-galactosyltransferase (GalT) and α1,4-fucosyltransferase (1,4-FucT), respectively. Although GalT from several species has been studied, little information about GalT from rice is available. I therefore characterized three GalT candidate genes on different chromosomes in Oryza sativa. Seeds of rice lines that had T-DNA insertions in regions corresponding to individual putative GalT genes were obtained from a Rice Functional Genomic Express Database and plants grown until maturity. Homozygotes were selected from the next generation by genotyping PCR, and used for callus induction. Callus extracts of two independent T-DNA mutant rice which have T-DNA insertions at the same gene on chromosome 6 but in different exons showed highly reduced band intensity on a western blots using an anti-Lewis a antibody. Cell extracts and cultured media from suspension culture of the one of these mutant rice were further analysed by N-glycan profiling using matrix-associated laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF). Identified N-glycan species containing ß1,3-galactose from both cell extracts and cultured media of knock-out mutant were less than 0.5% of total N-glycans while that of WT cells were 9.8% and 49.1%, respectively. This suggests that GalT located on rice chromosome 6 plays a major role in N-glycan galactosylation, and mutations within it lead to blockage of Lewis a epitope formation.


Assuntos
Oryza , Humanos , Oryza/genética , Cromossomos Humanos Par 6 , Fucose , Galactose , Extratos Celulares , Polissacarídeos/genética , Galactosiltransferases/genética
18.
Front Plant Sci ; 14: 1156665, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37502707

RESUMO

The commercialization of GE crops requires a rigorous safety assessment, which includes a precise DNA level characterization of inserted T-DNA. In the past, several strategies have been developed for identifying T-DNA insertion sites including, Southern blot and different PCR-based methods. However, these methods are often challenging to scale up for screening of dozens of transgenic events and for crops with complex genomes, like potato. Here, we report using target capture sequencing (TCS) to characterize the T-DNA structure and insertion sites of 34 transgenic events in potato. This T-DNA is an 18 kb fragment between left and right borders and carries three resistance (R) genes (RB, Rpi-blb2 and Rpi-vnt1.1 genes) that result in complete resistance to late blight disease. Using TCS, we obtained a high sequence read coverage within the T-DNA and junction regions. We identified the T-DNA breakpoints on either ends for 85% of the transgenic events. About 74% of the transgenic events had their T-DNA with 3R gene sequences intact. The flanking sequences of the T-DNA were from the potato genome for half of the transgenic events, and about a third (11) of the transgenic events have a single T-DNA insertion mapped into the potato genome, of which five events do not interrupt an existing potato gene. The TCS results were confirmed using PCR and Sanger sequencing for 6 of the best transgenic events representing 20% of the transgenic events suitable for regulatory approval. These results demonstrate the wide applicability of TCS for the precise T-DNA insertion characterization in transgenic crops.

19.
G3 (Bethesda) ; 13(10)2023 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-37523773

RESUMO

In maize, the community-standard transformant line B104 is a useful model for dissecting features of transfer DNA (T-DNA) integration due to its compatibility with Agrobacterium-mediated transformation and the availability of its genome sequence. Knowledge of transgene integration sites permits the analysis of the genomic environment that governs the strength of gene expression and phenotypic effects due to the disruption of an endogenous gene or regulatory element. In this study, we optimized a fusion primer and nested integrated PCR (FPNI-PCR) technique for T-DNA detection in maize to characterize the integration sites of 89 T-DNA insertions in 81 transformant lines. T-DNA insertions preferentially occurred in gene-rich regions and regions distant from centromeres. Integration junctions with and without microhomologous sequences as well as junctions with de novo sequences were detected. Sequence analysis of integration junctions indicated that T-DNA was incorporated via the error-prone repair pathways of nonhomologous (predominantly) and microhomology-mediated (minor) end-joining. This report provides a quantitative assessment of Agrobacterium-mediated T-DNA integration in maize with respect to insertion site features, the genomic distribution of T-DNA incorporation, and the mechanisms of integration. It also demonstrates the utility of the FPNI-PCR technique, which can be adapted to any species of interest.


Assuntos
Agrobacterium , Zea mays , Agrobacterium/genética , Zea mays/genética , Transformação Genética , DNA Bacteriano/genética , DNA de Plantas/genética , Plantas Geneticamente Modificadas/genética
20.
J Biosci Bioeng ; 136(2): 142-151, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37263830

RESUMO

Agrobacterium-mediated transformation (AMT) potentially has great advantages over other DNA introduction methods: e.g., long DNA and numerous recipient strains can be dealt with at a time merely by co-cultivation with donor Agrobacterium cells. However, AMT was applied only to several laboratory yeast strains, and has never been considered as a standard gene-introduction method for yeast species. To disseminate the AMT method in yeast species, it is necessary to develop versatile AMT plasmid vectors including shuttle type ones, which have been unavailable yet for yeasts. In this study, we constructed a series of AMT plasmid vectors that consist of replicative (shuttle)- and integrative-types and harbor a gene conferring resistance to either G418 or aureobasidin A for application to prototrophic yeast strains. The vectors were successfully applied to five industrial yeast strains belonging to Saccharomyces cerevisiae after a modification of a previous AMT protocol, i.e., simply inputting a smaller number of yeast cells to the co-cultivation than that in the previous protocol. The revised protocol enabled all five yeast strains to generate recombinant colonies not only at high efficiency using replicative-type vectors, but also readily at an efficiency around 10-5 using integrative one. Further modification of the protocol demonstrated AMT for multiple yeast strains at a time with less labor. Therefore, AMT would facilitate molecular genetic approaches to many yeast strains in basic and applied sciences.


Assuntos
Agrobacterium , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Agrobacterium/genética , Pão , Vetores Genéticos/genética , Plasmídeos/genética , DNA , Transformação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA