Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ann Anat ; 255: 152301, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38971448

RESUMO

BACKGROUND: Temporomandibular joint osteoarthritis (TMJ-OA) presents significant challenges due to its complex etiology, often insidious onset, high incidence, and progressive structural deterioration. While research has explored genetic and molecular factors, treatment outcomes remain suboptimal, emphasizing the need for a deeper understanding of disease progression. OBJECTIVE: This study employs a specific mandibular shift rat model to explore the dynamic progression of TMJ-OA-like lesions and evaluate the potential for self-repair at different stages, aiming to inform early diagnosis and preventative strategies. METHODS: Seventy-two female Sprague-Dawley rats were randomized into three groups: a control group (n=24; average weight: 157.23±1.63 g) receiving sham surgery. an experimental group (n=24; average weight: 157.78±1.88 g) subjected to mandibular shift induction, and a removal group (n=24; average weight: 158.11±2.20 g) experiencing mandibular shift for one, two, or four weeks followed by a one-month recovery period (designated as 1w Removal, 2w Removal and 4w Removal, respectively). Histomorphological and molecular analyses were conducted at designated time points. RESULTS: Rats in the 1-week removal group exhibited substantial recovery in condylar morphology, cartilage thickness, extracellular matrix composition, and expression of OA-related genes. Conversely, the 4-week removal group mirrored the experimental group, indicating limited self-repair capacity at later stages. The 2-week removal group presented with variable outcomes, with some animals showing signs of recovery and others resembling the experimental group, indicating a potential transitional phase in the disease process. CONCLUSION: Recovery from early-stage TMJ-OA involves eliminating provoking factors such as occlusal interference or reducing joint loading. However, advanced stages exhibit diminished self-repair capabilities, necessitating additional therapeutic interventions. These findings emphasize the importance of early diagnosis and intervention in TMJ-OA management.


Assuntos
Modelos Animais de Doenças , Progressão da Doença , Osteoartrite , Ratos Sprague-Dawley , Animais , Feminino , Osteoartrite/patologia , Ratos , Transtornos da Articulação Temporomandibular/patologia , Articulação Temporomandibular/patologia , Mandíbula/patologia
2.
Proc Natl Acad Sci U S A ; 121(8): e2306132121, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38346188

RESUMO

Temporomandibular joint osteoarthritis (TMJ OA) is a prevalent degenerative disease characterized by chronic pain and impaired jaw function. The complexity of TMJ OA has hindered the development of prognostic tools, posing a significant challenge in timely, patient-specific management. Addressing this gap, our research employs a comprehensive, multidimensional approach to advance TMJ OA prognostication. We conducted a prospective study with 106 subjects, 74 of whom were followed up after 2 to 3 y of conservative treatment. Central to our methodology is the development of an innovative, open-source predictive modeling framework, the Ensemble via Hierarchical Predictions through Nested cross-validation tool (EHPN). This framework synergistically integrates 18 feature selection, statistical, and machine learning methods to yield an accuracy of 0.87, with an area under the ROC curve of 0.72 and an F1 score of 0.82. Our study, beyond technical advancements, emphasizes the global impact of TMJ OA, recognizing its unique demographic occurrence. We highlight key factors influencing TMJ OA progression. Using SHAP analysis, we identified personalized prognostic predictors: lower values of headache, lower back pain, restless sleep, condyle high gray level-GL-run emphasis, articular fossa GL nonuniformity, and long-run low GL emphasis; and higher values of superior joint space, mouth opening, saliva Vascular-endothelium-growth-factor, Matrix-metalloproteinase-7, serum Epithelial-neutrophil-activating-peptide, and age indicate recovery likelihood. Our multidimensional and multimodal EHPN tool enhances clinicians' decision-making, offering a transformative translational infrastructure. The EHPN model stands as a significant contribution to precision medicine, offering a paradigm shift in the management of temporomandibular disorders and potentially influencing broader applications in personalized healthcare.


Assuntos
Osteoartrite , Transtornos da Articulação Temporomandibular , Humanos , Estudos Prospectivos , Articulação Temporomandibular , Osteoartrite/terapia , Transtornos da Articulação Temporomandibular/terapia , Projetos de Pesquisa
3.
J Inflamm Res ; 16: 4287-4300, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37791119

RESUMO

Objective: To compare in vivo, the acute anti-inflammatory effects of a lysate derived from human umbilical perivascular mesenchymal cells with the cells themselves in both an established hind-paw model of carrageenan-induced inflammation and also in the inflamed temporomandibular joint. Study Design: Human umbilical cord perivascular cells were harvested and cultured in xeno- and serum-free conditions to P3. In addition, P3 cells were used to prepare a proprietary 0.22 micron filtered lysate. First, CD1 immunocompetent mice underwent unilateral hind-paw injections of carrageenan for induction of inflammation, followed immediately by treatment with saline (negative control), 1% cell lysate, or viable cells. The contralateral paw remained un-injected with carrageenan. Paw circumference was measured prior to injections and 48 hr later and myeloperoxidase and TNF-alpha concentrations were measured post-sacrifice in excised tissue. Second, immunocompetent Male Wistar rats underwent unilateral intra-articular temporomandibular (TMJ) injections from the same treatment groups and were sacrificed at 4 and 48 hr post-injection. The contralateral TMJ remained un-injected with carrageenan. Articular tissue and synovial aspirates, from the treated TMJ were obtained for histologic and leukocyte infiltration analyses. Results: The lysate and cell-treated hind-paw demonstrated reduced tissue edema, and significantly lower concentrations of myeloperoxidase and TNF-alpha at 48 hr compared to untreated controls. Treated TMJs demonstrated lower concentrations of leukocytes in the synovium compared to controls and histologic evidence, in the peri-articular tissue, of reduced inflammation. Conclusion: In this preliminary study, both the human umbilical perivascular cells and a highly diluted lysate produced therefrom were anti-inflammatory.

4.
Oral Dis ; 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37727896

RESUMO

OBJECTIVE: During the development of temporomandibular joint osteoarthritis, endochondral ossification is compromised which leads to condylar degeneration; miR-335-5p in endochondral ossification in osteoarthritic condylar cartilage tissue remains unclear. METHODS: Up-regulated microRNA and its target gene were searched for endochondral ossification in osteoarthritis articular cartilage. The effect of increased or decreased miR-335-5p on endochondral ossification was evaluated by transfecting miR-335-5p mimics or miR-335-5p inhibitor in vitro in chondrocytes C28/I2. Finally, we injected the temporomandibular joint of rats intra-articularly with agomiR-335 in a unilateral anterior crossbite rat model to determine the in vivo regulation of miR-335. RESULTS: After the onset of temporomandibular joint osteoarthritis, miR-335-5p levels were gradually up-regulated, whereas endochondral ossification-related genes were down-regulated in condylar cartilage specimens. Our results showed that miR-335 inhibited endochondral ossification after administration of a miR-335 antagonist into the temporomandibular joint articular cavity of a unilateral anterior crossbite rat model. AgomiR-335, a miR-335 agonist, inhibited matrix mineralization in fibrocartilage stem cells in vitro and then miR-335-5p negatively regulated chondrocyte activity by directly targeting SP1 via promoting transforming growth factor-ß/Smad signalling. CONCLUSION: miR-335-5p can significantly inhibit endochondral ossification; therefore, its inhibition may be beneficial for the treatment of temporomandibular joint osteoarthritis.

5.
J Biomed Sci ; 30(1): 77, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37691117

RESUMO

BACKGROUND: Bioactive materials have now raised considerable attention for the treatment of osteoarthritis (OA), such as knee OA, rheumatoid OA, and temporomandibular joint (TMJ) OA. TMJ-OA is a common disease associated with an imbalance of cartilage regeneration, tissue inflammation, and disability in mouth movement. Recently, biological materials or molecules have been developed for TMJ-OA therapy; however, ideal treatment is still lacking. In this study, we used the combination of a human platelet rich plasma with hyaluronic acid (hPRP/HA) for TMJ-OA therapy to perform a clinical trial in dish to humans. METHOD: Herein, hPRP was prepared, and the hPRP/HA combined concentration was optimized by MTT assay. For the clinical trial in dish, pro-inflammatory-induced in-vitro and in-vivo mimic 3D TMJ-OA models were created, and proliferation, gene expression, alcian blue staining, and IHC were used to evaluate chondrocyte regeneration. For the animal studies, complete Freund's adjuvant (CFA) was used to induce the TMJ-OA rat model, and condyle and disc regeneration were investigated through MRI. For the clinical trial in humans, 12 patients with TMJ-OA who had disc displacement and pain were enrolled. The disc displacement and pain at baseline and six months were measured by MRI, and clinical assessment, respectively. RESULTS: Combined hPRP/HA treatment ameliorated the proinflammatory-induced TMJ-OA model and promoted chondrocyte proliferation by activating SOX9, collagen type I/II, and aggrecan. TMJ-OA pathology-related inflammatory factors were efficiently downregulated with hPRP/HA treatment. Moreover, condylar cartilage was regenerated by hPRP/HA treatment in a proinflammatory-induced 3D neocartilage TMJ-OA-like model. During the animal studies, hPRP/HA treatment strongly repaired the condyle and disc in a CFA-induced TMJ-OA rat model. Furthermore, we performed a clinical trial in humans, and the MRI data demonstrated that after 6 months of treatment, hPRP/HA regenerated the condylar cartilage, reduced disc displacement, alleviated pain, and increased the maximum mouth opening (MMO). Overall, clinical trials in dish to human results revealed that hPRP/HA promoted cartilage regeneration, inhibited inflammation, reduced pain, and increased joint function in TMJ-OA. CONCLUSION: Conclusively, this study highlighted the therapeutic potential of the hPRP and HA combination for TMJ-OA therapy, with detailed evidence from bench to bedside. Trial registration Taipei Medical University Hospital (TMU-JIRB No. N201711041). Registered 24 November 2017. https://tmujcrc.tmu.edu.tw/inquiry_general.php .


Assuntos
Ácido Hialurônico , Osteoartrite do Joelho , Humanos , Animais , Ratos , Ácido Hialurônico/farmacologia , Ácido Hialurônico/uso terapêutico , Dor , Inflamação , Materiais Biocompatíveis
6.
Int Immunopharmacol ; 124(Pt A): 110781, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37625369

RESUMO

OBJECTIVES: Synovial inflammation and chondrocyte death have been widely acknowledged as key contributors to the pathological progression of temporomandibular joint osteoarthritis (TMJ-OA), a degenerative joint disease currently lacking definitive treatments. This study aims to understand the regulatory role of chondrocyte pyroptosis in condylar cartilage degradation during TMJ-OA. METHODS: The levels of cytokines, cartilage degeneration markers, and pyroptotic biomarkers in the synovium and synovial fluid of temporomandibular disorders (TMD) patients were examined. The synovitis, cartilage degradation, and chondrocyte pyroptosis in wild-type and alpha-kinase 1 (ALPK1)-deficient TMJ-OA mice were then compared following monosodium iodoacetate (MIA) induction. Subsequently, we investigated the downstream mechanisms of cytokines- or macrophage supernatants-induced metabolic disorders and pyroptosis in chondrocytes using primary TMJ chondrocytes and ATDC5 chondrocyte cultures. RESULTS: We found a positive correlation between pyroptotic biomarkers and cartilage degradation mediators and cytokines in the synovial fluid of TMD patients. MIA-induced TMJ-OA mice demonstrated significant synovitis, cartilage degradation, and chondrocyte pyroptosis, which were mitigated in ALPK1-deficient TMJ-OA mice, inflammation-restrained mice. Ex-vivo study revealed the contribution of reactive oxygen species (ROS) to inflammation-irritated macrophage supernatants-induced pyroptosis and metabolic disorders in chondrocytes. Targeting NOD-like receptor protein 3 (NLRP3) alleviated cytokines- or ROS-induced pyroptosis and metabolic disorders in chondrocytes by inhibiting caspase-1 activation and interleukin-1ß (IL-1ß) secretion. CONCLUSION: Our findings offer novel insight into the role of synovial inflammation-induced chondrocyte pyroptosis in promoting cartilage degradation during TMJ-OA via the ROS and NLRP3 signaling pathway.

7.
Heliyon ; 8(10): e10847, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36262297

RESUMO

Objective: To explore the role of Wnt/ß-catenin signaling pathway in the pathogenesis and progression of temporomandibular joint osteoarthritis (TMJ OA) caused by overloaded force. Materials and methods: We generated a rat model of forward mandibular extension device to induce TMJ OA by overloaded force. Condylar cartilage samples were collected at 2wk, 4wk, and 8wk after appliances were installed. Changes of the condylar cartilage and subchondral bone were evaluated by hematoxylin and eosin (HE), Safranin O and Fast Green staining (SO&FG), micro-CT, tartrate resistant acid phosphatase (TRAP) staining. The expression levels of ß-catenin, COL-2, MMP3 and sclerostin (SOST) were detected by immunohistochemistry (IHC) and PCR. Results: HE, SO&FG, micro-CT, OARSI and Mankin scores showed that the condyle cartilage layer was significantly thinner and proteoglycan loss in the overloded group. TRAP staining exhibited that the number of positive osteoclasts increased and OPG level decreased in the overload group. IHC, PCR showed that the expression of COL2 and SOST decreased, while MMP3 and ß-catenin increased in the overload group. Conclusion: Wnt/ß-catenin signaling pathway is activated in the progress of mandibular condylar cartilage degeneration and subchondral bone loss induced by overloaded functional orthopedic force (OFOF).

8.
Front Cell Dev Biol ; 9: 656153, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33869221

RESUMO

Background: Temporomandibular joint osteoarthritis (TMJOA) seriously affects the health of patients, and the current treatments are invasive and only used for advanced cases. Bone marrow mesenchymal stem cell (BMSC)-derived small extracellular vesicles (BMSC-sEVs) may represent a safer and more effective treatment, but their role in TMJOA has not been elucidated. This study attempted to analyze the cartilage reconstruction effect of BMSC-sEVs on TMJOA and the mechanism underlying this effect. Methods: BMSC-sEVs were isolated and purified by microfiltration and ultrafiltration and were subsequently characterized by nanoparticle tracking analysis, electron microscopy, and immunoblotting. TMJOA models were established in vivo and in vitro, and hematoxylin-eosin staining, immunohistochemistry, and histological scoring were performed to analyze the histological changes in TMJOA cartilage tissues treated with BMSC-sEVs. The proliferation, migratory capacity, and cell cycle distribution of TMJOA cartilage cells treated with BMSC-sEVs were detected. Furthermore, the related mechanisms were studied by bioinformatic analysis, immunoblotting, and quantitative PCR, and they were further analyzed by knockdown and inhibitor techniques. Results: The acquisition and identification of BMSC-sEVs were efficient and satisfactory. Compared with the osteoarthritis (OA) group, the condylar tissue of the OA group treated with BMSC-sEV (OAsEV) showed an increase in cartilage lacuna and hypertrophic cartilage cells in the deep area of the bone under the cartilage. Significantly upregulated expression of proliferating cell nuclear antigen and cartilage-forming factors and downregulated expression of cartilage inflammation-related factors in OAsEV were observed. In addition, we found higher rates of cell proliferation and migratory activity and alleviated G1 stagnation of the cell cycle of OAsEV. Autotaxin was found in the BMSC-sEVs, and key factors of the Hippo pathway, Yes-associated protein (YAP), phosphorylated Yes-associated protein (p-YAP), etc. were upregulated in the OAsEV group. Treatment with BMSC-sEVs after autotaxin knockdown or inhibition no longer resulted in expression changes in cartilage-forming and inflammation-related factors and key factors of the Hippo pathway. Conclusions: These results suggest that the autotaxin-YAP signaling axis plays an important role in the mechanism by which BMSC-sEVs promote cartilage reconstruction in TMJOA, which may provide guidance regarding their therapeutic applications as early and minimally invasive therapies for TMJOA, and provide insight into the internal mechanisms of TMJOA.

9.
Am J Transl Res ; 11(5): 2969-2982, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31217867

RESUMO

Angiogenesis has been reported participated in temporomandibular joint osteoarthritis (TMJ-OA). While the pathogenesis is unclear, recent studies indicate that hypoxia is important in TMJ-OA. In order to induce osteoarthritis-like lesions in mandibular condyles, rats were sleep deprived experimentally. An increased number of blood vessels were observed in the rats' condyles of SD and SR group compared with controls. Protein and mRNA levels of related factors including VEGF, HIF-1 and Notch were investigated by means of immunohistochemical staining, western blot and real-time PCR, which were highly expressed in the TMJ-OA rats. Furthermore, Cell test was designed to study effects of hypoxia on condylar chondrocytes. We found the expression of VEGF, HIF-1 and Notch were significantly increased in hypoxia group, indicating that HIF-1-Notch-VEGF signaling pathway were activated by hypoxia. The inhibitors of HIF-1 and Notch could suppress the expression of HIF-1, VEGF, Notch, suggesting the HIF-1-VEGF-Notch signaling pathway were bidirectional. Together, hypoxia played an important role in TMJ-OA and accelerates angiogenesis of condylar cartilage through HIF-1-VEGF-Notch signaling pathway. HIF-1α and Notch might be novel therapeutic targets in TMJ-OA.

10.
Front Pharmacol ; 10: 15, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30728776

RESUMO

Temporomandibular joint osteoarthritis (TMJ-OA), mainly exhibit extracellular matrix loss and condylar cartilage degradation, is the most common chronic and degenerative maxillofacial osteoarthritis; however, no efficient therapy for TMJ-OA exists due to the poor understanding of its pathological progression. MicroRNA (miR)-140-5p is a novel non-coding microRNAs (miRNAs) that expressed in osteoarthritis specifically. To investigate the molecular mechanisms of miR-140-5p in TMJ-OA, primary mandibular condylar chondrocytes (MCCs) from C57BL/6N mice were treated with interleukins (IL)-1ß or transfected with miR-140-5p mimics or inhibitors, respectively. The expression of matrix metallopeptidase (MMP)-13, miR-140-5p, nuclear factor (NF)-kB, Smad3 and transforming growth factor (TGF)-ß3 were examined by western blotting or quantitative reverse-transcription polymerase chain reaction (qRT-PCR). The interaction between the potential binding sequence of miR-140-5p and the 3'-untranslated region (3'UTR) of Smad3 mRNA was testified by dual-luciferase assay. Small Interfering RNA of Smad3 (Si-Smad3) was utilized to further identify the role of Smad3 mediated by miR-140-5p. The data showed MMP13, miR-140-5p and NF-kB increased significantly in response to IL-1ß inflammatory response in MCCs, meanwhile, Smad3 and TGF-ß3 reduced markedly. Moreover, transfection of miR-140-5p mimics significantly suppressed the expression of Smad3 and TGF-ß3 in MCCs, while miR-140-5p inhibitors acted in a converse manner. As the luciferase reporter of Smad3 mRNA observed active interaction with miR-140-5p, Smad3 was identified as a direct target of miR-140-5p. Additionally, the expression of TGF-ß3 was regulated upon the activation of Smad3. Together, these data suggested that miR-140-5p may play a role in regulating mandibular condylar cartilage homeostasis and potentially serve as a novel prognostic factor of TMJ-OA-like pathology.

11.
Curr Rheumatol Rev ; 14(1): 62-69, 2018 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-29046162

RESUMO

BACKGROUND: Temporomandibular joint osteoarthritis (TMJ-OA) is a degenerative disease that involves changes in subchondral bone and progressive degradation of cartilage. Currently, rebamipide, a gastroprotective drug, is administered to protect gastric mucosa and accelerate ulcer healing. OBJECTIVES: Recent studies have shown that rebamipide also attenuates cartilage degeneration by suppressing oxidative damage and inducing homeostasis of the extracellular matrix of articular chondrocytes. Regarding the latter, reduced expression of cathepsin K, NFATc1, c-Src, and integrin ß3, and increased expression of nuclear factor-kappa B, have been found to be mediated by the transcription factor, receptor activator of nuclear factor kappa-B ligand (RANKL). METHODS: Treatment with rebamipide was also found to activate, mitogen-activated protein kinases such as p38, ERK, and JNK to reduce osteoclast differentiation. Taken together, these results strongly indicate that rebamipide mediates inhibitory effects on cartilage degradation and osteoclastogenesis in TMJ-OA. RESULTS AND CONCLUSION: Here, we highlight recent evidence regarding the potential for rebamipide to affect osteoclast differentiation and TMJ-OA pathogenesis. We also discuss the potential role of rebamipide to serve as a new strategy for the treatment of TMJ-OA.


Assuntos
Alanina/análogos & derivados , Antioxidantes/farmacologia , Diferenciação Celular/efeitos dos fármacos , Côndilo Mandibular/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , Quinolonas/farmacologia , Alanina/farmacologia , Animais , Cartilagem Articular/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Humanos , Osteoartrite/tratamento farmacológico , Articulação Temporomandibular/efeitos dos fármacos , Transtornos da Articulação Temporomandibular/tratamento farmacológico
12.
Oncotarget ; 8(11): 17849-17861, 2017 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-28147322

RESUMO

Chronic sleep disturbance (CSD) has been linked to the development of temporomandibular joint osteoarthritis (TMJ-OA). While the pathogenesis of TMJ-OA is unclear, recent studies indicate that osteochondral angiogenesis is important. We developed a rat model of CSD induced TMJ-OA to investigate the changes caused by sleep disturbance and to correlate them with vascular invasion in the TMJ. We found pathological alterations and an increased microvessel density in the rat TMJ following CSD. VEGF, Dll4 and p-ERK1/2, the expression of angiogenic factors, were highly expressed in the rat mandibular condylar cartilage and their expression increased with CSD. Furthermore, we show that VEGF-induce activation of ERK1/2, which in turn, increases Dll4 expression. Together, our results suggest that CSD can cause OA-like pathological alterations in the rat TMJ by increasing angiogenesis.


Assuntos
Cartilagem/irrigação sanguínea , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Neovascularização Patológica/metabolismo , Osteoartrite/patologia , Transtornos do Sono-Vigília/patologia , Articulação Temporomandibular/patologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Hormônio Adrenocorticotrópico/sangue , Animais , Corticosterona/sangue , Modelos Animais de Doenças , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Côndilo Mandibular/patologia , Ratos , Ratos Wistar
13.
Arch Oral Biol ; 73: 274-281, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27816790

RESUMO

OBJECTIVE: Temporomandibular joint osteoarthritis (TMJ-OA) is a degenerative disease characterized by permanent cartilage loss. Articular cartilage is maintained in a low-oxygen environment. The chondrocyte response to hypoxic conditions involves expression of hypoxia inducible factor 1α (HIF-1α), which induces chondrocytes to increase expression of vascular endothelial growth factor (VEGF). Here, we investigated the role of HIF-1α in mechanical load effects on condylar cartilage and subchondral bone in heterozygous HIF-1α-deficient mice (HIF-1α+/-). DESIGN: Mechanical stress was applied to the TMJ of C57BL/6NCr wild-type (WT) and HIF-1α+/- mice with a sliding plate for 10 days. Histological analysis was performed by HE staining, Safranin-O/Fast green staining, and immunostaining specific for articular cartilage homeostasis. RESULTS: HIF-1α+/- mice had thinner cartilage and smaller areas of proteoglycan than WT controls, without and with mechanical stress. Mechanical stress resulted in prominent degenerative changes with increased expression of HIF-1α, VEGF, and the apoptosis factor cleaved Caspase-3 in condylar cartilage. CONCLUSION: Our results indicate that HIF-1α may be important for articular cartilage homeostasis and protective against articular cartilage degradation in the TMJ under mechanical stress condition, therefore HIF-1α could be an important new therapeutic target in TMJ-OA.


Assuntos
Cartilagem Articular/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , Articulação Temporomandibular/metabolismo , Animais , Fator de Indução de Apoptose/biossíntese , Cartilagem Articular/patologia , Caspase 3/metabolismo , Condrócitos/fisiologia , Heterozigoto , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Mandíbula/metabolismo , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Osteoartrite/metabolismo , Osteoartrite/patologia , Osteogênese , Oxigênio/metabolismo , Proteoglicanas/metabolismo , Estresse Mecânico , Articulação Temporomandibular/patologia , Articulação Temporomandibular/fisiologia , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
14.
Proc SPIE Int Soc Opt Eng ; 94172015 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-26236073

RESUMO

Temporomandibular joint (TMJ) disorders are a group of conditions that cause pain and dysfunction in the jaw joint and the muscles controlling jaw movement. However, diagnosis and treatment of these conditions remain controversial. To date, there is no single sign, symptom, or test that can clearly diagnose early stages of osteoarthritis (OA). Instead, the diagnosis is based on a consideration of several factors, including radiological evaluation. The current radiological diagnosis scores of TMJ pathology are subject to misdiagnosis. We believe these scores are limited by the acquisition procedures, such as oblique cuts of the CT and head positioning errors, and can lead to incorrect diagnoses of flattening of the head of the condyle, formation of osteophytes, or condylar pitting. This study consists of creating and validating a methodological framework to simulate defects in CBCT scans of known location and size, in order to create synthetic TMJ OA database. User-generated defects were created using a non-rigid deformation protocol in CBCT. All segmentation evaluation, surface distances and linear distances from the user-generated to the simulated defects showed our methodological framework to be very precise and within a voxel (0.5 mm) of magnitude. A TMJ OA synthetic database will be created next, and evaluated by expert radiologists, and this will serve to evaluate how sensitive the current radiological diagnosis tools are.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA