Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
IEEE Robot Autom Lett ; 8(9): 5345-5352, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37614723

RESUMO

Minimally invasive endovascular procedures involve the manual placement of a guidewire, which is made difficult by vascular tortuosity and the lack of precise tip control. Steerable guidewire systems have been developed with tendon-driven, magnetic, and concentric tube actuation strategies to enable precise tip control, however, selecting machining parameters for such robots does not have a strict procedure. In this paper, we develop a systematic design procedure for selecting the tube pairs of the COaxially Aligned STeerable (COAST) guidewire robot. This includes the introduction of a mechanical model that accounts for micromachining-induced pre-curvatures with the goal of determining design parameters that reduce combined distal tip pre-curvature and minimize abrupt changes in actuated tip position for the COAST guidewire robot through selection of the best flexural rigidity between the tube pairs. We present adjustments in the kinematics modeling of COAST robot tip bending motion, and use these to characterize the bending behavior of the COAST robot for varying geometries of the micromachined tubes, with an average RMSE value for the tip position error of 0.816 mm in the validation study.

2.
Front Robot AI ; 10: 1211876, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37377630

RESUMO

Master-Slave control is a common mode of operation for surgical robots as it ensures that surgeons are always in control and responsible for the procedure. Most teleoperated surgical systems use low degree-of-freedom (DOF) instruments, thus facilitating direct mapping of manipulator position to the instrument pose and tip location (tip-to-tip mapping). However, with the introduction of continuum and snake-like robots with much higher DOF supported by their inherent redundant architecture for navigating through curved anatomical pathways, there is a need for developing effective kinematic methods that can actuate all the joints in a controlled fashion. This paper introduces the concept of navigation with Minimal Occupation VolumE (MOVE), a teleoperation method that extends the concept of follow-the-leader navigation. It defines the path taken by the head while using all the available space surrounding the robot constrained by individual joint limits. The method was developed for the i 2 Snake robot and validated with detailed simulation and control experiments. The results validate key performance indices such as path following, body weights, path weights, fault tolerance and conservative motion. The MOVE solver can run in real-time on a standard computer at frequencies greater than 1 kHz.

3.
Sensors (Basel) ; 23(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36772685

RESUMO

Soft continuum robots are compliant mechanisms that rely on a deformable structure in order to achieve a desired posture. One of the challenges in designing and controlling this type of robot is to obtain the necessary proprioceptive information without resorting to external sensors, like cameras or 3D positioning devices. This requires a reliable and repeatable sensor that can be embedded in the highly deformable structure, distributed along its length, without imposing a significant change to the overall stiffness. This paper presents design considerations and practical results of estimating the tip position of a soft continuum manipulator module using embedded linear magnetic encoders. Three flexible scales with incremental tracks and a magnetic pole pitch of 2 mm are embedded in the robot structure as passive tendons, and six pairs of Hall effect linear sensors are used to measure the relative displacement between points along the outer surface of the structure. The curvature and tip position are then estimated from these measurements. Results are compared with the ground truth measurement of the tip position provided by a commercial optical tracker system. Average error estimates lower than 2.0 mm, with 8.7 mm peak value, were obtained for a robot module with a motion span of approximately 100 mm.

4.
IEEE Robot Autom Lett ; 8(6): 3725-3731, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38269146

RESUMO

Placement of catheters in minimally invasive cardiovascular procedures is preceded by navigating to the target lesion with a guidewire. Traversing through tortuous vascular pathways can be challenging without precise tip control, potentially resulting in the damage or perforation of blood vessels. To improve guidewire navigation, this paper presents 3D shape reconstruction and tip force sensing for the COaxially Aligned STeerable (COAST) guidewire robot using a triplet of adhered single core fiber Bragg grating sensors routed centrally through the robot's slender structure. Additionally, several shape reconstruction algorithms are compared, and shape measurements are utilized to enable tip force sensing. Demonstration of the capabilities of the robot is shown in free air where the shape of the robot is reconstructed with average errors less than 2mm at the guidewire tip, and the magnitudes of forces applied to the tip are estimated with an RMSE of 0.027N or less.

5.
IEEE Robot Autom Lett ; 3(3): 2144-2151, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30386822

RESUMO

The paper presents an MRI-compatible neurosurgical robotic system that is designed to operate the head-mounted meso-scale 6-degree-of-freedom (DoF) spring-based MINIR-II. The robotic system consists of an actuation module, a transmission module, and the robot module. The transmission module consist of a switching mechanism for reducing the required number of motors by half, an innovative linkage mechanism to insert and retract the robot with minimal tendon displacement and friction loss, and a quick-connect mechanism for easy attachment of the disposable MINIR-II. Design, analysis, and development of each module are described in detail. Most of the critical components such as the robot, the quick-connect, the linkage mechanism, and various gear-pulley combinations in our design are 3-D printed. Preliminary mechanical properties characterization of the system and the capability of the underactuated system to replicate the critical functions of the 6-DoF robot are presented. The robot motion capability in a brain phantom model and its MRI compatibility in a 7-Tesla magnet were verified.

6.
IEEE Robot Autom Lett ; 1(2): 1118-1124, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29623294

RESUMO

In this paper, we develop an intervention to apply external gait synchronized forces on the pelvis to reduce the user's effort during walking. A cable-driven robot was used to apply the external forces and an adaptive frequency oscillator scheme was developed to adapt the timing of force actuation to the gait frequency during walking. The external forces were directed in the sagittal plane to assist the trailing leg during the forward propulsion and vertical deceleration of the pelvis during the gait cycle. A pilot experiment with five healthy subjects was conducted. The results showed that the subjects applied lower ground reaction forces in the vertical and anterior-posterior directions during the late stance phase. In summary, the current work provides a novel approach to study the role of external pelvic forces in altering the walking effort. These studies can provide better understanding for designing exoskeletons and prosthetic devices to reduce the overall walking effort.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA