Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
R Soc Open Sci ; 11(9): 240789, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39263447

RESUMO

The pandemic amphibian pathogen Batrachochytrium dendrobatidis (Bd) can cause more severe infections with variable temperatures owing to delays in host thermal acclimation following temperature shifts. However, little is known about the timing of these acclimation effects or their consequences for Bd transmission. We measured how thermal acclimation affects Bd infection in Xenopus laevis, using a timing-of-exposure treatment to investigate acclimation effect persistence following a temperature shift. Consistent with a delay in host acclimation, warm-acclimated frogs exposed to Bd immediately following a temperature decrease (day 0) developed higher infection intensities than frogs already acclimated to the cool temperature. This acclimation effect was surprisingly persistent (five weeks). Acclimation did not affect infection intensity when Bd exposure occurred one week after the temperature shift, indicating that frogs fully acclimated to new temperatures within 7 days. This suggests that acclimation effect persistence beyond one week post-exposure was caused by carry-over from initially high infection loads, rather than an extended delay in host acclimation. In a second experiment, we replicated the persistent thermal acclimation effects on Bd infection but found no acclimation effects on zoospore production. This suggests that variable temperatures consistently exacerbate individual Bd infection but may not necessarily increase Bd transmission.

2.
Environ Res ; 258: 119495, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38936500

RESUMO

OBJECTIVE: Emerging evidence supports that brain dysfunction may be attributable to environmental factors. This study aims to examine associations of ambient temperature and temperature variability (TV) with seizure incidence in children, which has not been explored. MATERIAL AND METHODS: Data on 2718 outpatient visits due to seizure were collected in Shanghai, China, from 2018 to 2023. Exposure to ambient temperature was estimated at children's residential addresses using spatial-temporal models. A time-stratified case-crossover design with a distributed lag non-linear model (DLNM) was conducted to assess the association between seizure incidence and daily average of ambient temperature over a period of 21 days prior to a case date of disease onset. For a given case date, we selected all dates falling on the same day of the week within the same month as control dates. We calculated a composite index of intra-day and inter-day TV, which was the standard deviation of the daily minimum and maximum temperatures, respectively, over 7 days preceding a case date. We then assessed the association between TV and seizure incidence. Stratified analyses were conducted by age (73.51% < 5 years old and 26.49 % ≥ 5 years old), sex (41.83% female), presence of fever (69.72%), and diagnosis of epilepsy (27.63%). RESULTS: We observed inversed J-shaped temperature-response curves. Lower temperatures had a significant and prolonged effect than higher temperatures. Using 20 °C (with the minimum effect) as the reference, the cumulative odds ratios (ORs) for over 0-21 days preceding the onset at the 5th percentile of the temperature (3 °C) and at the 95th percentile (29 °C) were 3.17 (95% CI: 1.77, 5.68) and 1.54 (95% CI: 0.97, 2.44), respectively. In addition, per 1 °C increases in TV0-7 was associated with OR of 1.08 (95% CI: 1.01, 1.15). Older children and those experiencing seizure with fever exhibited a higher risk of seizure onset at both lower and higher ambient temperatures. CONCLUSION: Both low and high temperatures can contribute to the morbidity related to pediatric seizure. Lower temperatures, however, exerted a longer period of effect prior to seizure onset than higher temperatures. An increased risk for incident seizure was significantly associated with temperature variability during preceding 7 days.


Assuntos
Estudos Cross-Over , Convulsões , Temperatura , Humanos , Convulsões/epidemiologia , Feminino , Masculino , Pré-Escolar , China/epidemiologia , Criança , Incidência , Dinâmica não Linear , Lactente , Exposição Ambiental/efeitos adversos
3.
Sci Rep ; 14(1): 14206, 2024 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902310

RESUMO

Record mean sea surface temperatures (SST) during the past decades and marine heatwaves have been identified as responsible for severe impacts on marine ecosystems, but the role of changes in the patterns of temporal variability under global warming has been much less studied. We compare descriptors of two time series of SST, encompassing extirpations (i.e. local extinctions) of six cold-temperate macroalgae species at their trailing range edge. We decompose the effects of gradual warming, extreme events and intrinsic variability (e.g. seasonality). We also relate the main factors determining macroalgae range shifts with their life cycles characteristics and thermal tolerance. We found extirpations of macroalgae were related to stretches of coast where autumn SST underwent warming, increased temperature seasonality, and decreased skewness over time. Regardless of the species, the persisting populations shared a common environmental domain, which was clearly differentiated from those experiencing local extinction. However, macroalgae species responded to temperature components in different ways, showing dissimilar resilience. Consideration of multiple thermal manifestations of climate change is needed to better understand local extinctions of habitat-forming species. Our study provides a framework for the incorporation of unused measures of environmental variability while analyzing the distributions of coastal species.


Assuntos
Ecossistema , Aquecimento Global , Alga Marinha , Temperatura , Alga Marinha/fisiologia , Mudança Climática , Estações do Ano , Oceanos e Mares , Organismos Aquáticos/fisiologia
4.
Physiol Behav ; 281: 114581, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38734358

RESUMO

Bird song is a crucial feature for mate choice and reproduction. Song can potentially communicate information related to the quality of the mate, through song complexity, structure or finer changes in syllable characteristics. It has been shown in zebra finches that those characteristics can be affected by various factors including motivation, hormone levels or extreme temperature. However, although the literature on zebra finch song is substantial, some factors have been neglected. In this paper, we recorded male zebra finches in two breeding contexts (before and after pairing) and in two ambient temperature conditions (stable and variable) to see how those factors could influence song production. We found strong differences between the two breeding contexts: compared to their song before pairing, males that were paired had lower song rate, syllable consistency, frequency and entropy, while surprisingly the amplitude of their syllables increased. Temperature variability had an impact on the extent of these differences, but did not directly affect the song parameters that we measured. Our results describe for the first time how breeding status and temperature variability can affect zebra finch song, and give some new insights into the subtleties of the acoustic communication of this model species.


Assuntos
Tentilhões , Comportamento Sexual Animal , Temperatura , Vocalização Animal , Animais , Masculino , Tentilhões/fisiologia , Vocalização Animal/fisiologia , Comportamento Sexual Animal/fisiologia , Espectrografia do Som , Feminino
5.
Environ Int ; 187: 108712, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38714028

RESUMO

BACKGROUND: Temperature variability (TV) is associated with increased mortality risk. However, it is still unknown whether intra-day or inter-day TV has different effects. OBJECTIVES: We aimed to assess the association of intra-day TV and inter-day TV with all-cause, cardiovascular, and respiratory mortality. METHODS: We collected data on total, cardiovascular, and respiratory mortality and meteorology from 758 locations in 47 countries or regions from 1972 to 2020. We defined inter-day TV as the standard deviation (SD) of daily mean temperatures across the lag interval, and intra-day TV as the average SD of minimum and maximum temperatures on each day. In the first stage, inter-day and intra-day TVs were modelled simultaneously in the quasi-Poisson time-series model for each location. In the second stage, a multi-level analysis was used to pool the location-specific estimates. RESULTS: Overall, the mortality risk due to each interquartile range [IQR] increase was higher for intra-day TV than for inter-day TV. The risk increased by 0.59% (95% confidence interval [CI]: 0.53, 0.65) for all-cause mortality, 0.64% (95% CI: 0.56, 0.73) for cardiovascular mortality, and 0.65% (95% CI: 0.49, 0.80) for respiratory mortality per IQR increase in intra-day TV0-7 (0.9 °C). An IQR increase in inter-day TV0-7 (1.6 °C) was associated with 0.22% (95% CI: 0.18, 0.26) increase in all-cause mortality, 0.44% (95% CI: 0.37, 0.50) increase in cardiovascular mortality, and 0.31% (95% CI: 0.21, 0.41) increase in respiratory mortality. The proportion of all-cause deaths attributable to intra-day TV0-7 and inter-day TV0-7 was 1.45% and 0.35%, respectively. The mortality risks varied by lag interval, climate area, season, and climate type. CONCLUSIONS: Our results indicated that intra-day TV may explain the main part of the mortality risk related to TV and suggested that comprehensive evaluations should be proposed in more countries to help protect human health.


Assuntos
Doenças Cardiovasculares , Temperatura , Humanos , Doenças Cardiovasculares/mortalidade , Mortalidade , Doenças Respiratórias/mortalidade , Estações do Ano
6.
J Environ Manage ; 360: 121128, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38776661

RESUMO

Vegetation regulates microclimate stability through biophysical mechanisms such as evaporation, transpiration and shading. Therefore, thermal conditions in tree-dominated habitats will frequently differ significantly from standardized free-air temperature measurements. The ability of forests to buffer temperatures nominates them as potential sanctuaries for tree species intolerant to the increasingly challenging thermal conditions established by climate change. Although many factors influencing thermal conditions beneath the vegetation cover have been ascertained, the role of three-dimensional vegetation structure in regulating the understory microclimate remains understudied. Recent advances in remote sensing technologies, such as terrestrial laser scanning, have allowed scientists to capture the three-dimensional structural heterogeneity of vegetation with a high level of accuracy. Here, we examined the relationships between vegetation structure parametrized from voxelized laser scanning point clouds, air and soil temperature ranges, as well as offsets between field-measured temperatures and gridded free-air temperature estimates in 17 sites in a tropical mountain ecosystem in Southeast Kenya. Structural diversity generally exerted a cooling effect on understory temperatures, but vertical diversity and stratification explained more variation in the understory air and soil temperature ranges (30%-40%) than canopy cover (27%), plant area index (24%) and average stand height (23%). We also observed that the combined effects of stratification, canopy cover and elevation explained more than half of the variation (53%) in understory air temperature ranges. Stratification's attenuating effect was consistent across different levels of elevation. Temperature offsets between field measurements and free-air estimates were predominantly controlled by elevation, but stratification and structural diversity were influential predictors of maximum and median temperature offsets. Moreover, stable understory temperatures were strongly associated with a large offset in daytime maximum temperatures, suggesting that structural diversity primarily contributes to thermal stability by cooling daytime maximum temperatures. Our findings shed light on the thermal influence of vertical vegetation structure and, in the context of tropical land-use change, suggest that decision-makers aiming to mitigate the thermal impacts of land conversion should prioritize management practices that preserve structural diversity by retaining uneven-aged trees and mixing plant species of varying sizes, e.g., silvopastoral, or agroforestry systems.


Assuntos
Mudança Climática , Ecossistema , Microclima , Clima Tropical , Árvores , Humanos , Temperatura , Florestas , Biodiversidade , Quênia
7.
Heliyon ; 10(7): e28184, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38590869

RESUMO

The objective of the study was to examine local-scale fluctuation in precipitation and temperature in selected districts of Sidama regional state. Specifically, it focuses on three districts-Hawassa Zuriya, Wonsho, and Hula-using precipitation and temperature records obtained from the Climate Hazards Group Infrared Precipitation with Station (CHIRPS) database which covers the period from 1981 to 2022. Various statistical measures such as mean, standard deviation, as well as coefficient of variation was employed to detect fluctuation. For trend detection, the Mann-Kendall (MK) and Sen's slope tests were also employed. Observations revealed that the average yearly precipitation spatially varied from 1331 mm in Hula, followed by 1275 mm in Wonsho, and 1013 mm at Hawassa Zuriya. Rainfall was bimodal which 53% rains in Kiremt and 33% in Belg season respectively. Annual rainfall show relatively low variability (<20%) for Hula and Wonsho districts, and moderate variability (CV˃20%) for Hawassa Zuriya respectively. The findings also revealed noticeable rising tendencies (p < 0.05) for average temperature across all three agroecosystems over the years under consideration with the highest slope at Hawassa Zuriya (0.038 °C/year), followed by Hula (0.031 °C/year), and Wonsho (0.022 °C/year) respectively. Moreover, both temperature and rainfall exhibited spatial and inter-annual variability. The results of this study necessitate farmers for systematic planning and implementing location specific crop calendar in the context of fluctuating climatic settings. Policy-makers as well as development practitioners can also utilize the finding to better devise and execute plans for adapting and minimizing the effects of climate change.

8.
Ecol Evol ; 14(2): e10937, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38405410

RESUMO

Climate change involves increases in mean temperature and changes in temperature variability at multiple temporal scales but research rarely considers these temporal scales. The climate variability hypothesis (CVH) provides a conceptual framework for exploring the potential effects of annual scale thermal variability across climatic zones. The CVH predicts ectotherms in temperate regions tolerate a wider range of temperatures than those in tropical regions in response to greater annual variability in temperate regions. However, various other aspects of thermal regimes (e.g. diel variability), organisms' size and taxonomic identity are also hypothesised to influence thermal tolerance. Indeed, high temperatures in the tropics have been proposed as constraining organisms' ability to tolerate a wide range of temperatures, implying that high annual maximum temperatures would be associated with tolerating a narrow range of temperatures. We measured thermal regimes and critical thermal limits (CTmax and CTmin) of freshwater insects in the orders Ephemeroptera (mayflies), Plecoptera (stoneflies) and Trichoptera (caddisflies) along elevation gradients in streams in temperate and tropical regions of eastern Australia and tested the CVH by determining which variables were most correlated with thermal breadth (T br = CTmax - CTmin). Consistent with the CVH, T br tended to increase with increasing annual temperature range. T br also increased with body size and T br was generally wider in Plecoptera than in Ephemeroptera or Trichoptera. We also find some support for a related hypothesis, the climate extreme hypothesis (CEH), particularly for predicting upper thermal limits. We found no evidence that higher annual maximum temperature constrained individuals' abilities to tolerate a wide range of temperatures. The support for the CVH we document suggests that temperate organisms may be able to tolerate wider ranges of temperatures than tropical organisms. There is an urgent need to investigate other aspects of thermal regimes, such as diel temperature cycling and minimum temperature.

9.
Environ Int ; 184: 108463, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38324925

RESUMO

BACKGROUND: We aimed to evaluate the impacts of short-term daily temperature variability (DTV) on blood pressure (BP) among participants with normotension, prehypertension, and hypertension, respectively, and explore the effects in different climate zones and seasons. METHODS: A representative population sample (n = 397,173) covering the subtropical, temperate continental, and temperate monsoon zones was obtained from the China Hypertension Survey. DTV was calculated as the standard deviation of daily minimum and maximum temperatures during the exposure days. The linear mixed effect regression model was used to estimate the associations between DTV exposure and BP among normotension, prehypertension, and hypertension, respectively, and further stratified analysis was performed by climate zones and seasons. RESULTS: After adjustment for confounders, per interquartile range (IQR) increase in DTV (2.28 °C) at 0-6 days of exposure was associated with an increase of 0.41 mmHg (95 % confidence interval [CI]: 0.07, 0.75) in systolic BP (SBP) and 0.41 mmHg (95 % CI: 0.09, 0.72) in pulse pressure (PP) among hypertensive participants in the subtropical zone. Similarly, DTV exposure was associated with an increase of 0.31 mmHg (95 % CI: 0.06, 0.55) in SBP and 0.59 mmHg (95 % CI: 0.24, 0.94) in PP among prehypertensive participants in the temperate continental zone. Additionally, during the warm season, DTV was positively associated with SBP among populations with prehypertension and hypertension, and with PP among all three populations. CONCLUSION: Short-term DTV exposure was associated with an increase in SBP and PP among hypertensive and prehypertensive participants in the subtropical zone and the temperate continental zone. In addition, positive associations of DTV with SBP and PP were observed among participants with prehypertension and hypertension in the warm season. Comprehensive health education and effective intervention strategies should be implemented to mitigate the effects of temperature variations on BP, particularly among prehypertensive and hypertensive populations.


Assuntos
Hipertensão , Pré-Hipertensão , Humanos , Pressão Sanguínea , Temperatura , Pré-Hipertensão/epidemiologia , Pré-Hipertensão/etiologia , Hipertensão/epidemiologia , Clima , China/epidemiologia
10.
BMC Public Health ; 24(1): 494, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365650

RESUMO

BACKGROUND: Quantitative evidence on the impact of meteorological factors on influenza transmissibility across different virus types/subtypes is scarce, and no previous studies have reported the effect of hourly temperature variability (HTV) on influenza transmissibility. Herein, we explored the associations between meteorological factors and influenza transmissibility according to the influenza type and subtype in Guangzhou, a subtropical city in China. METHODS: We collected influenza surveillance and meteorological data of Guangzhou between October 2010 and December 2019. Influenza transmissibility was measured using the instantaneous effective reproductive number (Rt). A gamma regression with a log link combined with a distributed lag non-linear model was used to assess the associations of daily meteorological factors with Rt by influenza types/subtypes. RESULTS: The exposure-response relationship between ambient temperature and Rt was non-linear, with elevated transmissibility at low and high temperatures. Influenza transmissibility increased as HTV increased when HTV < around 4.5 °C. A non-linear association was observed between absolute humidity and Rt, with increased transmissibility at low absolute humidity and at around 19 g/m3. Relative humidity had a U-shaped association with influenza transmissibility. The associations between meteorological factors and influenza transmissibility varied according to the influenza type and subtype: elevated transmissibility was observed at high ambient temperatures for influenza A(H3N2), but not for influenza A(H1N1)pdm09; transmissibility of influenza A(H1N1)pdm09 increased as HTV increased when HTV < around 4.5 °C, but the transmissibility decreased with HTV when HTV < 2.5 °C and 3.0 °C for influenza A(H3N2) and B, respectively; positive association of Rt with absolute humidity was witnessed for influenza A(H3N2) even when absolute humidity was larger than 19 g/m3, which was different from that for influenza A(H1N1)pdm09 and influenza B. CONCLUSIONS: Temperature variability has an impact on influenza transmissibility. Ambient temperature, temperature variability, and humidity influence the transmissibility of different influenza types/subtypes discrepantly. Our findings have important implications for improving preparedness for influenza epidemics, especially under climate change conditions.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Humanos , Influenza Humana/epidemiologia , Vírus da Influenza A Subtipo H3N2 , Conceitos Meteorológicos , Temperatura , Umidade , China/epidemiologia
11.
Environ Health ; 23(1): 9, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38254140

RESUMO

BACKGROUND: Short-term temperature variability, defined as the temperature range occurring within a short time span at a given location, appears to be increasing with climate change. Such variation in temperature may influence acute health outcomes, especially cardiovascular diseases (CVD). Most research on temperature variability has focused on the impact of within-day diurnal temperature range, but temperature variability over a period of a few days may also be health-relevant through its impact on thermoregulation and autonomic cardiac functioning. To address this research gap, this study utilized a database of emergency department (ED) visits for a variety of cardiovascular health outcomes over a 27-year period to investigate the influence of three-day temperature variability on CVD. METHODS: For the period of 1993-2019, we analyzed over 12 million CVD ED visits in Atlanta using a Poisson log-linear model with overdispersion. Temperature variability was defined as the standard deviation of the minimum and maximum temperatures during the current day and the previous two days. We controlled for mean temperature, dew point temperature, long-term time trends, federal holidays, and day of week. We stratified the analysis by age group, season, and decade. RESULTS: All cardiovascular outcomes assessed, except for hypertension, were positively associated with increasing temperature variability, with the strongest effects observed for stroke and peripheral vascular disease. In stratified analyses, adverse associations with temperature variability were consistently highest in the moderate-temperature season (October and March-May) and in the 65 + age group for all outcomes. CONCLUSIONS: Our results suggest that CVD morbidity is impacted by short-term temperature variability, and that patients aged 65 and older are at increased risk. These effects were more pronounced in the moderate-temperature season and are likely driven by the Spring season in Atlanta. Public health practitioners and patient care providers can use this knowledge to better prepare patients during seasons with high temperature variability or ahead of large shifts in temperature.


Assuntos
Doenças Cardiovasculares , Hipertensão , Humanos , Idoso , Temperatura , Visitas ao Pronto Socorro , Doenças Cardiovasculares/epidemiologia , Projetos de Pesquisa
12.
Public Health ; 225: 206-217, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37939462

RESUMO

OBJECTIVES: The abrupt change of climate has led to an increasing trend of hospitalised patients in recent years. This study aimed to analyse the temperature variability (TV) associated with respiratory disease (RD) hospitalisations, hospital stays and hospital expenses. STUDY DESIGN: The generalized linear model combined with distributed lag non-linear model was used to investigate the association between TV and RD hospitalisations. METHODS: TV was determined by measuring the standard deviation of maximum and minimum temperatures for the current day and the previous 7 days. RD hospitalisations data were obtained from three major tertiary hospitals in Huaibei City, namely, the Huaibei People's Hospital, the Huaibei Hospital Of Traditional Chinese Medicine and the Huaibei Maternal and Child Health Care Hospital. First, using a time series decomposition model, the seasonality and long-term trend of hospitalisations, hospital stays and hospital expenses for RD were explored in this warm temperate sub-humid monsoon climate. Second, robust models were used to analyse the association between TV and RD hospitalisations, hospital stays and hospital expenses. In addition, this study stratified results by sex, age and season. Third, using the attributable fraction (AF) and attributable number (AN), hospitalisations, hospital stays and hospital expenses for RD attributed to TV were quantified. RESULTS: Overall, 0.013% of hospitalisations were attributed to TV0-1 (i.e. TV at the current day and previous 1 day), corresponding to 220 cases, 1603 days of hospital stays and 1,308,000 RMB of hospital expenses. Females were more susceptible to TV than males, and the risk increased with longer exposure (the highest risk was seen at TV0-7 [i.e. TV at the current day and previous 7 days] exposure). Higher AF and AN were observed at ages 0-5 years and ≥65 years. In addition, it was also found that TV was more strongly linked to RD in the cool season. The hot season was positively associated with hospital stays and hospital expenses at TV0-3 to TV0-7 exposure. CONCLUSIONS: Exposure to TV increased the risk of hospitalisations, longer hospital stays and higher hospital expenses for RD. The findings suggested that more attention should be paid to unstable weather conditions in the future to protect the health of vulnerable populations.


Assuntos
Exposição Ambiental , Doenças Respiratórias , Masculino , Criança , Feminino , Humanos , Temperatura , Tempo de Internação , Exposição Ambiental/análise , Hospitalização , Estações do Ano , Doenças Respiratórias/epidemiologia , Hospitais , China , Temperatura Alta
13.
BMC Public Health ; 23(1): 1751, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37684635

RESUMO

OBJECTIVE: To explore the effect of temperature variability (TV) on admissions and deaths for cardiovascular diseases (CVDs). METHOD: The admissions data of CVDs were collected in 4 general hospitals in Jinchang City, Gansu Province from 2013 to 2016. The monitoring data of death for CVDs from 2013 to 2017 were collected through the Jinchang City Center for Disease Control and Prevention. Distributed lag nonlinear model (DLNM) was combined to analyze the effects of TV (daily temperature variability (DTV) and hourly temperature variability (HTV)) on the admissions and deaths for CVDs after adjusting confounding effects. Stratified analysis was conducted by age and gender. Then the attribution risk of TV was evaluated. RESULTS: There was a broadly linear correlation between TV and the admissions and deaths for CVDs, but only the association between TV and outpatient and emergency room (O&ER) visits for CVDs have statistically significant. DTV and HTV have similar lag effect. Every 1 ℃ increase in DTV and HTV was associated with a 3.61% (95% CI: 1.19% ~ 6.08%), 3.03% (95% CI: 0.27% ~ 5.86%) increase in O&ER visits for CVDs, respectively. There were 22.75% and 14.15% O&ER visits for CVDs can attribute to DTV and HTV exposure during 2013-2016. Males and the elderly may be more sensitive to the changes of TV. Greater effect of TV was observed in non-heating season than in heating season. CONCLUSION: TV was an independent risk factor for the increase of O&ER visits for CVDs, suggesting effective guidance such as strengthening the timely prevention for vulnerable groups before or after exposure, which has important implications for risk management of CVDs.


Assuntos
Doenças Cardiovasculares , Idoso , Masculino , Humanos , Doenças Cardiovasculares/epidemiologia , Temperatura , China/epidemiologia , Serviço Hospitalar de Emergência , Calefação
14.
PeerJ ; 11: e15987, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37727686

RESUMO

Coral reefs face an uncertain future punctuated by recurring climate-induced disturbances. Understanding how reefs can recover from and reassemble after mass bleaching events is therefore important to predict their responses and persistence in a rapidly changing ocean. On naturally extreme reefs characterized by strong daily temperature variability, coral heat tolerance can vary significantly over small spatial gradients but it remains poorly understood how this impacts bleaching resilience and recovery dynamics, despite their importance as resilience hotspots and potential refugia. In the macrotidal Kimberley region in NW Australia, the 2016 global mass bleaching event had a strong habitat-specific impact on intertidal and subtidal coral communities at our study site: corals in the thermally variable intertidal bleached less severely and recovered within six months, while 68% of corals in the moderately variable subtidal died. We therefore conducted benthic surveys 3.5 years after the bleaching event to determine potential changes in benthic cover and coral community composition. In the subtidal, we documented substantial increases in algal cover and live coral cover had not fully recovered to pre-bleaching levels. Furthermore, the subtidal coral community shifted from being dominated by branching Acropora corals with a competitive life history strategy to opportunistic, weedy Pocillopora corals which likely has implications for the functioning and stress resilience of this novel coral community. In contrast, no shifts in algal and live coral cover or coral community composition occurred in the intertidal. These findings demonstrate that differences in coral heat tolerance across small spatial scales can have large consequences for bleaching resilience and that spatial patchiness in recovery trajectories and community reassembly after bleaching might be a common feature on thermally variable reefs. Our findings further confirm that reefs adapted to high daily temperature variability play a key role as resilience hotspots under current climate conditions, but their ability to do so may be limited under intensifying ocean warming.


Assuntos
Antozoários , Animais , Recifes de Corais , Austrália , Clima , Morte , Ácido Hipocloroso , Compostos de Sódio
15.
Environ Monit Assess ; 195(10): 1226, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37725204

RESUMO

Climate change and shifts in land use/land cover (LULC) are critical factors affecting the environmental, societal, and health landscapes, notably influencing the spread of infectious diseases. This study delves into the intricate relationships between climate change, LULC alterations, and the prevalence of vector-borne and waterborne diseases in Coimbatore district, Tamil Nadu, India, between 1985 and 2015. The research utilised Landsat-4, Landsat-5, and Landsat-8 data to generate LULC maps, applying the maximum likelihood algorithm to highlight significant transitions over the years. This study revealed that built-up areas have increased by 67%, primarily at the expense of agricultural land, which was reduced by 51%. Temperature and rainfall data were obtained from APHRODITE Water Resources, and with a statistical analysis of the time series data revealed an annual average temperature increase of 1.8 °C and a minor but statistically significant rainfall increase during the study period. Disease data was obtained from multiple national health programmes, revealing an increasing trend in dengue and diarrhoeal diseases over the study period. In particular, dengue cases surged, correlating strongly with the increase in built-up areas and temperature. This research is instrumental for policy decisions in public health, urban planning, and climate change mitigation. Amidst limited research on the interconnections among infectious diseases, climate change, and LULC changes in India, our study serves as a significant precursor for future management strategies in Coimbatore and analogous regions.


Assuntos
Doenças Transmissíveis , Dengue , Humanos , Urbanização , Índia/epidemiologia , Monitoramento Ambiental , Doenças Transmissíveis/epidemiologia
16.
Proc Natl Acad Sci U S A ; 120(39): e2302292120, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37722044

RESUMO

As a major sink of anthropogenic heat and carbon, the Southern Ocean experienced pronounced warming with increasing extreme temperature events over the past decades. Mesoscale eddies that strongly influence the uptake, redistribution, and storage of heat in the ocean are expected to play important roles in these changes, yet observational evidence remains limited. Here, we employ a comprehensive analysis of over 500,000 historical hydrographic profile measurements combined with satellite-based eddy observations to show enhanced thermal eddy imprints in the Southern Ocean. Our observations reveal that anticyclonic (cyclonic) eddies are responsible for nearly half of the subsurface high (low)-temperature extremes detected, although only 10% of the profiles are located in eddy interiors. Over the past decade (2006 to 2019), both mean and extreme temperature anomalies within eddies in the Antarctic Circumpolar Current increased significantly, promoting the rise in subsurface ocean temperature variability. This enhanced role of eddies is likely a result of enhanced eddy pumping due to the increase in eddy intensity and ocean stratification caused by ocean warming. Our analysis underscores the crucial role of eddies in amplifying ocean temperature variability and extremes, with their effects expected to be even more pronounced as global warming persists.

17.
Sci Total Environ ; 896: 165267, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37406687

RESUMO

BACKGROUND: Few large-scale, nationwide studies have assessed cause-specific mortality risks and burdens associated with temperature variability (TV). OBJECTIVE: To estimate associations between TV and cause-specific mortality and quantify the mortality burden in China. METHODS: Data on daily total and cause-specific mortality in 272 Chinese cities between 2013 and 2015 were recorded. TVs were computed as the standard deviations of daily minimum and maximum temperatures over a duration of 2 to 7 days. The time-series quasi-Poisson regression model with adjustment of the cumulative effects of daily mean temperature over the same duration was applied to evaluate the city-specific associations of TV and mortality. Then, we pooled the effect estimates using a random-effects meta-analysis and calculated the mortality burdens. RESULTS: Overall, TV showed significant and positive associations with total and cause-specific mortality. The TV-mortality associations were generally stronger when using longer durations. A 1 °C increase in TV at 0-7 days (TV0-7) was associated with a 0.79 % [95 % confidence interval (CI): 0.55 %, 0.96 %] increase in total mortality. Mortality fractions attributable to TV0-7 were 4.37 % for total causes, 4.75 % for overall cardiovascular disease, 4.37 % for coronary heart disease, 5.05 % for stroke, 8.28 % for ischaemic stroke, 1.08 % for haemorrhagic stroke, 6.93 % for respiratory disease, and 6.81 % for COPD, respectively. The mortality risk and burden were generally higher in the temperate monsoon zone, females, and elders. CONCLUSION: This nationwide study indicated that TV was an independent risk factor of mortality, and could result in significant burden for main cardiorespiratory diseases.


Assuntos
Isquemia Encefálica , Acidente Vascular Cerebral , Idoso , Feminino , Humanos , Causas de Morte , China/epidemiologia , Cidades/epidemiologia , Temperatura Baixa , Exposição Ambiental , Temperatura Alta , Mortalidade , Temperatura , Masculino
18.
J Therm Biol ; 115: 103565, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37393847

RESUMO

Thermodynamics is a major factor determining rates of energy expenditure, rates of biochemical dynamics, and ultimately the biological and ecological processes linked with resilience to global warming in ectothermic organisms. Nonetheless, whether ectothermic organisms exhibit general adaptive metabolic responses to cope with worldwide variation in thermal conditions has remained as an open question. Here we combine a model comparison approach with a global dataset of standard metabolic rates (SMR), including 1,160 measurements across 788 species of aquatic invertebrates, insects, fishes, amphibians and reptiles, to investigate the association between metabolic rates and environmental temperatures in their respective habitats. Our analyses suggest that variation in SMR after removing allometric and thermodynamic effects is best explained by the temperature range encountered across seasons, which always provided a better fit than the average temperature for the hottest and coldest month and mean annual temperatures. This pattern was consistent across taxonomic groups and robust to sensitivity analyses. Nonetheless, aquatic and terrestrial lineages responded differently to seasonality, with SMR declining - 6.8% °C-1 of thermal range across seasons in aquatic organisms and increasing 2.8% °C-1 in terrestrial organisms. These responses may reflect alternative strategies to mitigate the impact of increments in warmer temperatures on energy expenditure, either by means of metabolic reduction in thermally homogeneous water bodies or effective behavioral thermoregulation to exploit temperature heterogeneity on land.


Assuntos
Adaptação Fisiológica , Regulação da Temperatura Corporal , Animais , Temperatura , Regulação da Temperatura Corporal/fisiologia , Aclimatação , Temperatura Baixa
19.
Front Neurol ; 14: 1155987, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37122307

RESUMO

Background: Epidemiological evidence suggests a correlation between ambient temperature and ischemic stroke. However, evidence on the impact of daily temperature variability on the onset of ischemic stroke is lacking and limited. Objective: We aimed to investigate the short-term association between temperature variability and ischemic stroke occurrence in Tianjin. Methods: We performed a 10-year analysis of ischemic stroke patients hospitalized in two affiliated hospitals of Tianjin Medical University from 2011 to 2020. Daily meteorological data were collected from the Tianjin Meteorological Bureau. Temperature variability was calculated from the standard deviation (SD) of daily minimum and maximum temperatures over exposure days. A quasi-Poisson generalized linear regression combined with distributed lag non-linear model (DLNM) was used to estimate the effect of temperature variability on daily stroke onset, while controlling for daily mean temperature, relative humidity, long-term trend and seasonality, public holiday, and day of the week. Results: Temperature variability was positively associated with ischemic stroke. A 1°C increase in temperature variability at 0-1 days (TV0-1) was associated with a 4.1% (1.9-6.3%) increase of ischemic stroke onset. In a stratified analysis, men, people aged ≤65 years, and individuals with pre-existing hypertension, hyperlipidemia, hyperhomocysteinemia were more susceptible to temperature variability. Furthermore, the influence pattern of temperature variability on ischemic stroke was different in the cold season (November-April) and the warm season (May-October). Conclusion: Our findings suggested that short-term temperature variability exposure could increase the risk of ischemic stroke, which may provide new insights into the impact of climate change on health.

20.
Heliyon ; 9(5): e15868, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37215894

RESUMO

Climate variability has significant impact on agricultural production especially in low-income countries where agriculture largely relies on rainfall, but only a few studies explored this issue at local scale. Therefore, this study was conducted to characterize local climate and assess farmers' perceptions and adaptation strategies to climate variability in the rural areas of Dire Dawa administration. Historical rainfall and temperature data (1987-2017) were obtained from National Meteorological Agency (NMA) of Ethiopia, while data of farmers' perceptions and adaptation strategies were collected from a total of 120 household heads through survey questionnaire, key informant interviews and focus group discussions. The results revealed that the area received an average annual rainfall of 568.3 mm with main rainy season (kiremt) contributing 70.7% to annual rainfall. The earliest and latest onset dates of kiremt season were 15th of April and 2nd of August, respectively. The amount of annual and kiremt rainfall totals showed low and medium variability with a coefficient variability (CV) of 18.3% and 27.7%, respectively, whereas short rainy season (belg) rainfall had high variability with a CV of 43.9%. Climate variability perception analysis showed that an overwhelming majority of the respondents (90%) perceived a decrease in the annual rainfall and 91.7% detected an increase in annual average temperature in the study area. Farmers of the study area were well aware of the changes in rainfall and temperature and thus employed a range of adaptation practices. Soil and water conservation practices (100%), off-farm income diversification (63%), planting drought-tolerant varieties (50%) and changing of planting date (45%) were the main adaptation strategies employed in the study area to avert the negative effects of climate variability. The findings imply that the area has been experiencing palpable changes in climate variables during the study period against which farmers exercised multiple adaptation strategies. However, farmers in the area are still face hardship as a result of climate variability which necessitates improving farmers' resilience through innovative mechanisms and better extension services.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA