Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 340
Filtrar
1.
Clean Water ; 1: None, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38948691

RESUMO

Environmental sustainability has gained acceptance to achieving the goal of a secure ecosystem with a reliable management system. Heavy metal remediation of aqueous streams is of special concern due to the intractability and persistence in the environment. Adsorption is a potential alternative to the existing inefficient conventional technologies for the removal and recovery of metal ions from aqueous solutions and becomes vital to align with the Sustainable Development Goals (SDGs) and mitigate the adverse environmental and social impacts. Calcium Alginate-Graphene oxide (CA-GO) composite has been synthesized for the adsorption of heavy metals including Cr3+, Cu2+, and Cd2+ ions from tannery effluents. Graphene oxide is prepared from commercial graphite powder and reacted with sodium alginate and calcium chloride to form the beads of CA-GO composite. The developed composite was characterized by FTIR, elemental analysis, SEM, XRD analysis, and Raman spectroscopy. Moreover, the effect of pH, adsorbent dosage, contact time, and initial concentration of metal ions on the adsorption capacity were investigated through batch experiments. At a pH>3.0 (pHzpc), the carboxyl group of CA-GO was deprotonated to make the surface negatively charged and facilitate metal adsorption. The optimum pH and maximum adsorption capacity of CA-GO for removal of Cr(III), Cu(II), and Cd(II) were 4.5, 6.0, and 7.0, and 90.58, 108.57, and 134.77 mg g-1, respectively. The kinetics, adsorption isotherms, and thermodynamics were studied to determine the adsorption mechanism. The kinetic of adsorption adopted the second-order model. Thermodynamic parameter were calculated and the adsorption process was determined to be exothermic and spontaneous at room temperature. The developed composite has been efficaciously applied for the removal of metal ions and pollution from real tannery effluents.

2.
World J Microbiol Biotechnol ; 40(8): 249, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38907753

RESUMO

Tannery effluents contain high amounts of polluting chemicals, such as salts and heavy metals released often to surface waters. New economic and eco-friendly purification methods are needed. Two adsorbing materials and five salt-tolerant fungal isolates from mangrove habitat were studied. Purification experiments were carried out using the pollutant adsorbents biochar and the biomass of vetiver grass (Chrysopogon zizanioides) roots and the fungi Cladosporium cladosporioides, Phomopsis glabrae, Aspergillus niger, Emericellopsis sp., and Scopulariopsis sp., which were isolated from mangrove sediment. They efficacy to reduce pollutants was studied in different combinations. Salinity, turbidity, total dissolved solids, total suspended solids, phenols, nitrogen, ammonia. Biological and chemical oxygen demand (BOD, COD) and several heavy metals were measured. The adsorbents were efficient reducing the pollutants to 15-50% of the original. The efficiency of the combination of biochar and roots was generally at the same level as the adsorbents alone. Some pollutants such as turbidity, COD and ammonium were reduced slightly more by the combination than the adsorbents alone. From all 14 treatments, Emericellopsis sp. with biochar and roots appeared to be the most efficient reducing pollutants to < 10-30%. BOD and COD were reduced to ca 5% of the original. The treatment was efficient in reducing also heavy metals (As, Cd, Cr, Mn Pb, Zn). The fungal species originating from the environment instead of the strains present in the tannery effluent reduced pollutants remarkably and the adsorbents improved the reduction efficiency. However, the method needs development for effluents with high pollutant concentrations to fulfil the environmental regulations.


Assuntos
Biodegradação Ambiental , Biomassa , Carvão Vegetal , Fungos , Metais Pesados , Raízes de Plantas , Poaceae , Curtume , Poluentes Químicos da Água , Carvão Vegetal/química , Poaceae/microbiologia , Raízes de Plantas/microbiologia , Fungos/isolamento & purificação , Fungos/classificação , Águas Residuárias/microbiologia , Águas Residuárias/química , Análise da Demanda Biológica de Oxigênio , Adsorção , Purificação da Água/métodos , Resíduos Industriais/análise , Áreas Alagadas
3.
Microbiol Res ; 285: 127771, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38788351

RESUMO

Effluents from the leather tanning industry contain diverse pollutants, including hazardous heavy metals, posing threats to public health and the surrounding environment. Indigenous bacterial isolates can represent an eco-friendly approach for tannery wastewater treatment; however, phenotypic characterization is necessary to determine whether these strains are suitable for bioremediation. In the present study, we analyzed seven new Enterococcus faecium strains and two new Bacillus subtillis strains isolated from effluents from the Southern Tunisian Tannery (ESTT). We evaluated phenotypic features beneficial for bioremediation, including biofilm formation, hydrophobicity, and exoenzyme activities. Additionally, we examined characteristics naturally occurring in environmental bacteria but less desirable in strains selected for bioremediation, such as antibiotic resistances and pathogenicity indicators. The observed phenotypes were then compared with whole-genome analysis. We observed biofilm production in two slime-producing bacteria, B. licheniformis RLT6, and E. faecium RLT8. Hydrophobicity of E. faecium strains RLT1, RLT5, RLT8, and RLT9, as well as B. licheniformis RLT6 correlated positively with increasing ESTT concentration. Exoenzyme activities were detected in E. faecium strains RLT2, RLT4, and RLT7, as well as B. licheniformis RLT6. As anticipated, all strains exhibited common resistances to antibiotics and hemolysis, which are widespread in nature and do not hinder their application for bioremediation. Importantly, none of the strains exhibited the pathogenic hypermucoviscosity phenotype. To the best of our knowledge, this is the first report consolidating all these phenotypic characteristics concurrently, providing a complete overview of strains suitability for bioremediation. IMPORTANCE: The study evaluates the bioremediation potential of seven Enterococcus faecium strains and two Bacillus subtillis strains isolated from the effluents from the Southern Tunisian tannery (ESTT), which pose threats to public health and environmental integrity. The analysis primarily examines the phenotypic traits crucial to bioremediation, including biofilm formation, hydrophobicity, and exoenzyme activities, as well as characteristics naturally occurring in environmental bacteria related to heavy metal resistance, such as antibiotic resistances. Several strains were found to have high bioremediation potential and exhibit only antibiotic resistances commonly found in nature, ensuring their application for bioremediation remains uncompromised. The results of the exhaustive phenotypic analysis are contrasted with the whole genome sequences of the nine strains, underscoring the appropriateness of these bacterial strains for eco-friendly interventions in tannery wastewater treatment.


Assuntos
Biodegradação Ambiental , Biofilmes , Enterococcus faecium , Fenótipo , Curtume , Águas Residuárias , Águas Residuárias/microbiologia , Enterococcus faecium/genética , Enterococcus faecium/metabolismo , Enterococcus faecium/isolamento & purificação , Tunísia , Biofilmes/crescimento & desenvolvimento , Metais Pesados/metabolismo , Antibacterianos/farmacologia , Interações Hidrofóbicas e Hidrofílicas , Filogenia , Bacillus/isolamento & purificação , Bacillus/genética , Bacillus/metabolismo , Bacillus/classificação , Resíduos Industriais , Poluentes Químicos da Água/metabolismo
4.
Int J Phytoremediation ; : 1-9, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38712911

RESUMO

From tannery effluent (TE) severely polluted with heavy metals (HMs viz., Cr, Cu, Cd, and Pb), hydrophytic phytoextraction remains a challenge as transplanted plants succumb to death on facing acclimatization shock. Current study was aimed at diluting TE with harvested rainwater (HR) for improving HM phytoextraction potential of Phragmites australis (a hydrophyte) assisted with phycoremediation of coupled algae (viz., Oedogonium sp. and Pithophora sp.). The TE:HR dilutions (TEDs) 0, 25, 50, 75, and 100% (v/v) included three sets: set-1 included algae only, set-2 included P. australis only and set-3 included P. australis coupled with combined algal inoculum. Results showed that P. australis assisted with HR dilution and combined algal inoculum showed significantly greater uptake of HMs from each of the TEDs than respective control treatments. Combined algal application in the TEDs proved phycoremediation assistants based on their bioaccumulation factor (BF). The dry biomass of P. australis in TEDs applied with phycoremediation assistants remained greater than uninoculated ones. Overall, HM translocation factor (TF) of P. australis for Cr, Cu, Cd, and Pb remained ≥ 1. The study concludes that HM phytoextraction is substantially increased when concentrated TE is diluted with HR and assisted with phycoremediation of HM tolerant algae.

5.
Chemosphere ; 358: 142203, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38697571

RESUMO

Excessive release of chromium (Cr) from the tanning industry and antibiotics from livestock caused severe hazards to humans. Gallic acid (GA 10 mM) alleviated alone/combined SDZ 30 mg kg-1 and TWW 40, 60, and 100% stress in wheat. GA (10 mM) decreased the TSP 12 and 13%, TFAA 8 and 10%, TSS 14 and 16%, RS 18 and 16%, and NRS 11 and 9% in shoots and grains under SDZ + TWW (30 mg kg-1+100%), compared without foliar. GA (10 mM) declined the MDA 20 and 31, EL 13 and 36%, H2O2 17 and 15%, O2•- 10 and 11% in leaves and roots, under combined SDZ + TWW (30 mg kg-1+100%), compared without foliar. GA (10 mM) improved the POD 106 and 30%, SOD 145 and 31%, CAT 78, and 35%, APX 100 and 25% in leaves and roots under combined SDZ + TWW (30 mg kg-1+100%), compared without foliar application. Considerably GA (10 mM) reduced total Cr 18, CrIII 20, and CrVI 50% in roots and shoots 19, 41, and 48%, and grains 15, 27, and 29% respectively, under combined SDZ + TWW (30 mg kg-1+100%) stress, compared without foliar. Overall, GA boosted the wheat growth, physiology, and defence system by inhibiting the combined SDZ + Cr toxicity.


Assuntos
Ácido Gálico , Sulfadiazina , Curtume , Triticum , Águas Residuárias , Triticum/efeitos dos fármacos , Triticum/crescimento & desenvolvimento , Águas Residuárias/química , Sulfadiazina/toxicidade , Cromo/toxicidade , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Poluentes do Solo/toxicidade , Folhas de Planta/efeitos dos fármacos
6.
Microorganisms ; 12(5)2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38792858

RESUMO

Tanning, crucial for leather production, relies heavily on chromium yet poses risks due to chromium's oxidative conversion, leading to significant wastewater and solid waste generation. Physico-chemical methods are typically used for heavy metal removal, but they have drawbacks, prompting interest in eco-friendly biological remediation techniques like biosorption, bioaccumulation, and biotransformation. The EU Directive (2018/850) mandates alternatives to landfilling or incineration for industrial textile waste management, highlighting the importance of environmentally conscious practices for leather products' end-of-life management, with composting being the most researched and viable option. This study aimed to isolate microorganisms from tannery wastewater and identify those responsible for different types of tanned leather biodegradation. Bacterial shifts during leather biodegradation were observed using a leather biodegradation assay (ISO 20136) with tannery and municipal wastewater as the inoculum. Over 10,000 bacterial species were identified in all analysed samples, with 7 bacterial strains isolated from tannery wastewaters. Identification of bacterial genera like Acinetobacter, Brevundimonas, and Mycolicibacterium provides insights into potential microbial candidates for enhancing leather biodegradability, wastewater treatment, and heavy metal bioremediation in industrial applications.

7.
Heliyon ; 10(7): e29078, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38601583

RESUMO

Anthropogenic activities have significantly polluted the natural environments all over the world. Leather processing industries release toxic heavy metals through their effluents posing a great threat to the environment. Chromium (Cr) is the major component of tannery effluents. We designed this experiment with the aim to remediate Cr from effluents of tanneries through phytoremediation. We selected three native macrophytes i.e. Pistia stratiotes, Eichhornia crassipes, and Typha latifolia to grow in a set of Constructed Wetland systems (CWs) with a continuous supply of tannery wastewater. T. latifolia was the most efficient phytoremediator of these macrophytes as it reduced the Cr content by 96.7%. The effluent after passing through the CWs containing T. latifolia showed only 0.426 mg/L Cr content. All macrophytes showed an enhanced phytochemical activity such as total antioxidant activity (TAA), total reduction potential (TRP), total phenolic content (TPC), total flavonoid content (TFC), and DPPH radical scavenging activity (DPPH) substantially. The activation of antioxidant mechanism may have contributed towards robust defense system of these plants for survival in excessive Cr contaminated media. Also, these macrophytes showed a positive relationship in reducing Cr content from tannery wastewater. Results of this study could help in effective sustainable management of aquatic environments contaminated with metal pollutants from human activities.

8.
Environ Technol ; : 1-13, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38648338

RESUMO

Growing industrialization and urbanization have led to increased water pollution due to the inadequate treatment and disposal of domestic wastewater (DW) and wastewater produced by industries such as tanneries (TW). These wastewaters are characterized by high concentrations of organic matter, nutrients, sulphates, chlorides and high microbial load. TW also contains phenols and chromium, which disturb and harm the ecosystem the local. The decontamination of wastewater prior to their discharge through biological tools, especially the use of species that are native to the site in need of treatment, has been described as effective and advantageous. This study evaluated the ability of Schoenoplectus americanus, a native plant species from Cordoba (Argentina), to phytoremediate local DW and TW samples at a laboratory scale. The aim was to ascertain whether this system could potentially be considered for the remediation of wastewater in real-world scenarios. S. americanus was able to tolerate pure DW and a 1/20 (v/v) dilution of TW for 30 days under hydroponic conditions. Removal rates ranging from 50% to 89% were obtained for residual organic matter (determined as chemical oxygen demand or COD), total nitrogen (TN) and total phosphorus (TP). Significant removal of total chromium (TCr) and total phenols (TPhs) was also observed in TW (85% and 98%). The number of total coliforms (TC), was reduced by about 96% and 99%. These results indicate that S. americanus is a good candidate for the phytoremediation of regional DW and TW. For this reason, it may be considered for full-scale applications in the future.

9.
Sci Total Environ ; 926: 172070, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38554952

RESUMO

The combination of raw animal skin manufacturing processes involves the use of large amounts of chemicals, resulting in the generation of complex and highly polluted tannery wastewater. In this context, the high concentration of chloride in tannery wastewater represents a crucial bottleneck. Indeed, sodium chloride, commonly used in tannery industry to prevent skin rot, increases the concentration of chlorides up to 50 %. At the same time, most of the advanced oxidation processes usually employed in tannery wastewater treatment to remove recalcitrant COD involve the use of conditioning agents, thus increasing the overall concentration of chlorides in the treated effluent. The aim of this study was to evaluate the electrochemical peroxidation process (ECP) efficiency in the treatment of tannery wastewater without changing pH, to improve Fenton technology by avoiding the use of chemicals. The influence of different electric currents on COD and color removal was investigated. The characterization of the produced sludge was conducted through FTIR, SEM and XRD analysis, exploring the morphology and composition of precipitate, depending on the applied current. Although an electrical current of 750 mA yields the highest COD and color removal efficiency (69.7 % and 97.8 %, respectively), 500 mA can be considered the best compromise because of energy consumptions. Iron oxides and hydroxides were generated during the ECP process, playing the role of coagulants through the absorption of organic and inorganic contaminants. The consumption of energy increased as a function of time and applied current; however, cost analysis showed that the electrodes contributed the most to the total cost of the process. In authors' knowledge, the application of ECP process as a tertiary treatment for the removal of recalcitrant COD in tannery wastewater represents a novelty in the literature and the results obtained can be considered as the basis for scaling up the process in future research.

10.
Environ Monit Assess ; 196(4): 352, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38466376

RESUMO

With characterized for complex and maximum substance (suspended solids, broke up oil, a mixture of inorganic and chromium sulfides), tannery wastewater was subjected to a treatment process on removal of chemical oxygen demand (COD) via upstream anaerobic sludge blanket reactor where we found reduced departure efficiencies and that process limits were affected by the assortments in regular stacking rates, closeness of chromium, and sulfides. Hence, a combination of the aerobic-anaerobic hybrid reactor was set up for sequential treatment to determine possible COD reduction. This study investigated the biological degradation of tannery wastewater in a laboratory-scale sequential up-flow aerobic-anaerobic reactor. The aerobic zone at the top was packed with spherical ball-shaped polyhedral polypropylene, and the anaerobic zone at the bottom was packed medium with granular media. The aeration flow rate varied by 2 L/min, 4 L/min, and 6 L/min in the aerobic zone, and the reactor maintained an organic loading rate (OLR) of 5 kg COD/m3/d. Parameters like COD and gas yield assess the performance of the reactor. The maximum COD of 86% is removed in the anaerobic zone with an aeration rate of 6 L/min, and the 1800-mL methane gas yield is measured by the 29th day.


Assuntos
Reatores Biológicos , Águas Residuárias , Anaerobiose , Análise da Demanda Biológica de Oxigênio , Monitoramento Ambiental , Cromo , Sulfetos , Eliminação de Resíduos Líquidos , Oxigênio
11.
Environ Res ; 252(Pt 1): 118786, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38537743

RESUMO

Industrial wastewater contains a wide range of pollutants that, if released directly into natural ecosystems, have the potential to pose serious risks to the environment.This study aims to investigate sustainable and efficient approaches for treating tannery wastewater, employing a combination of hyphenated Fenton oxidation and adsorption processes. Rigorous analyses were conducted on wastewater samples, evaluating parameters like COD, sulphide, NH3-N, PO43-, NO3-, and Cr(VI). The performance of this adsorbent material was gauged through column adsorption experiments. A comprehensive characterization of the adsorbent was undertaken using techniques such as SEM, EDX, BET, FTIR, XRD, and LIBS. The study delved into varying operational parameters like bed depth (ranging from 3.5 to 9.5 cm) diameter (2.5 cm) and influent flow rate (ranging from 5 to 15mLmin-1). The experimental outcomes revealed that increasing the bed depth and decreasing the influent flow rate significantly bolstered the adsorption column's effectiveness. Breakthrough curves obtained were fitted with different models, including the Thomas and Yoon-Nelson models. The most optimal column performance was achieved with a bed height of 10.5 cm and a flow rate of 5mLmin-1. The combined process achieved removal efficiencies of 94.5% for COD, 97.4% for sulphide, 96.2% for NH3-N, 83.1% for NO3-, 79.3% for PO43-, and 96.9% for Cr(VI) in tannery effluent. This research presents a notable stride toward the development of sustainable and efficient strategies for tannery wastewater treatment.


Assuntos
Carvão Vegetal , Resíduos Industriais , Curtume , Eliminação de Resíduos Líquidos , Águas Residuárias , Poluentes Químicos da Água , Carvão Vegetal/química , Adsorção , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Resíduos Industriais/análise , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Águas Residuárias/análise , Madeira/química , Ferro/química , Peróxido de Hidrogênio/química
12.
Heliyon ; 10(5): e27056, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38463895

RESUMO

The removal of pollutants from tannery wastewaters, which is renowned for its substantial volumes, intricate composition, and considerable hazards to human health and the environment, is a prominent research area in the field of water treatment. The aim of this study is to employ a bio-coagulant derived from Parkinsonia aculeata seeds and a bio-flocculant derived from Hibiscus esculentus to minimise the concentration of pollutants in the combined wastewater originating from tanneries. In the course of the research, a thorough physicochemical analysis of the coagulating and flocculating agents, Parkinsonia aculeata (PA) and Hibiscus esculentus (HE), was performed using techniques such as XRD (X-ray diffraction), FTIR (Fourier-transform infrared spectroscopy), and SEM-EDS (scanning electron microscopy-energy dispersive X-ray spectroscopy). This analysis aimed to determine the composition and characteristics of these biomasses. Subsequently, a comprehensive overview was conducted to summarize the various factors that influence the treatment of tannery wastewater through coagulation/flocculation. This was accomplished by manipulating the target factors and observing their impact on the removal of specific physicochemical parameters such as chemical oxygen demand (COD), electrical conductivity (EC), total chromium (Cr) and Optical density (OD). The variables that were established include pH, dosage of coagulant and flocculant, as well as the speed and duration of agitation in both the fast and slow mixing stages. The experiments were carried out while taking into account the optimal parameters, leading to the near-complete removal of all analyzed pollutants. The optimal requirements for the Parkinsonia aculeata-Hibiscus esculentus Coagulation Flocculation System involve adjusting the pH to 8, choosing concentrations of approximately 1.25 g L-1 and 0.6 g L-1 for the coagulant and flocculant respectively, maintaining a fast speed of 170 rpm for 3 min while keeping the slow agitation at around 30 rpm for 20 min. The removal rates achieved after treating tannery wastewater using the PA-HE coagulant-flocculant combination demonstrate high efficacy, with values reaching approximately 100% for TSS, 98.71% for BOD5, 99.93% for COD, 98.88% for NH4+, 98.21% for NO3-, 90.32% for NO2-, 93.13% for SO42-, 95.44% for PO43-, 96.08% for OD and 60% for total chromium. These results indicate the successful removal of a wide range of pollutants from tannery wastewater through the PA-HE treatment method. In predicting the CF treatment approach, PCA has been employed to preprocess the input data and determine the key variables that impact the process. This can streamline the modeling process and enhance the precision of the predictions.

13.
Toxics ; 12(2)2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38393247

RESUMO

Trivalent chromium (Cr(III)) is a contaminant with toxic activity. Its presence in waters and soils is usually related to industrial activities such as tanneries. The aim of this study was to compare the removal of Cr(III) in hydroponic solutions and tannery effluents using two floating macrophytes: Salvinia auriculata and Eichhornia crassipes. First, to determine the chromium removal capacity in solution and the bioaccumulation factor (BAF) in tissues of each plant, experiments were set up with contaminated solutions with Cr(III) concentrations of 2, 5, 10, 20, and 40 mg/L. Subsequently, both plant species were exposed to a primary tannery effluent contaminated with 12 mg/L of Cr(III) in order to study the removal capacity of organic and inorganic matter, as well as the acute toxicity in the water flea (Daphnia magna) and genotoxicity in zebrafish (Danio rerio). Tests carried out on nutrient solutions revealed that both plants have a high capacity for removing Cr(III) in solution. The BAF in tissues was higher in E. crassipes compared to S. auriculata. In the experiments with a tannery effluent, both species presented low nutrient and organic matter removal efficiency, but they showed good Cr(III) removal capacity, with average reduction values of 57% for S. auriculata and 54% for E. crassipes after 72 h of exposure. E. crassipes contributed most to the reduction in acute toxicity in D. magna, while S. auriculata did not show a similar effect. However, both plant species managed to reduce the genotoxicity marker in D. rerio when compared with the initial effluent and the control.

14.
Environ Monit Assess ; 196(3): 320, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38418623

RESUMO

The discharge of industrial effluents has a significant impact on the Water Quality Index (WQI) of the water bodies and is a major source of contamination of groundwater. The present study investigated the physicochemical characteristics and scrutinized the pollution potential of the tannery, textile, and electroplating effluents uploading into the Kala Sanghian drain, located in Jalandhar, Punjab, India. In this study, 12 samples were collected from the four sites (leather complex drain (LD), leather complex outlet (LO), focal point drain (FD), and Bulandpur drain (BD)) of Kala Sanghian drain in the dry season. The result showed that the drain under consideration is very much contaminated and the water is not suitable for irrigation and agricultural purposes. Rather it has a bad impact on the health of local people, the physiology of aquatic organisms, and the soil quality of agricultural land nearby. The present study confirmed the water quality index was more than 100, indicating a highly contaminated drain and water is unfit for any use. The correlation analysis shows that there exists a positive correlation between TDS and temperature (r = 0.994), DO and pH (r = 0.808), BOD and temperature (r = 0.987), BOD and TDS (r = 0.978), EC and temperature (r = 0.963), EC and TDS (r = 0.954), and EC and BOD (r = 0.956). The principal component analysis (PCA) confirms that PC1 alone has more than 89% of the variance with high positive loading for TDS, temperature, EC, and BOD. The hierarchical cluster analysis (HCA) reflected two clusters where cluster 1 consists of pH, DO, temperature, and BOD of water while cluster 2 consists of TDS and EC of water. The PCA and HCA study of the data set confirms the high degree contribution of anthropogenic activities through the application of chemicals in agriculture, disposal of municipal waste, and industrial effluents in the deterioration of water quality. The results of the study will help to enhance the sustainable action plan for the management of industrial effluents in the studied area.


Assuntos
Monitoramento Ambiental , Poluentes Químicos da Água , Humanos , Monitoramento Ambiental/métodos , Indústrias , Análise por Conglomerados , Agricultura , Solo , Qualidade da Água , Índia , Poluentes Químicos da Água/análise
15.
Environ Sci Pollut Res Int ; 31(12): 17788-17803, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38177647

RESUMO

In the present work, a study was carried out on the dosage of wastes from the chemical industry (tannery sludge) and civil construction (concrete and plaster) in mixtures used in concrete blocks' production. The objective was the application of these blocks in paving. The characterization of the materials used was performed employing X-ray diffractometry (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS). The effect of the different residues on the blocks' properties was evaluated through compressive strength, flexion-traction, water absorption, abrasion resistance, and leaching tests. The results indicated that the concrete paving blocks produced with the addition of residues did not obtain gains in the values of mechanical resistance to compression and traction in bending compared to blocks made with standard raw material. However, the blocks produced with construction waste presented satisfactory results for application in street paving after 7 days of concrete curing, reaching values between 36.54 and 44.6 MPa for the mentioned properties. These values also increased to 21.4% within 28 days of curing. The blocks produced with plaster showed values between 37.03 and 39.85 MPa after 28 days of curing, allowing their use for street paving. On the other hand, the blocks containing residues from the chemical industry had lower strengths, reaching a maximum of 29.36 MPa after 28 days of curing. In addition, it was also noted that the blocks produced with recycled concrete showed an improvement in performance for a composition of 50% recycled material.


Assuntos
Materiais de Construção , Resíduos Industriais , Resíduos Industriais/análise , Indústria Química , Reciclagem/métodos , Força Compressiva
16.
J Environ Sci (China) ; 138: 637-649, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38135427

RESUMO

Tannery sludge with high chromium content has been identified as hazardous solid waste due to its potential toxic effects. The safety disposal and valorization of the tannery sludge remains a challenge. In this study, the chromium stabilization mechanism was systematically investigated during chromium-rich tannery sludge was converted to biochar and the removal performance of the sludge biochar (SBC) for Cr(VI) from tannery wastewater was also investigated. The results showed that increase in pyrolysis temperature was conductive to the stabilization of Cr and significant reduction of the proportion of Cr(VI) in SBC. It was confirmed that the stabilization of chromium mainly was attributed to the embedding of chromium in the C matrix and the transformation of the chromium-containing substances from the amorphous Cr(OH)3 to the crystalline state, such as (FeMg)Cr2O5. The biochar presented high adsorption capacity of Cr(VI) at low pH and the maximal theoretical adsorption capacity of SBC produced at 800°C can reach 352 mg Cr(VI)/g, the process of which can be well expressed by Langmuir adsorption isotherm and pseudo second order model. The electrostatic effect and reduction reaction were dominantly responsible for the Cr(VI) adsorption by SBC800. Overall, this study provided a novel strategy for the harmless disposal and resource utilization for the solid waste containing chromium in leather industry.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Esgotos , Resíduos Sólidos , Carvão Vegetal/química , Cromo/química , Adsorção , Poluentes Químicos da Água/análise
17.
Chemosphere ; 350: 141047, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38154667

RESUMO

BACKGROUND: Blockage to divide downstream canals into upstream canals, into which tannery wastewater including a high concentration of trivalent chromium [Cr(III)] is directly discharged, has been constructed in Hazaribagh, a tannery built-up area in Bangladesh. However, there has been no study to verify the environmental significance of blockage construction for water pollution of Cr in nature. METHODS: Consecutive fixed area monitoring for a total of 164 water samples collected outside and inside Hazaribagh from 2014 to 2023 was carried out to clarify the effects of stagnant and flowable canal water in the presence or absence of blockage on Cr(III) and hexavalent Cr [Cr(VI)] concentrations. RESULTS: Since pollution of Cr(III) and Cr(VI) in Buriganga River (outside Hazaribagh) was not serious, this study then focused on their pollution in canal water (inside Hazaribagh) in the nonblockage period, blockage construction period and blockage destruction period. As expected, the mean Cr(III) concentration in downstream canal water samples in the blockage construction period was more than 98% lower than that in the upstream canal water samples in the same period, while the concentrations were comparable in downstream and upstream canal water samples in the nonblockage period and blockage destruction period. Unexpectedly, the mean concentration of Cr(VI) in the upstream canal water samples in the blockage construction period was 38.6-fold and 3.3-fold higher than that in the downstream canal water samples and the Cr(VI) guideline value by the US-EPA, respectively. CONCLUSION: This study demonstrated for the first time not only a merit of decreased Cr(III) pollution but also a demerit of increased Cr(VI) pollution in stagnant water derived from blockage construction in natural environments. This bitter lesson obtained by the enclosure of Cr(III)-polluted water is globally applicable for water pollution of Cr(III), which is used in various industries including the leather industry.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Bangladesh , Poluentes Químicos da Água/análise , Cromo/análise , Água
18.
J Environ Manage ; 351: 119843, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38128209

RESUMO

Heavy metal stabilization is an effective method to treat chromium in tannery sludge. Here we show that mainly investigated NaH2PO4 (MSP) and organic matter (OM) to stabilize chromium in tannery sludge. The experimental investigation revealed that the addition of montmorillonite (MMT) and MSP samples showed a significant increase in the percentage of reducible and oxidizable Cr in the former compared to the samples with the addition of MMT. This is attributed to the formation of Cr-O bond, which allows the MSP to undergo an inner-sphere complexation reaction with the metal oxide of Cr via ligand exchange. Significantly, the MSP moiety adsorbs on the surface of OM through monodentate, which increases the adsorption sites of OM for Cr6+ and promotes the reduction of Cr6+ to Cr3+. Moreover, PO43- reacts with Cr3+ to produce CrPO4 precipitation, thus reducing the free Cr3+ content. Finally, DFT calculations confirmed that a ternary system is formed between PO43-, OM, and Cr, and the binding energy is negative, which indicated that PO43- could co-stabilize Cr with OM.


Assuntos
Cromo , Metais Pesados , Cromo/química , Esgotos/química , Resíduos Industriais/análise , Óxidos , Curtume
19.
Environ Res ; 246: 118046, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38160968

RESUMO

Tannery sludge, a challenging waste, was utilized as a substrate for the production of Short-Chain Fatty Acids (SCFAs) through a series of six thermophilic Continuous Stirred-Tank Reactor runs. The sludge was subjected to a mild thermal pre-treatment and incorporated zeolites (chabazite in run II, and clinoptilolite in run III) in the acidification process. Results highlighted zeolites' impact on chromium concentration and the SCFAs/CODSOL ratio. Ammonia release remained consistent at around 47 % and 51 % for run I and II, respectively, but surpassed 60% in run III, suggesting limited zeolite effectiveness in NH4 absorption. Chromium release in the liquid fraction, due to thermal pretreatment, reached 335 mg/L. While in tests without zeolite, complete removal proved challenging, in zeolite-amended runs, complete removal was achieved, showcasing the materials' heavy metal absorption capacity. SCFA concentrations reached 20260 mgCOD/L, with acidification efficiency varying; runs I and III had ratios around 0.70 COD/COD, while run II showed substantial improvement (0.92) with chabazite. Anaerobic fermentation-digestion mass balance indicated a 41% reduction in landfill sludge mass, reducing its environmental footprint while yielding valuable byproducts like biogas and SCFAs. These findings underscore zeolites' potential in heavy metal absorption and acidification process enhancement, paving the way for applications with tannery sludge.


Assuntos
Metais Pesados , Zeolitas , Esgotos , Anaerobiose , Ácidos Graxos Voláteis , Fermentação , Cromo , Concentração de Íons de Hidrogênio
20.
Biology (Basel) ; 12(12)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38132333

RESUMO

Environmental pollutants such as toxic heavy metals and oxygen-demanding solids are generated by leather manufacturing. In most tanneries, wastewaters are treated with physico-chemical methods but overly high levels of pollutants remain in surface waters. The efficiency of tanning wastewater treatment with conventional techniques was evaluated in four tanneries in Saudi Arabia. It was observed that the wastewaters contained high amounts of pollutants, needing further treatment. We isolated microorganisms from the wastewaters and carried out experiments to treat the effluents with different bacteria, fungi, and their consortia. We hypothesized that a consortium of microorganisms is more efficient than the single microorganisms in the consortium. The efficiency of five single bacterial and five fungal species from different genera was tested. In a consortium experiment, the efficiency of nine bacterial-fungal consortia was studied. The bacterium Corynebacterium glutamicum and the fungus Acremonium sp. were the most efficient in the single-microbe treatment. In the consortium treatment, the consortium of these two was the most efficient at treating the effluent. The factory wastewater treatment reduced total dissolved solids (TDS) from 1885 mg/L to 880 mg/L. C. glutamicum treatment reduced TDS to 150 mg/L and Acremonium sp. to 140 mg/L. The consortium of these two reduced TDS further to 80 mg/L. Moreover, the factory treatment reduced BOD from 943 mg/L to 440 mg/L, C. glutamicum to 75 mg/L, and Acremonium sp. 70 mg/L. The consortium reduced BOD further to 20 mg/L. The total heavy-metal concentration (Cd, Cr, Cu, Mn, and Pb) was reduced by the factory treatment from 43 µg/L to 26 µg/L and by the consortium to 0.2 µg/L. The collagen concentration that was studied using hydroxyproline assay decreased from 120 mg/L to 39 mg/L. It was shown that the consortium of the bacterium C. glutamicum and the fungus Acremonium sp. was more efficient in reducing the pollutants than the single species. The consortium reduced almost all parameters to below the environmental regulation limit for wastewater discharge to the environment in Saudi Arabia. The consortium should be studied further as an additional treatment to the existing conventional tannery wastewater treatments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...