Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.880
Filtrar
1.
Micron ; 185: 103688, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38991624

RESUMO

Iterative phase retrieval is based on minimising a loss function as a measure of the consistency of an initial guess and underlying experimental data. Under ideal experimental conditions, real data contains Poissonian noise due to counting statistics. In this work, we use the Wirtinger Flow concept in combination with four common loss functions, being the L1 loss, the mean-squared error (MSE), the amplitude loss and the Poisson loss. Since only the latter reflects the counting statistics as an asymmetric Poisson distribution correctly, our simulation study focuses on two main cases. Firstly, high-dose momentum-resolved scanning transmission electron microscopy (STEM) of an MoS2 monolayer is considered for phase retrieval. In this case, it is found that the four losses perform differently with respect to chemical sensitivity and frequency transfer, which we interprete in terms of the substantially different signal level in the bright and dark field part of diffraction patterns. Remedies are discussed using further simulations, addressing the use of virtual ring detectors for the dark field, or restricting loss calculation to the bright field. Secondly, a dose series is presented down to 100 electrons per diffraction pattern. It is found that all losses yield qualitatively reasonable structural data in the phase, whereas only MSE and Poisson loss range at the correct amplitude level. Chemical contrast is, in general, reliably obtained using the Poisson concept, which also provides the most continuous spatial frequency transfer as to the reconstructed object transmission function.

2.
Plant Physiol Biochem ; 214: 108882, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38972244

RESUMO

Silver (Ag) is a non-essential heavy metal with substantial environmental toxicity but an excellent promotor for plant organogenesis. It is used as an elicitor for secondary metabolite production and for in planta synthesis of metal nanoparticles (MNPs). In the present study, the Ag accumulation and reduction capability of in vitro shoots of Withania somnifera and the toxicity and elicitation effect of Ag on in vitro shoots were explored. In vitro shoot cultures of W. somnifera were treated with different concentrations of silver nitrate for a specific treatment period. Growth index, withaferin A, elemental and electron microscopy analyses were done on silver-treated in vitro shoots of W. somnifera. 1 mM silver nitrate treatment for 12 days period was found to give increased growth index (1.425 ± 0.05c) and withaferin A (2.568 ± 0.08e mg g-1) content. The concentration of bioaccumulated Ag in 1 mM silver nitrate treated in vitro shoot was found to be 50.8 ppm. The presence of nano-Ag was also found in the leaves of 1 mM silver nitrate-treated in vitro shoots. In summary, this is the first report portraying the bioaccumulation and in planta reduction capability of the in vitro shoot system of W. somnifera, which makes it a potential medicinal plant of commercial value for silver contaminated soils.

3.
Environ Res ; : 119568, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38971357

RESUMO

The aim of this study was to synthesize effective and economical MoS2/CdNi@rGO photocatalysts and investigate their performance in the degradation of organic pollutants in synthetic effluent. The objective was to assess the characterization results of the synthesized photocatalysts using XRD, SEM/EDS, TEM/HR-TEM, Raman spectrum, and BET isotherm analysis tools. These analyses revealed the good adhesion of MoS2 with rGO and provided insights into the structure and properties of the materials. The results showed that the MoS2/CdNi@rGO photocatalysts exhibited remarkable degradation efficiency for organic pollutants such as Rhodamine-B, erichrome black, and malachite green. The outcomes of the study demonstrated that the MoS2/CdNi@rGO catalyst had the greatest rate constant for Rhodamine-B (RhB) decomposition. which would have been approximately 33 times higher than that of pure RGO (0.0121 min-1). The MoS2/CdNi@rGO photocatalysts also showed excellent recyclability and persistence across five recycle assays, indicating their potential for practical applications in wastewater treatment. The photocatalyst was moderately active, stable up to its fifth usage and stability of the photocatalyst before and after the photocatalytic reaction was also been studied using XRD and SEM. Further research in this area could lead to the development of advanced photocatalytic technologies for environmental remediation.

