RESUMO
Skeletal muscle fibrosis is defined as the excessive accumulation of extracellular matrix (ECM) components and is a hallmark of muscular dystrophies. Fibro-adipogenic progenitors (FAPs) are the main source of ECM, and thus have been strongly implicated in fibrogenesis. In skeletal muscle fibrotic models, including muscular dystrophies, FAPs undergo dysregulations in terms of proliferation, differentiation, and apoptosis, however few studies have explored the impact of FAPs migration. Here, we studied fibroblast and FAPs migration and identified lysophosphatidic acid (LPA), a signaling lipid central to skeletal muscle fibrogenesis, as a significant migration inductor. We identified LPA receptor 1 (LPA1) mediated signaling as crucial for this effect through a mechanism dependent on the Hippo pathway, another pathway implicated in fibrosis across diverse tissues. This cross-talk favors the activation of the Yes-associated protein 1 (YAP) and Transcriptional coactivator with PDZ-binding motif (TAZ), leading to increased expression of fibrosis-associated genes. This study reveals the role of YAP in LPA-mediated fibrotic responses as inhibition of YAP transcriptional coactivator activity hinders LPA-induced migration in fibroblasts and FAPs. Moreover, we found that FAPs derived from the mdx4cv mice, a murine model of Duchenne muscular dystrophy, display a heightened migratory phenotype due to enhanced LPA signaling compared to wild-type FAPs. Remarkably, we found that the inhibition of LPA1 or YAP transcriptional coactivator activity in mdx4cv FAPs reverts this phenotype. In summary, the identified LPA-LPA1-YAP pathway emerges as a critical driver of skeletal muscle FAPs migration and provides insights into potential novel targets to mitigate fibrosis in muscular dystrophies.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Movimento Celular , Fibroblastos , Fibrose , Lisofosfolipídeos , Músculo Esquelético , Receptores de Ácidos Lisofosfatídicos , Transdução de Sinais , Proteínas de Sinalização YAP , Lisofosfolipídeos/metabolismo , Animais , Proteínas de Sinalização YAP/metabolismo , Proteínas de Sinalização YAP/genética , Camundongos , Receptores de Ácidos Lisofosfatídicos/metabolismo , Receptores de Ácidos Lisofosfatídicos/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Humanos , Via de Sinalização Hippo , Camundongos Endogâmicos mdx , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional/metabolismo , Adipogenia/genética , Distrofias Musculares/metabolismo , Distrofias Musculares/genética , Distrofias Musculares/patologiaRESUMO
The TGF-ß and Hippo pathways are critical for liver size control, regeneration, and cancer progression. The transcriptional cofactor TAZ, also named WWTR1, is a downstream effector of Hippo pathway and plays a key role in the maintenance of liver physiological functions. However, the up-regulation of TAZ expression has been associated with liver cancer progression. Recent evidence shows crosstalk of TGF-ß and Hippo pathways, since TGF-ß modulates TAZ expression through different mechanisms in a cellular context-dependent manner but supposedly independent of SMADs. Here, we evaluate the molecular interplay between TGF-ß pathway and TAZ expression and observe that TGF-ß induces TAZ expression through SMAD canonical pathway in liver cancer HepG2 cells. Therefore, TAZ cofactor is a primary target of TGF-ß/SMAD-signaling, one of the pathways altered in liver cancer.
RESUMO
Glioblastoma is a highly aggressive brain tumor with a poor prognosis. Recent studies have suggested that mechanobiology, the study of how physical forces influence cellular behavior, plays an important role in glioblastoma progression. Several signaling pathways, molecules, and effectors, such as focal adhesions, stretch-activated ion channels, or membrane tension variations, have been studied in this regard. Also investigated are YAP/TAZ, downstream effectors of the Hippo pathway, which is a key regulator of cell proliferation and differentiation. In glioblastoma, YAP/TAZ have been shown to promote tumor growth and invasion by regulating genes involved in cell adhesion, migration, and extracellular matrix remodeling. YAP/TAZ can be activated by mechanical cues such as cell stiffness, matrix rigidity, and cell shape changes, which are all altered in the tumor microenvironment. Furthermore, YAP/TAZ have been shown to crosstalk with other signaling pathways, such as AKT, mTOR, and WNT, which are dysregulated in glioblastoma. Thus, understanding the role of mechanobiology and YAP/TAZ in glioblastoma progression could provide new insights into the development of novel therapeutic strategies. Targeting YAP/TAZ and mechanotransduction pathways in glioblastoma may offer a promising approach to treating this deadly disease.
RESUMO
Loss of motoneuron innervation (denervation) is a hallmark of neurodegeneration and aging of the skeletal muscle. Denervation induces fibrosis, a response attributed to the activation and expansion of resident fibro/adipogenic progenitors (FAPs), i.e., multipotent stromal cells with myofibroblast potential. Using in vivo and in silico approaches, we revealed FAPs as a novel cell population that activates the transcriptional coregulators YAP/TAZ in response to skeletal muscle denervation. Here, we found that denervation induces the expression and transcriptional activity of YAP/TAZ in whole muscle lysates. Using the PdgfraH2B:EGFP/+ transgenic reporter mice to trace FAPs, we demonstrated that denervation leads to increased YAP expression that accumulates within FAPs nuclei. Consistently, re-analysis of published single-nucleus RNA sequencing (snRNA-seq) data indicates that FAPs from denervated muscles have a higher YAP/TAZ signature level than control FAPs. Thus, our work provides the foundations to address the functional role of YAP/TAZ in FAPs in a neurogenic pathological context, which could be applied to develop novel therapeutic approaches for the treatment of muscle disorders triggered by motoneuron degeneration.
Assuntos
Adipogenia , Músculo Esquelético , Animais , Camundongos , Adipogenia/genética , Diferenciação Celular/fisiologia , Denervação , Camundongos Transgênicos , Músculo Esquelético/metabolismoRESUMO
The yes-associated protein (YAP) and the transcriptional coactivator with PDZ-binding motif (TAZ) are transcriptional coactivators, members of the Hippo signaling pathway, which play a critical role in cell growth regulation, embryonic development, regeneration, proliferation, and cancer origin and progression. The mechanism involves the nuclear binding of the un-phosphorylated YAP/TAZ complex to release the transcriptional enhanced associate domain (TEAD) from its repressors. The active ternary complex is responsible for the aforementioned biological effects. Overexpression of YAP/TAZ has been reported in cancer stem cells and tumor resistance. The resistance involves chemotherapy, targeted therapy, and immunotherapy. This review provides an overview of YAP/TAZ pathways' role in carcinogenesis and tumor microenvironment. Potential therapeutic alternatives are also discussed.
Assuntos
Carcinogênese/metabolismo , Carcinogênese/patologia , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional/metabolismo , Microambiente Tumoral , Proteínas de Sinalização YAP , Animais , Resistencia a Medicamentos Antineoplásicos , Humanos , Mecanotransdução CelularRESUMO
BACKGROUND: Basal-like breast cancer (BLBC) or triple-negative breast cancer (TNBC) is an aggressive and highly metastatic subtype of human breast cancer. The present study aimed to elucidate the potential tumor-suppressive function of MATR3, an abundant nuclear protein, in BLBC/TNBC, whose cancer-relevance has not been characterized. METHODS: We analyzed in vitro tumorigenecity by cell proliferation and soft agar colony formation assays, apoptotic cell death by flow cytometry and Poly (ADP-ribose) polymerase (PARP) cleavage, epithelial-mesenchymal transition (EMT) by checking specific EMT markers with real-time quantitative PCR and in vitro migration and invasion by Boyden Chamber assays. To elucidate the underlying mechanism by which MATR3 functions as a tumor suppressor, we performed Tandem affinity purification followed by mass spectrometry (TAP-MS) and pathway analysis. We also scrutinized MATR3 expression levels in the different subtypes of human breast cancer and the correlation between MATR3 expression and patient survival by bioinformatic analyses of publicly available transcriptome datasets. RESULTS: MATR3 suppressed in vitro tumorigenecity, promoted apoptotic cell death and inhibited EMT, migration, and invasion in BLBC/TNBC cells. Various proteins regulating apoptosis were identified as MATR3-binding proteins, and YAP/TAZ pathway was suppressed by MATR3. MATR3 expression was inversely correlated with the aggressive and metastatic nature of breast cancer. Moreover, high expression levels of MATR3 were associated with a good prognosis of breast cancer patients. CONCLUSIONS: Our data demonstrate that MATR3 functions as a putative tumor suppressor in BLBC/TNBC cells. Also, MATR3 potentially plays a role as a biomarker in predicting chemotherapy-sensitivity and patient survival in breast cancer patients.
Assuntos
Genes Supressores de Tumor , Proteínas Associadas à Matriz Nuclear/genética , Proteínas de Ligação a RNA/genética , Neoplasias de Mama Triplo Negativas , Apoptose , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Transição Epitelial-Mesenquimal , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias de Mama Triplo Negativas/genéticaRESUMO
BACKGROUND: Basal-like breast cancer (BLBC) or triple-negative breast cancer (TNBC) is an aggressive and highly metastatic subtype of human breast cancer. The present study aimed to elucidate the potential tumor-suppressive function of MATR3, an abundant nuclear protein, in BLBC/TNBC, whose cancer-relevance has not been characterized. METHODS: We analyzed in vitro tumorigenecity by cell proliferation and soft agar colony formation assays, apoptotic cell death by flow cytometry and Poly (ADP-ribose) polymerase (PARP) cleavage, epithelial-mesenchymal transition (EMT) by checking specific EMT markers with real-time quantitative PCR and in vitro migration and invasion by Boyden Chamber assays. To elucidate the underlying mechanism by which MATR3 functions as a tumor suppressor, we performed Tandem affinity purification followed by mass spectrometry (TAP-MS) and pathway analysis. We also scrutinized MATR3 expression levels in the different subtypes of human breast cancer and the correlation between MATR3 expression and patient survival by bioinformatic analyses of publicly available transcriptome datasets. RESULTS: MATR3 suppressed in vitro tumorigenecity, promoted apoptotic cell death and inhibited EMT, migration, and invasion in BLBC/TNBC cells. Various proteins regulating apoptosis were identified as MATR3-binding proteins, and YAP/TAZ pathway was suppressed by MATR3. MATR3 expression was inversely correlated with the aggressive and metastatic nature of breast cancer. Moreover, high expression levels of MATR3 were associated with a good prognosis of breast cancer patients. CONCLUSIONS: Our data demonstrate that MATR3 functions as a putative tumor suppressor in BLBC/TNBC cells. Also, MATR3 potentially plays a role as a biomarker in predicting chemotherapy-sensitivity and patient survival in breast cancer patients.
Assuntos
Humanos , Feminino , Genes Supressores de Tumor , Proteínas de Ligação a RNA/genética , Proteínas Associadas à Matriz Nuclear/genética , Neoplasias de Mama Triplo Negativas/genética , Regulação Neoplásica da Expressão Gênica , Movimento Celular , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Transição Epitelial-MesenquimalRESUMO
The diagnosis of Barth syndrome is challenging owing to the wide phenotypic spectrum with allelic heterogeneity. Here we report 3 cases of Barth syndrome with phenotypic and allelic heterogeneity that were diagnosed by different approaches, including whole exome sequencing and final confirmation by reverse-transcription polymease chain reaction.
Assuntos
Síndrome de Barth/diagnóstico , Fatores de Transcrição/genética , Aciltransferases , Síndrome de Barth/genética , Humanos , Lactente , Recém-Nascido , Masculino , Mutação , Fenótipo , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Sequenciamento do Exoma/métodosRESUMO
The 14-3-3 protein family interacts with more than 2000 different proteins in mammals, as a result of its specific phospho-serine/phospho-threonine binding activity. Seven paralogs are strictly conserved in mammalian species. Here, we show that during adipogenic differentiation of 3T3-L1 preadipocytes, the level of each 14-3-3 protein paralog is regulated independently. For instance 14-3-3ß, γ, and η protein levels are increased compared to untreated cells. In contrast, 14-3-3ε protein levels decreased after differentiation while others remained constant. In silico analysis of the promoter region of each gene showed differences that explain the results obtained at mRNA and protein levels.
RESUMO
The production of H2O2, which is essential to thyroid hormone synthesis, involves two NADPH oxidases: dual oxidases 1 and 2 (DuOx1 and DuOx2). A functional study with human DuOx genes and their 5'-flanking regions showed that DuOx1 and -2 promoters are different from thyroid-specific gene promoters. Furthermore, their transcriptional activities are not restricted to thyroid cells. While regulation of Tg (thyroglobulin) and TPO (thyroperoxidase) expression have been extensively studied, DuOx2 promoter regulation by hormones and transcriptional factors need to be more explored. Herein we investigated the role of TSH, insulin and insulin-like growth factor 1 (IGF-1), as well as the cAMP effect on DuOx2 promoter (ptx41) activity in transfected rat thyroid cell lines (PCCL3). We also assessed DuOx2 promoter activity in the presence of transcriptional factors crucial to thyroid development such as TTF-1 (thyroid transcription factor 1), PAX8, CREB, DREAM, Nkx2.5 and the coactivator TAZ in HeLa and HEK 293T-transfected cells. Our results show that TSH and forskolin, which increase cAMP in thyroid cells, stimulated DuOx2 promoter activity. IGF-1 led to pronounced stimulation, while insulin induction was not statistically different from DuOx2 promoter basal activity. All transcriptional factors selected for this work and coactivator TAZ, except DREAM, stimulated DuOx2 promoter activity. Moreover, Nkx2.5 and TAZ synergistically increased DuOx2 promoter activity. In conclusion, we show that DuOx2 expression is regulated by hormones and transcription factors involved in thyroid organogenesis and carcinogenesis, reinforcing the importance of the control of H2O2 generation in the thyroid.
RESUMO
Abstract Mutations in the tafazzin (TAZ) gene on chromosome Xq28 are responsible for the Barth syndrome (BTHS) phenotype resulting in a loss of function in the protein tafazzin involved in the transacylation of cardiolipin, an essential mitochondrial phospholipid. TAZ gene was investigated in the proband in our study, who died of dilated cardiomyopathy at 8 months of age, and his family by sequencing to identify the genetic cause of BTHS. Molecular analysis revealed a novel mutation in exon 5 (c.520T>G) of the TAZ gene. This novel mutation c.520T>G, pW174G, was also found in female carriers (mother and grandmother of proband) in the family. Bioinformatic analysis was carried out to examine the effect of mutation in the gene and confirmed the deleterious effect of this single mutation to the protein structure. Protein modeling and 3-dimensional structure of TAZ protein demonstrated the significantly visible changes in mutated protein leading to BTHS phenotype. Prenatal diagnosis in a subsequent pregnancy showed a carrier female, and pregnancy was continued. Child is doing well at 1 year of age.