Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Pharmacol ; : 176917, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39154824

RESUMO

Liver fibrosis is a pathological process that endangers human health, for which effective treatments remain elusive to date. Paeoniflorin (PAE), a pineane-type monoter penoid compound from the traditional Chinese medicine PaeoniaeRubra Radix, and metformin (MET), an oral biguanide hypoglycemic agent, both demonstrate anti-inflammatory and hepatoprotective effects. In current work, we first discovered that the combined treatment of PAE and MET synergistically inhibited the progression of liver fibrosis in two different animal models: therapeutic and preventive. This therapeutic effect is evidenced by a reduction in the expression levels of liver fibrosis markers and an improvement in histopathological characteristics. Mechanistic exploration further revealed that this combination therapy downregulated the expression of TGF-ß1 and p-Smad2, while upregulating Smad7 expression in both models. Importantly, we also found that this combinatorial approach significantly reduced hepatotoxicity and nephrotoxicity in both models. Our findings suggest an effective combination therapy for liver fibrosis and provide the possibility of therapeutic improvement for patients with liver fibrosis.

2.
Front Mol Biosci ; 11: 1351888, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38855324

RESUMO

Prostate cancer (PCa) is considered one of the most common cancers worldwide. Despite advances in patient diagnosis, management, and risk stratification, 10%-20% of patients progress to castration-resistant disease. Our previous report highlighted a protective role of Dickkopf-3 (DKK3) in PCa stroma. This role was proposed to be mediated through opposing extracellular matrix protein 1 (ECM-1) and TGF-ß signalling activity. However, a detailed analysis of the prognostic value of DKK3, ECM-1 and members of the TGF-ß signalling pathway in PCa was not thoroughly investigated. In this study, we explored the prognostic value of DKK3, ECM-1 and TGFB1 using a bioinformatical approach through analysis of large publicly available datasets from The Cancer Genome Atlas Program (TGCA) and Pan-Cancer Atlas databases. Our results showed a significant gradual loss of DKK3 expression with PCa progression (p < 0.0001) associated with increased DNA methylation in its promoter region (p < 1.63E-12). In contrast, patients with metastatic lesions showed significantly higher levels of TGFB1 expression compared to primary tumours (p < 0.00001). Our results also showed a marginal association between more advanced tumour stage presented as positive lymph node involvement and low DKK3 mRNA expression (p = 0.082). However, while ECM1 showed no association with tumour stage (p = 0.773), high TGFB1 expression showed a significant association with more advanced stage presented as advanced T3 stage compared to patients with low TGFB1 mRNA expression (p < 0.001). Interestingly, while ECM1 showed no significant association with patient outcome, patients with high DKK3 mRNA expression showed a significant association with favourable outcomes presented as prolonged disease-specific (p = 0.0266), progression-free survival (p = 0.047) and disease-free (p = 0.05). In contrast, high TGFB1 mRNA expression showed a significant association with poor patient outcomes presented as shortened progression-free (p = 0.00032) and disease-free survival (p = 0.0433). Moreover, DKK3, TGFB1 and ECM1 have acted as immune-associated genes in the PCa tumour microenvironment. In conclusion, our findings showed a distinct prognostic value for this three-gene signature in PCa. While both DKK3 and TGFB1 showed a potential role as a clinical marker for PCa stratification, ECM1 showed no significant association with the majority of clinicopathological parameters, which reduce its clinical significance as a reliable prognostic marker.

3.
J Cell Mol Med ; 27(18): 2661-2674, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37431884

RESUMO

Statistics provided by GLOBOCAN list gastric cancer as the sixth most common, with a mortality ranking of third highest for the year 2020. In China, a herb called Rabdosia rubescens (Hemsl.) H.Hara, has been used by local residents for the treatment of digestive tract cancer for hundreds of years. Oridonin, the main ingredient of the herb, has a curative effect for gastric cancer, but the mechanism has not been previously clarified. This study mainly aimed to investigate the role of TNF-alpha/Androgen receptor/TGF-beta signalling pathway axis in mediating the proliferation inhibition of oridonin on gastric cancer SGC-7901 cells. MTT assay, cell morphology observation assay and fluorescence assay were adopted to study the efficacy of oridonin on cell proliferation. The network pharmacology was used to predict the pathway axis regulated by oridonin. Western blot assay was adopted to verify the TNF-α/Androgen receptor/TGF-ß signalling pathway axis regulation on gastric cancer by oridonin. The results showed Oridonin could inhibit the proliferation of gastric cancer cells, change cell morphology and cause cell nuclear fragmentation. A total of 11signaling pathways were annotated by the network pharmacology, among them, Tumour necrosis factor alpha (TNF-α) signalling pathway, androgen receptor (AR) signalling pathway and transforming growth factor (TGF-ß) signalling pathway account for the largest proportion. Oridonin can regulate the protein expression of the three signalling pathways, which is consistent with the results predicted by network pharmacology. These findings indicated that oridonin can inhibit the proliferation of gastric cancer SGC-7901 cells by regulating the TNF-α /AR /TGF-ß signalling pathway axis.


Assuntos
Diterpenos do Tipo Caurano , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/patologia , Receptores Androgênicos , Fator de Crescimento Transformador beta/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Linhagem Celular Tumoral , Diterpenos do Tipo Caurano/farmacologia , Diterpenos do Tipo Caurano/uso terapêutico , Proliferação de Células , Apoptose
4.
Liver Int ; 43(7): 1473-1485, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37088973

RESUMO

BACKGROUND AND AIMS: Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease worldwide. Aberrant lipid metabolism and accumulation of extracellular matrix proteins are hallmarks of the disease, but the underlying mechanisms are largely unknown. This study aims to elucidate the key role of sine oculis homeobox homologue 1 (SIX1) in the development of NAFLD. METHODS: Alb-Cre mice were administered the AAV9 vector for SIX1 liver-specific overexpression or knockdown. Metabolic disorders, hepatic steatosis, and inflammation were monitored in mice fed with HFHC or MCD diet. High throughput CUT&Tag analysis was employed to investigate the mechanism of SIX1 in diet-induced steatohepatitis. RESULTS: Here, we found increased SIX1 expression in the livers of NAFLD patients and animal models. Liver-specific overexpression of SIX1 using adeno-associated virus serotype 9 (AAV9) provoked more severe inflammation, metabolic disorders, and hepatic steatosis in the HFHC or MCD-induced mice model. Mechanistically, we demonstrated that SIX1 directly activated the expression of liver X receptor α (LXRα) and liver X receptor ß (LXRß), thus inducing de novo lipogenesis (DNL). In addition, our results also illustrated a critical role of SIX1 in regulating the TGF-ß pathway by increasing the levels of type I and II TGF-ß receptor (TGFßRI/TGFßRII) in hepatic stellate cells (HSCs). Finally, we found that liver-specific SIX1 deficiency could ameliorate diet-induced NAFLD pathogenesis. CONCLUSION: Our findings suggest a detrimental function of SIX1 in the progression of NAFLD. The direct regulation of LXRα/ß and TGF-ß signalling by SIX1 provides a new regulatory mechanism in hepatic steatosis and fibrosis.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/patologia , Lipogênese/fisiologia , Fígado/patologia , Fibrose , Inflamação/patologia , Fator de Crescimento Transformador beta/metabolismo , Camundongos Endogâmicos C57BL , Dieta Hiperlipídica
5.
Oncol Lett ; 25(3): 107, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36817052

RESUMO

Long non-coding RNAs (lncRNAs) are a class of RNAs that are >200 nucleotides in length that do not have the ability to be translated into protein but are associated with numerous diseases, including cancer. The involvement of lncRNAs in the signalling of certain signalling pathways can promote tumour progression; these pathways include the transforming growth factor (TGF)-ß signalling pathway, which is related to tumour development. The expression of lncRNAs in various tumour tissues is specific, and their interaction with the TGF-ß signalling pathway indicates that they may serve as new tumour markers and therapeutic targets. The present review summarized the role of TGF-ß pathway-associated lncRNAs in regulating tumorigenesis in different types of cancer and their effects on the TGF-ß signalling pathway.

6.
J Cachexia Sarcopenia Muscle ; 14(2): 1033-1045, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36755335

RESUMO

BACKGROUND: Increasing evidence shows that tRNA-derived small RNAs (tsRNAs) are not only by-products of transfer RNAs, but they participate in numerous cellular metabolic processes. However, the role of tsRNAs in skeletal muscle regeneration remains unknown. METHODS: Small RNA sequencing revealed the relationship between tsRNAs and skeletal muscle injury. The dynamic expression level of 5'tiRNA-Gly after muscle injury was confirmed by real-time quantitative PCR (q-PCR). In addition, q-PCR, flow cytometry, the 5-ethynyl-2'-deoxyuridine (Edu), cell counting kit-8, western blotting and immunofluorescence were used to explore the biological function of 5'tiRNA-Gly. Bioinformatics analysis and dual-luciferase reporter assay were used to further explore the mechanism of action under the biological function of 5'tiRNA-Gly. RESULTS: Transcriptome analysis revealed that tsRNAs were significantly enriched during inflammatory response immediately after muscle injury. Interestingly, we found that 5'tiRNA-Gly was significantly up-regulated after muscle injury (P < 0.0001) and had a strong positive correlation with inflammation in vivo. In vitro experiments showed that 5'tiRNA-Gly promoted the mRNA expression of proinflammatory cytokines (IL-1ß, P = 0.0468; IL-6, P = 0.0369) and the macrophages of M1 markers (TNF-α, P = 0.0102; CD80, P = 0.0056; MCP-1, P = 0.0002). On the contrary, 5'tiRNA-Gly inhibited the mRNA expression of anti-inflammatory cytokines (IL-4, P = 0.0009; IL-10, P = 0.0007; IL-13, P = 0.0008) and the mRNA expression of M2 markers (TGF-ß1, P = 0.0016; ARG1, P = 0.0083). Flow cytometry showed that 5'tiRNA-Gly promoted the percentage of CD86+ macrophages (16%, P = 0.011) but inhibited that of CD206+ macrophages (10.5%, P = 0.012). Immunofluorescence showed that knockdown of 5'tiRNA-Gly increased the infiltration of M2 macrophages to the skeletal muscles (13.9%, P = 0.0023) and inhibited the expression of Pax7 (P = 0.0089) in vivo. 5'tiRNA-Gly promoted myoblast the expression of myogenic differentiation marker genes (MyoD, P = 0.0002; MyoG, P = 0.0037) and myotube formation (21.3%, P = 0.0016) but inhibited the positive rate of Edu (27.7%, P = 0.0001), cell viability (22.6%, P = 0.003) and the number of myoblasts in the G2 phase (26.3%, P = 0.0016) in vitro. Mechanistically, we found that the Tgfbr1 gene is a direct target of 5'tiRNA-Gly mediated by AGO1 and AGO3. 5'tiRNA-Gly dysregulated the expression of downstream genes related to inflammatory response, activation of satellite cells and differentiation of myoblasts through the TGF-ß signalling pathway by targeting Tgfbr1. CONCLUSIONS: These results reveal that 5'tiRNA-Gly potentially regulated skeletal muscle regeneration by inducing inflammation via the TGF-ß signalling pathway. The findings of this study uncover a new potential target for skeletal muscle regeneration treatment.


Assuntos
Músculo Esquelético , RNA , Humanos , RNA/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Músculo Esquelético/metabolismo , Citocinas/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , RNA Mensageiro/genética , Regeneração/genética , Fator de Crescimento Transformador beta/metabolismo , Inflamação/genética , Inflamação/metabolismo
7.
Oncol Lett ; 21(4): 302, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33732378

RESUMO

Long non-coding RNA (lncRNA) is a new type of non-coding RNA that has an important regulatory influence on several human diseases, including cancer metastasis. HOX antisense intergenic RNA (HOTAIR), a newly discovered lncRNA, has an important effect on tumour proliferation, migration and metastasis. HOTAIR regulates cell proliferation, changes gene expression, and promotes tumour cell invasion and migration. However, its molecular mechanism of action remains unknown. The present review summarizes the molecular mechanism and role of HOTAIR in tumour invasion and metastasis, discusses the association between HOTAIR and tumour metastasis through different pathways, such as the transforming growth factor ß, Wnt/ß-catenin, PI3K/AKT/MAPK and vascular endothelial growth factor pathways, emphasizes the function of HOTAIR in human malignant tumour metastasis and provides a foundation for its application in the diagnosis, prognosis and medical treatment of various tumours.

8.
J Cell Mol Med ; 25(7): 3498-3510, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33682288

RESUMO

Transforming growth factor beta (TGF-ß) plays an important role in the viral liver disease progression via controlling viral propagation and mediating inflammation-associated responses. However, the antiviral activities and mechanisms of TGF-ß isoforms, including TGF-ß1, TGF-ß2 and TGF-ß3, remain unclear. Here, we demonstrated that all of the three TGF-ß isoforms were increased in Huh7.5 cells infected by hepatitis C virus (HCV), but in turn, the elevated TGF-ß isoforms could inhibit HCV propagation with different potency in infectious HCV cell culture system. TGF-ß isoforms suppressed HCV propagation through interrupting several different stages in the whole HCV life cycle, including virus entry and intracellular replication, in TGF-ß/SMAD signalling pathway-dependent and TGF-ß/SMAD signalling pathway-independent manners. TGF-ß isoforms showed additional anti-HCV activities when combined with each other. However, the elevated TGF-ß1 and TGF-ß2, not TGF-ß3, could also induce liver fibrosis with a high expression of type I collagen alpha-1 and α-smooth muscle actin in LX-2 cells. Our results showed a new insight into TGF-ß isoforms in the HCV-related liver disease progression.


Assuntos
Hepacivirus/efeitos dos fármacos , Hepacivirus/crescimento & desenvolvimento , Hepatite C/virologia , Transdução de Sinais , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Sequência de Aminoácidos , Antivirais/farmacologia , Linhagem Celular Tumoral , Hepatite C/patologia , Humanos , Conformação Proteica em alfa-Hélice , Domínios e Motivos de Interação entre Proteínas , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/farmacologia , RNA Viral , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Fator de Crescimento Transformador beta2/metabolismo , Fator de Crescimento Transformador beta2/farmacologia , Fator de Crescimento Transformador beta3/metabolismo , Fator de Crescimento Transformador beta3/farmacologia , Internalização do Vírus/efeitos dos fármacos
9.
J Cell Mol Med ; 24(23): 13824-13836, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33107676

RESUMO

Oral squamous cell carcinoma (OSCC) is a prevalent cancer that develops in the head and neck area and has high annual mortality despite optimal treatment. microRNA-218 (miR-218) is a tumour inhibiting non-coding RNA that has been reported to suppress the cell proliferation and invasion in various cancers. Thus, our study aims to determine the mechanism underlying the inhibitory role of miR-218 in OSCC. We conducted a bioinformatics analysis to screen differentially expressed genes in OSCC and their potential upstream miRNAs. After collection of surgical OSCC tissues, we detected GREM1 expression by immunohistochemistry, RT-qPCR and Western blot analysis, and miR-218 expression by RT-qPCR. The target relationship between miR-218 and GREM1 was assessed by dual-luciferase reporter gene assay. After loss- and gain-of-function experiments, OSCC cell proliferation, migration and invasion were determined by MTT assay, scratch test and Transwell assay, respectively. Expression of TGF-ß1, Smad4, p21, E-cadherin, Vimentin and Snail was measured by RT-qPCR and Western blot analysis. Finally, effects of miR-218 and GREM1 on tumour formation and liver metastasis were evaluated in xenograft tumour-bearing nude mice. GREM1 was up-regulated, and miR-218 was down-regulated in OSCC tissues, and GREM1 was confirmed to be the target gene of miR-218. Furthermore, after up-regulating miR-218 or silencing GREM1, OSCC cell proliferation, migration and invasion were reduced. In addition, expression of TGF-ß signalling pathway-related genes was diminished by overexpressing miR-218 or down-regulating GREM1. Finally, up-regulated miR-218 or down-regulated GREM1 reduced tumour growth and liver metastasis in vivo. Taken together, our findings suggest that the overexpression of miR-218 may inhibit OSCC progression by inactivating the GREM1-dependent TGF-ß signalling pathway.


Assuntos
Carcinoma de Células Escamosas/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intercelular/genética , MicroRNAs/genética , Neoplasias Bucais/genética , Interferência de RNA , Adulto , Idoso , Animais , Carcinoma de Células Escamosas/diagnóstico , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Biologia Computacional/métodos , Bases de Dados Genéticas , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Genes Reporter , Xenoenxertos , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Modelos Biológicos , Neoplasias Bucais/diagnóstico , Gradação de Tumores , Metástase Neoplásica , Estadiamento de Neoplasias , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo
10.
Parasit Vectors ; 13(1): 164, 2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32245505