4.
Methods Enzymol ; 700: 329-348, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38971605

RESUMO

As the primary products of lipid oxidation, lipid hydroperoxides constitute an important class of lipids generated by aerobic metabolism. However, despite several years of effort, the structure of the hydroperoxidized bilayer has not yet been observed under electron microscopy. Here we use a 200 kV Cryo-TEM to image small unilamellar vesicles (SUVs) made (i) of pure POPC or SOPC, (ii) of their pure hydroperoxidized form, and (iii) of their equimolar mixtures. We show that the challenges posed by the determination of the thickness of the hydroperoxidized bilayers under these observation conditions can be addressed by an image analysis method that we developed and describe here.


Assuntos
Microscopia Crioeletrônica , Bicamadas Lipídicas , Fosfatidilcolinas , Lipossomas Unilamelares , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Microscopia Crioeletrônica/métodos , Lipossomas Unilamelares/química , Lipossomas Unilamelares/metabolismo , Fosfatidilcolinas/química , Oxirredução , Processamento de Imagem Assistida por Computador/métodos , Peróxidos Lipídicos/química , Peróxidos Lipídicos/análise
5.
Food Chem ; 457: 139843, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38955120

RESUMO

Dried-bonito (Katsuobushi) exhibits a unique uniform "glass-like" texture after traditional smoke-drying. Herein, we developed a novel processing method for dried-bonito and elucidated the mechanism of transformation of loose muscle into a "glass-like" texture in terms of texture, microstructure, and protein properties. Our findings showed that the unfolding and aggregation of proteins after thermal induction was a key factor in shaping the "glass-like" texture in bonito muscle. During processing, myofibrils aggregated, the originally alternating thick and thin filaments contracted laterally and aligned into a straight line, and protein cross-linking increased. Secondary structural analysis revealed a reduction in unstable ß-turn content from 26.28% to 15.06%. Additionally, an increase in the content of SS bonds was observed, and the conformation changed from g-g-t to a stable g-g-g conformation, enhanced protein conformational stability. Taken together, our findings provide a theoretical basis for understanding the mechanism of formation of the uniform "glass-like" texture in dried-bonito.

6.
Dokl Biochem Biophys ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38955916

RESUMO

We performed a detailed ultrastructural reconstruction of the "passive" miracidium of Derogenes varicus Muller, 1784 , a species from Hemiurata group. The miracidium is highly miniaturized and simplified in comparison with the "active" miracidia. For the first time we elucidate the nature of the spines on the surface of hemiuroid larva: they are derivatives of the epithelial plates. The anterior end of the larva is equipped with three epithelial plates that bear both spines and cilia. The major part of the miracidial surface is formed by tegument. The nervous and excretory systems of the D. varicus miracidium are extremely reduced. Single undifferentiated cell comprises the germinal material of the miracidium. We discuss the trends of evolution of hemiuroid miracidia that are associated with transition to passive strategy of infection.

7.
ACS Nano ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38976597

RESUMO

Supported nonprecious metal catalysts such as copper (Cu) are promising replacements for Pt-based catalysts for a wide range of energy-related electrochemical reactions. Direct electrochemical deposition is one of the most straightforward and versatile methods to synthesize supported nonprecious metal catalysts. However, further advancement in the design of supported nonprecious metal catalysts requires a detailed mechanistic understanding of the interplay between kinetics and thermodynamics of the deposition phenomena under realistic reaction conditions. Here, we study the electrodeposition of Cu on carbon nanotubes and graphene derivatives under electrochemical conditions using in situ liquid cell transmission electron microscopy (TEM). By combining real-time imaging, electrochemical measurements, X-ray photoelectron spectroscopy (XPS), and finite-element analysis (FEA), we show that low-dimensional support materials, especially carbon nanotubes, are excellent for generating uniform and finely dispersed platinum group metal-(PGM)-free catalysts under mild electrochemical conditions. The electrodeposited Cu on graphene and carbon nanotubes is also observed to show good electrochemical activity toward nitrate reduction reactions (NO3RRs), further supported by density functional theory (DFT) calculations. Nitrogen doping plays an important role in guiding nonprecious metal deposition, but its low electrical conductivity may give rise to lower NO3RR activity compared to its nondoped analogue. The development of supported nonprecious metals through interfacial and surface engineering for the design of supported catalysts will substantially reduce the demand for precious metals and generate robust catalysts with better durability, thereby presenting opportunities for solving the critical problems in energy storage and electrocatalysis.

8.
J Phys Condens Matter ; 36(40)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38955334

RESUMO

In the wafer-scale growth of Ir(001) on yttria-stabilized zirconia (YSZ) by magnetron sputtering epitaxy two kinds of {111} oriented domains are observed. One consists of sharp 'fjord'-shaped features in which four 90° alternated rotational variants of {111} are possible and the second one consists of islands with less defined shapes in which eight 45° alternated rotational variants can be found. Their formation occurs directly at the Ir/YSZ interface along incoherent grain boundaries, likely nucleating at local defects of the YSZ surface. In order to avoid these misoriented domains, process separation and proper etching pretreatment of the wafers both before and between the sputtering processes have been found to be the key strategy for achieving reproducibility and overall better material quality.

9.
Med Phys ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38935922

RESUMO

BACKGROUND: Gold nanoparticles (GNPs) accumulated within tumor cells have been shown to sensitize tumors to radiotherapy. From a physics point of view, the observed GNP-mediated radiosensitization is due to various downstream effects of the secondary electron (SE) production from internalized GNPs such as GNP-mediated dose enhancement. Over the years, numerous computational investigations on GNP-mediated dose enhancement/radiosensitization have been conducted. However, such investigations have relied mostly on simple cellular geometry models and/or artificial GNP distributions. Thus, it is at least desirable, if not necessary, to conduct further investigations using cellular geometry models that properly reflect realistic cell morphology as well as internalized GNP distributions at the nanoscale. PURPOSE: The primary aim of this study was to develop a nanometer-resolution geometry model of a GNP-laden tumor cell for computational investigations of GNP-mediated dose enhancement/radiosensitization. The secondary aim was to demonstrate the utility of this model by quantifying GNP-induced SE tracks/dose distribution at sub-cellular levels for further validation of a nanoscopic dose point kernel (nDPK) method against full-fledged Geant4 Monte Carlo (MC) simulation. METHODS: A transmission electron microscopy (TEM) image of a single cell showing cytoplasm, cellular nucleus, and internalized GNPs in the cellular endosome was segmented into sub-cellular levels based on pixel value thresholding. A corresponding material density was allocated to each pixel, and, by adding a thickness, each pixel was transformed to a geometric voxel and imported as a Geant4-acceptable input geometry file. In Geant4-Penelope MC simulation, a clinical 6 MV photon beam was applied, vertically or horizontally to the cell surface, and energy deposition to the cellular nucleus and cytoplasm, due to SEs emitted by internalized GNPs, was scored. Next, nDPK calculations were performed by generating virtual electron tracks from each GNP voxel to all nucleus and cytoplasm voxels. Subsequently, another set of Geant4 simulation was performed with both Penelope and DNA physics models under the geometry closely mimicking in vitro cell irradiation with a clinical 6 MV photon beam, allowing for derivation of nDPK specific to this geometry and further comparison between Gean4 simulation and nDPK method. RESULTS: The Geant4-calculated SE tracks and associated energy depositions showed significant dependence on photon incidence angle. For perpendicular incidence, nDPK results showed good agreement (average percentage pixel-to-pixel difference of 0.4% for cytoplasm and 0.5% for nucleus) with Geant4 results, while, for parallel incidence, the agreement became worse (-1.7%-0.7% for cytoplasm and -5.5%-0.8% for nucleus). Under the 6 MV cell irradiation geometry, nDPK results showed reasonable agreement (pixel-to-pixel Pearson's product moment correlation coefficient of 0.91 for cytoplasm and 0.98 for nucleus) with Geant4 results. CONCLUSIONS: The currently developed TEM-based model of a GNP-laden cell offers unprecedented details of realistic intracellular GNP distributions for nanoscopic computational investigations of GNP-mediated dose enhancement/radiosensitization. A benchmarking study performed with this model showed reasonable agreement between Geant4- and nDPK-calculated intracellular dose deposition by SEs emitted from internalized GNPs, especially under perpendicular incidence - a popular cell irradiation geometry and when the Geant4-Penelope physics model was used.

10.
Small ; : e2402338, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38924259

RESUMO

A frozen-temperature (below -28 °C) laser tuning way is developed to optimize metal halide perovskite (MHP)'s stability and opto-electronic properties, for emitter, photovoltaic and detector applications. Here freezing can adjust the competitive laser irradiation effects between damaging and annealing/repairing. And the ligand shells on MHP surface, which are widely present for many MHP materials, can be frozen and act as transparent solid templates for MHP's re-crystallization/re-growth during the laser tuning. With model samples of different types of CsPbBr3 nanocube arrays,an attempt is made to turn the dominant exposure facet from low-energy [100] facet to high-energy [111], [-211], [113] and [210] ones respectively; selectively removing the surface impurities and defects of CsPbBr3 nanocubes to enhance the irradiation durability by 101 times; and quickly (tens of seconds) modifying a Ruddlesden-Popper (RP) boundary into another type of boundary like twinning, and so on. The laser tuning mechanism is revealed by an innovative in situ cryo-transmission electron microscope (cryo-TEM) exploration at atomic resolution.

11.
J Mycol Med ; 34(3): 101489, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38925022

RESUMO

Dermatophytosis is a critical sort of skin infection caused by dermatophytes. The long-term treatment of such skin infections may be improved through the application of nanotechnology. This study aimed to prepare griseofulvin zinc Nanohybrid emulsion (GF-Zn-NHE) to improve griseofulvin activity against dermatophytes and some opportunistic pathogenic yeasts and bacteria. The GF-Zn-NHE is prepared by ultra-homogenization ultra-sonication strategies and validated by UV-visible spectroscopy analysis that confirms presences of griseofulvin and Zn-NPs peaks at 265 and 360 nm, respectively. The GF-Zn-NHE has mean distribution size 50 nm and zeta potential in the range from -40 to -36 mV with no significant changes in size distribution and particle size within 120 day ageing. Fourier transform infrared spectroscopy spectrum confirmed the presence of griseofulvin and Zn-NPs stretching vibration peaks. Gamma ray has a negative influence on GF-Zn-NE production and stability. GF-Zn-NHE drug release 95% up to 24 h and 98% up to 72 h of GF was observed and Zinc 90% up to 24 h and 95% up to 72 h, respectively. High antimicrobial activity was observed with GF-Zn-NHE against dermatophytic pathogens in compare with GF, GF-NE, zinc nitrate and ketoconazole with inhibition zone ranged from 14 to 36 mm. The results have shown that the MIC value for Cryptococcus neoformans, Prophyromonas gingivalis and Pseudomonas aeruginosa is 0.125 mg ml -1 and for Trichophyton rubrum, L. bulgaricus and Escherichia coli value is 0.25 mg ml -1 and for Candida albicans, Malassezia furfur and Enterococcus faecalis is 0.5 mg ml -1 and finally 1 mg ml -1 for Streptococcus mutans. TEM of treated Cryptococcus neoformans cells with GF-Zn-NHE displayed essentially modified morphology, degradation, damage of organelles, vacuoles and other structures.

12.
Insects ; 15(6)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38921118

RESUMO

The mandibles are among the most important appendages of insects' mouthparts. Their morpho-functional organization is correlated with the variation in dietary preferences. In this study, we investigated the ultrastructural organization and metal composition of the mandibles of two ladybird species with different dietary habits: Harmonia axyridis (an entomophagous species) and Subcoccinella vigintiquatuorpunctata (a phytophagous species). The ultrastructural organization was studied using Scanning and Transmission Electron Microscopy, whereas the metal composition was investigated using Energy-Dispersive X-ray spectroscopy (EDX). Significant differences were observed in the general organization and metal enrichment pattern between the two species. The mandibles of H. axyridis are large and present a molar part with two teeth, with the apical one showing a bifid apex. In contrast, S. vigintiquatuorpunctata exhibited a molar region with several teeth on its apical part. The study revealed significant differences in metal content between the teeth and the prostheca of H. axyridis. Mn was the most abundant element in teeth, whereas Cl was more abundant in the prostheca. In the case of S. vigintiquatuorpunctata, Si was the most abundant element in the prostheca, while Mn was more present in the teeth. A comparison between the two species revealed that both teeth and prostheca showed significant variation in the elemental composition. These findings underscore the role of dietary preferences in shaping the structural and metal composition variations in the mandibles of these two ladybird species.

13.
Nanomaterials (Basel) ; 14(12)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38921917

RESUMO

The hexagonal ferrite h-YbFeO3 grown on YSZ(111) by pulsed laser deposition is foreseen as a promising single multiferroic candidate where ferroelectricity and antiferromagnetism coexist for future applications at low temperatures. We studied in detail the microstructure as well as the temperature dependence of the magnetic properties of the devices by comparing the heterostructures grown directly on YSZ(111) (i.e., YbPt_Th0nm) with h-YbFeO3 films deposited on substrates buffered with platinum Pt/YSZ(111) and in dependence on the Pt underlayer film thickness (i.e., YbPt_Th10nm, YbPt_Th40nm, YbPt_Th55nm, and YbPt_Th70nm). The goal was to deeply understand the importance of the crystal quality and morphology of the Pt underlayer for the h-YbFeO3 layer crystal quality, surface morphology, and the resulting physical properties. We demonstrate the relevance of homogeneity, continuity, and hillock formation of the Pt layer for the h-YbFeO3 microstructure in terms of crystal structure, mosaicity, grain boundaries, and defect distribution. The findings of transmission electron microscopy and X-ray diffraction reciprocal space mapping characterization enable us to conclude that an optimum film thickness for the Pt bottom electrode is ThPt = 70 nm, which improves the crystal quality of h-YbFeO3 films grown on Pt-buffered YSZ(111) in comparison with h-YbFeO3 films grown on YSZ(111) (i.e., YbPt_Th0nm). The latter shows a disturbance in the crystal structure, in the up-and-down atomic arrangement of the ferroelectric domains, as well as in the Yb-Fe exchange interactions. Therefore, an enhancement in the remanent and in the total magnetization was obtained at low temperatures below 50 K for h-YbFeO3 films deposited on Pt-buffered substrates Pt/YSZ(111) when the Pt underlayer reached ThPt = 70 nm.

14.
J Appl Microbiol ; 135(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38877639

RESUMO

AIM: Coaggregation, a highly specific cell-cell interaction mechanism, plays a pivotal role in multispecies biofilm formation. While it has been mostly studied in oral environments, its occurrence in aquatic systems is also acknowledged. Considering biofilm formation's economic and health-related implications in engineered water systems, it is crucial to understand its mechanisms. Here, we hypothesized that traceable differences at the proteome level might determine coaggregation ability. METHODS AND RESULTS: Two strains of Delftia acidovorans, isolated from drinking water were studied. First, in vitro motility assays indicated more swarming and twitching motility for the coaggregating strain (C+) than non-coaggregating strain (C-). By transmission electronic microscopy, we confirmed the presence of flagella for both strains. By proteomics, we detected a significantly higher expression of type IV pilus twitching motility proteins in C+, in line with the motility assays. Moreover, flagellum ring proteins were more abundant in C+, while those involved in the formation of the flagellar hook (FlE and FilG) were only detected in C-. All the results combined suggested structural and conformational differences between stains in their cell appendages. CONCLUSION: This study presents an alternative approach for identifying protein biomarkers to detect coaggregation abilities in uncharacterized strains.


Assuntos
Biofilmes , Água Potável , Flagelos , Proteômica , Biofilmes/crescimento & desenvolvimento , Água Potável/microbiologia , Flagelos/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Aderência Bacteriana , Fímbrias Bacterianas/metabolismo , Microbiologia da Água , Proteoma
15.
J Pharm Bioallied Sci ; 16(Suppl 2): S1522-S1525, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38882886

RESUMO

Introduction: The synaptic contacts play an important role in central nervous system (CNS) functioning. Ultrastructural features of synapses in CNS are not studied in naphthalene neurotoxicity model. Materials and Methodology: In the present work, transmission electron microscopy was used for studying the ultrastructural features of synapses in the hippocampus of Sprague Dawley rat brain, on subsequent exposure to naphthalene balls. The ultrastructural changes were observed for naphthalene low dose (200 mg), high dose (400 mg) after the treatment for 28 days, and post-delayed toxicity phase after 14 days in Sprague Dawley rats. Results: In comparison with different groups of naphthalene exposure including control and satellite, axon degeneration, axonal demyelination and abnormal synapses was observed in high dose naphthalene administration group. In the post-delayed naphthalene toxicity group, degeneration of synaptic contacts was observed. Conclusions: This exploration of ultrastructural variations in the synapses of Hippocampus gives information that will be valued in naphthalene neurotoxicological research.

16.
Nano Lett ; 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38825790

RESUMO

The core task of neuromorphic devices is to effectively simulate the behavior of neurons and synapses. Based on the functionality of ferroelectric domains with the advantages of low power consumption and high-speed response, great progress has been made in realizing neuromimetic behaviors such as ferroelectric synaptic devices. However, the correlation between the ferroelectric domain dynamics and neuromimetic behavior remains unclear. Here, we reveal the correlation between domain/domain wall dynamics and neuromimetic behaviors from a microscopic perspective in real-time by using high temporal and spatial resolution in situ transmission electron microscopy. Furthermore, we propose utilizing ferroelectric microstructures for the simultaneous simulation of neuronal and synaptic plasticity, which is expected to improve the integration and performance of ferroelectric neuromorphic devices. We believe that this work to study neuromimetic behavior from the perspective of domain dynamics is instructive for the development of ferroelectric neuromorphic devices.

17.
Parasitol Int ; 102: 102910, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38825165

RESUMO

Sarcocystis spp. are cyst-forming coccidia characterized by a two-host predator-prey life cycle. Sarcocysts are formed in muscles or nervous system of the intermediate host, while sporocysts develop in the small intestine of the definitive host. The intermediate hosts of Sarcocystis falcatula are wild birds. Colombia is one of the countries with the greatest biodiversity of birds, however, there are few studies related to this parasite in wild birds. This study presents the morphological and molecular detection of Sarcocystis falcatula collected from the emerald toucanet (Aulacorhynchus albivitta), a wild bird species endemic to South America. Pectoral muscle samples were obtained, and microscopic and molecular detection was performed by light microscopy, transmission electron microscopy, and amplifying of the first internal transcribed spacer (ITS-1) and surface antigen-encoding genes (SAGs). Sarcocystis measured an average of 161  × 42 µm, with a cyst wall ∼0.4 µm thick. Ultrastructurally, the sarcocyst wall type 11b-like consisted of numerous villar protrusions of 850 nm wide on average. The ITS-1 sequence showed 97.0-99.7% identity to S. falcatula previously described from birds in the United States and Brazil, respectively. Concatenated phylogenetic analysis based on SAG2, SAG3 and SAG4 confirmed that the new isolate is grouped with other sequences of Sarcocystis from South America, but divergent from those isolates obtained in North America. The results of this study demonstrate for the first time the presence of S. falcatula in a wild bird from Colombia.

18.
Ultrastruct Pathol ; : 1-15, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38916264

RESUMO

Glioblastoma tumors are the most aggressive primary brain tumors that develop resistance to temozolomide (TMZ). Eribulin (ERB) exhibits a unique mechanism of action by inhibiting microtubule dynamics during the G2/M cell cycle phase. We utilized the T98G human glioma cell line to investigate the effects of ERB and TMZ, both individually and in combination. The experimental groups were established as follows: control, E5 (5 nM ERB), T0.75 (0.75 mM TMZ), T1 (1.0 mM TMZ), and combination groups (E5+T0.75 and E5+T1). All groups showed a significant decrease in cell proliferation. Apoptotic markers revealed a time-dependent increase in annexin-V expression, across all treatment groups at the 48-hour time point. Caspase-3, exhibited an increase in the combination treatment groups at the 48-hour mark. Transmission electron microscopy (TEM) revealed normal ultrastructural features in the glioma cells of the control group. However, treatments induced ultrastructural changes within the spheroid glioblastoma model, particularly in the combination groups. These changes included a dose-dependent increase in autophagic vacuoles and apoptotic morphology of the cells. In conclusion, the similarity in the mechanism of action between ERB and TMZ suggests the potential for synergistic effects when combined. Our results highlight that this combination induced severe damage and autophagy in glioma spheroids after 48 hours.

19.
Microsc Res Tech ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38856214

RESUMO

Field emission finds a vital space in numerous scientific and technological applications, including high-resolution imaging at micro- and nano-scales, conducting high-energy physics experiments, molecule ionization in spectroscopy, and electronic uses. A continuous effort exists to develop new materials for enhanced field emission applications. In the present work, two-dimensional (2D) well-aligned CdSSe flake flowers (CdSSe-FFs) were successfully grown on gold-coated silicon substrate utilizing a simple and affordable chemical bath deposition approach at ambient temperature. The time-dependent growth mechanism from nanoparticles to FFs was observed at optimized parameters such as concentration of precursors, pH (~11), deposition time, and solution temperature. The crystalline nature of CdSSe-FFs is confirmed by high-resolution transmission electron microscopy (HRTEM) results, and selected area electron diffraction (SAED) observations reveal a hexagonal crystal structure. Additionally, the CdSSe-FFs thickness was confirmed by TEM analysis and found to be ~20-30 nm. The optical, photoelectric, and field emission (FE) characteristics are thoroughly explored which shows significant enhancement due to the formation of heterojunction between the gold-coated silicon substrate and CdSSe-FFs. The UV-visible absorption spectra of CdSSe-FFs show enhanced absorption at 700 nm, corresponding to the energy band gap (Eg) of 1.77 eV. The CdSSe-FFs exhibited field emission and photosensitive field emission (PSFE) characteristics. In FE study CdSSe-FFs shows an increase in current density of 387.2 µ A cm-2 in an applied field of 4.1 V m-1 which is 4.08 fold as compared to without light illumination (95.1 µ A cm-2). Furthermore, it shows excellent emission current stability at the preset value of 1.5 µA over 3 h with a deviation of the current density of less than 5% respectively. RESEARCH HIGHLIGHTS: Novel CdSSe flake flowers were grown on Au-coated Si substrate by a cost-effective chemical bath deposition route. The growth mechanism of CdSSe flake flowers is studied in detail. Field emission and Photoluminescence study of CdSSe flake flowers is characterized. CdSSe flake flowers with nanoflakes sharp edges exhibited enhanced field emission properties.

20.
Micron ; 185: 103678, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38941681

RESUMO

The rich potential of two-dimensional materials endows them with superior properties suitable for a wide range of applications, thereby attracting substantial interest across various fields. The ongoing trend towards device miniaturization aligns with the development of materials at progressively smaller scales, aiming to achieve higher integration density in electronics. In the realm of nano-scaling ferroelectric phenomena, numerous new two-dimensional ferroelectric materials have been predicted theoretically and subsequently validated through experimental confirmation. However, the capabilities of conventional tools, such as electrical measurements, are limited in providing a comprehensive investigation into the intrinsic origins of ferroelectricity and its interactions with structural factors. These factors include stacking, doping, functionalization, and defects. Consequently, the progress of potential applications, such as high-density memory devices, energy conversion systems, sensing technologies, catalysis, and more, is impeded. In this paper, we present a review of recent research that employs advanced transmission electron microscopy (TEM) techniques for the direct visualization and analysis of ferroelectric domains, domain walls, and other crucial features at the atomic level within two-dimensional materials. We discuss the essential interplay between structural characteristics and ferroelectric properties on the nanoscale, which facilitates understanding of the complex relationships governing their behavior. By doing so, we aim to pave the way for future innovative applications in this field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...