RESUMO

BACKGROUND: Smad proteins are essential cellular mediators within the transforming growth factor-ß (TGF-ß) superfamily. They directly transmit incoming signals from the cell surface receptors to the nucleus. In spite of their functional importance, almost nothing is known about Smad proteins in parasitic nematodes including Haemonchus contortus, an important blood-sucking nematode of small ruminants. METHODS: Based on genomic and transcriptome data for H. contortus and using bioinformatics methods, a Smad homologue (called Hco-daf-8) was inferred from H. contortus and the structural characteristics of this gene and its encoded protein Hco-DAF-8 established. Using real-time PCR and immunofluorescence assays, temporal transcriptional and spatial expression profiles of Hco-daf-8 were studied. Gene rescue in Caenorhabditis elegans was then applied to assess the function of Hco-daf-8 and a specific inhibitor of human Smad3 (called SIS3) was employed to evaluate the roles of Hco-DAF-8 in H. contortus development. RESULTS: The features of Hco-DAF-8 (502 amino acids), including conserved R-Smad domains and residues of the L3-loop that determine pathway specificity, are consistent with a TGF-ß type I receptor-activated R-Smad. The Hco-daf-8 gene was transcribed in all developmental stages of H. contortus studied, with a higher level of transcription in the fourth-stage larval (L4) females and the highest level in adult males. Hco-DAF-8 was expressed in the platymyarian muscular cells, intestine and reproductive system of adult stages. Gene rescue experiments showed that Hco-daf-8 was able to partially rescue gene function in a daf-8 deficient mutant strain of C. elegans, leading to a resumption of normal development. In H. contortus, SIS3 was shown to affect H. contortus development from the exsheathed third-stage larvae (L3s) to L4s in vitro. CONCLUSIONS: These findings suggest that Hco-DAF-8, encoded by the gene Hco-daf-8, is an important cellular mediator of H. contortus development via the TGF-ß signalling pathway. They provide a basis for future explorations of Hco-DAF-8 and associated pathways in H. contortus and other important parasitic nematodes.


Assuntos
Haemonchus/genética , Proteínas de Helminto/genética , Proteínas Smad Reguladas por Receptor/genética , Transcriptoma , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Biologia Computacional , Feminino , Perfilação da Expressão Gênica , Genômica , Haemonchus/crescimento & desenvolvimento , Masculino , Alinhamento de Sequência , Transdução de Sinais , Proteínas Smad Reguladas por Receptor/classificação
11.
J Cell Mol Med ; 24(1): 488-510, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31680473

RESUMO

High plasma levels of homocysteine (Hcy) are regarded as a risk factor for atrial fibrillation (AF), which is closely associated with the pathological consequence of atrial fibrosis and can lead to heart failure with a high mortality rate; here, we show that atrial fibrosis is mediated by the relationship between canonical transient receptor potential 3 (TRPC3) channels and sirtuin type 1 (SIRT1) under the stimulation of Hcy. The left atrial appendage was obtained from patients with either sinus rhythm (SR) or AF and used to evaluate the relationship between the concentration of Hcy and a potential mechanism of cardiac fibrosis mediated by TRPC3 and SIRT1. We next performed transverse aortic constriction (TAC) in mouse to investigate the relationship. The mechanisms underlying atrial fibrosis involving TRPC3 and SIRT1 proteins were explored by co-IP, BLI and lentivirus transfection experiments. qPCR and WB were performed to analyse gene and protein expression, respectively. The higher level of atrial fibrosis was observed in the HH mouse group with a high Hcy diet. Such results suggest that AF patients may be more susceptible to atrial fibrosis and possess a high probability of progressing to hyperhomocysteinemia. Moreover, our findings are consistent with the hypothesis that TRPC3 channel up-regulation leads to abnormal accumulation of collagen, with the down-regulation of SIRT1 as an aetiological factor of high Hcy, which in turn predisposes to atrial fibrosis and strongly enhances the possibility of AF.


Assuntos
Cardiotônicos/metabolismo , Átrios do Coração/metabolismo , Átrios do Coração/patologia , Sirtuína 1/metabolismo , Canais de Cátion TRPC/metabolismo , Acetilcolina , Animais , Animais Recém-Nascidos , Aorta/patologia , Fibrilação Atrial/sangue , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/diagnóstico por imagem , Fibrilação Atrial/fisiopatologia , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Constrição Patológica , Eletrocardiografia , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibrose , Homocisteína/sangue , Humanos , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Ligação Proteica , Nó Sinoatrial/patologia , Volume Sistólico
12.
J Pharm Pharmacol ; 72(1): 44-55, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31659758

RESUMO

OBJECTIVES: Anlotinib hydrochloride (AL3818) is a novel multitarget tyrosine kinase inhibitor which has the same targets as nintedanib, an effective drug has been approved for the treatment of idiopathic pulmonary fibrosis. Here, we examined whether anlotinib could also attenuate bleomycin-induced pulmonary fibrosis in mice and explored the antifibrosis mechanism. METHODS: We have evaluated the effect of anlotinib on bleomycin-induced pulmonary fibrosis in mice. Inflammatory cytokines in alveolar lavage fluid including IL-1ß, IL-4, IL-6 and TNF-α were determined by ELISA. Biomarkers of oxidative stress were measured by corresponding kit. Histopathologic examination was analysed by H&E staining and immunohistochemistry. In vitro, we investigated whether anlotinib inhibited TGFß/Smad3 and non-Smad pathways by luciferase assay or Western blotting. We also evaluated whether anlotinib inhibited TGF-ß1-induced epithelial-mesenchymal transition (EMT) and promoted myofibroblast apoptosis in order to explore the possible molecular mechanism. KEY FINDINGS: The results indicated that anlotinib treatment remarkably attenuated inflammation, oxidative stress and pulmonary fibrosis in mouse lungs. Anlotinib could inhibit the TGF-ß1 signalling pathway. Additionally, anlotinib not only profoundly inhibited TGF-ß1-induced EMT in alveolar epithelial cells, but also simultaneously reduced the proliferation and promoted the apoptosis in fibroblasts. CONCLUSIONS: In summary, the results suggest that anlotinib-mediated suppression of pulmonary fibrosis is related to the inhibition of TGF-ß1 signalling pathway.


Assuntos
Bleomicina , Indóis/farmacologia , Pulmão/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Fibrose Pulmonar/tratamento farmacológico , Quinolinas/farmacologia , Fator de Crescimento Transformador beta1/metabolismo , Células A549 , Animais , Apoptose/efeitos dos fármacos , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Humanos , Pulmão/enzimologia , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células NIH 3T3 , Estresse Oxidativo/efeitos dos fármacos , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/enzimologia , Fibrose Pulmonar/patologia , Transdução de Sinais , Proteína Smad3/genética , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta1/genética
13.
Regen Ther ; 11: 249-257, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31538102

RESUMO

INTRODUCTION: Krüppel-like factor 4 (KLF4) is considered one of the Yamanaka factors, and recently, we and others have shown that KLF4 is one of the transcription factors essential for reprogramming non-human corneal epithelial cells (HCECs) into HCECs. Since epithelial to mesenchymal transition (EMT) suppression is vital for homeostasis of HCECs via regulation of transcription factors, in this study, we aimed to investigate whether KLF4 prevents EMT in HCECs and to elucidate the underlying mechanism within the canonical TGF-ß signalling pathway, which is involved in corneal epithelial wound healing. METHODS: HCECs were collected from cadaver donors and cultivated. We generated KLF4-knockdown (KD) HCECs using siRNA transfection and analysed morphology, gene or protein expression, and endogenous TGF-ß secretion. KLF4 was overexpressed using lentiviral KLF4 expression vectors and underwent protein expression analyses after TGF-ß2 treatment. RESULTS: KLF4-KD HCECs showed a fibroblastic morphology, downregulation of the epithelial markers, keratin 12 and keratin 14, and upregulation of the mesenchymal markers, fibronectin 1, vimentin, N-cadherin, and SLUG. Although E-cadherin expression remained unchanged in KLF4-KD HCECs, immunocytochemical analysis showed that E-cadherin-positive adherens junctions decreased in KLF4-KD HCECs as well as the decreased total protein levels of E-cadherin analysed by immunoblotting. Moreover, within the TGF-ß canonical signalling pathway, TGF-ß2 secretion by HCECs increased up to 5 folds, and several TGF-ß-associated markers (TGFB1, TGFB2, TGFBR1, and TGFBR2) were significantly upregulated up to 6 folds in the KLF4-KD HCECs. SMAD2/3, the main signal transduction molecules of the TGF-ß signalling pathway, were found to be localised in the nucleus of KLF4-KD HCECs. When KLF4 was overexpressed, cultivated HCECs showed upregulation of epithelial markers, keratin 14 and E-cadherin, indicating the contributory role of KLF4 in the homeostasis of human corneal epithelium in vivo. In addition, KLF4 overexpression in HCECs resulted in decreased SMAD2 phosphorylation and altered nuclear localisation of SMAD2/3, even after TGF-ß2 treatment. CONCLUSIONS: These results show that KLF4 prevents EMT in HCECs and suggest a novel role of KLF4 as an endogenous TGF-ß2 suppressor in the human corneal epithelium, thus highlighting the potential of KLF4 to prevent EMT and subsequent corneal fibrotic scar formation by attenuating TGF-ß signalling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA