Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Life (Basel) ; 14(3)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38541652

RESUMO

Germ cell tumors (GCTs) are relatively rare tumors. However, they are the most diagnosed malignancies occurring in the testis among men aged between 15 and 40 years. Despite high aneuploidy and a paucity of somatic mutations, several genomic and transcriptomic assays have identified a few significantly mutated somatic genes, primarily KIT and K-RAS. The receptor Tyrosine Kinase (RTK) pathway and the downstream related Mitogen-Activated Protein Kinase (MAPK) cascades are crucial signal transduction pathways that preside over various cellular processes, including proliferation, differentiation, apoptosis, and responses to stressors. They are well described in solid malignancies, where many of the involved factors are used as prognostic molecular markers or targets for precision therapy. This narrative review focused, in the first part, on PGCs' survival/proliferation and differentiation and on the genetic and epigenetic factors involved in the pathogenesis of testicular germ cell tumors (TGCTs) and, in the second part, on the most recent investigations about the KIT-RAS pathway in TGCTs and in other cancers, highlighting the efforts that are being made to identify targetable markers for precision medicine approaches.

3.
J Cancer ; 14(15): 2771-2783, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37781070

RESUMO

Background/Aim: Some long non-coding RNAs (lncRNAs) have been found to significantly participate in the progression of TGCTs. In comparison to the normal testis, the TGCT tissues showed significantly decreased CSNK1G2-AS1 expression, however, its effect on TGCTs and its mechanism are still unclear. The aim of this study is to investigate the effect of CSNK1G2-AS1 on TGCTs and explore the mechanism underlying its effect on TGCTs. Materials and Methods: In this study, to evaluate the expression of CSNK1G2-AS1 in tissue samples from TGCTs, the UCSC and GEPIA databases were applied and qRT-PCR was conducted. The Kaplan-Meier Plotter was applied to analyze the correlation between CSNK1G2-AS1 methylation levels and the prognosis of TGCTs patients. The assays of MTS, clone formation, transwell, and flow cytometry were performed to investigate the effect of CSNK1G2-AS1 overexpression on the proliferation, metastasis, and apoptosis of TGCT cells, respectively. Finally, western blotting was conducted to determine the expressions of the proteins associated with EMT and AKT. Results: Our study first found that, compared to the normal testis, TGCTs tissue showed significantly decreased CSNK1G2-AS1 expression, and hypomethylation of CSNK1G2-AS1 was significantly correlated with a better prognosis with TGCTs patients. In vitro, we found that overexpression of CSNK1G2-AS1 dramatically promoted the clone formation, invasion, and migration of TGCT cells, but inhibited apoptosis. And CSNK1G2-AS1 overexpression significantly decreased the expression of EMT-associated proteins ZO-1 but increased the expression and phosphorylation of AKT. Conclusions: CSNK1G2-AS1 may play an essential role in the pathogenesis and metastasis of TGCTs through the EMT- and AKT-mediated signal pathways.

4.
Pathol Res Pract ; 248: 154611, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37315401

RESUMO

Testicular germ cell tumors (TGCTs) are the most common testicular neoplasms in adolescents and young males. Understanding the genetic basis of TGCTs represents a growing need to cope with the increased incidence of these neoplasms. Although the cure rates have been comparatively increased, investigation of mechanisms underlying the incidence, progression, metastasis, recurrence, and therapy resistance is still necessary. Early diagnosis and non-compulsory clinical therapeutic agents without long-term side effects are now required to reduce the cancer burden, especially in the younger age groups. MicroRNAs (miRNAs) control an extensive range of cellular functions and exhibit a pivotal action in the development and spreading of TGCTs. Because of their dysregulation and disruption in function, miRNAs have been linked to the malignant pathophysiology of TGCTs by influencing many cellular functions involved in the disease. These biological processes include increased invasive and proliferative perspective, cell cycle dysregulation, apoptosis disruption, stimulation of angiogenesis, epithelial-mesenchymal transition (EMT) and metastasis, and resistance to certain treatments. Herein, we present an up-to-date review of the biogenesis of miRNAs, miRNA regulatory mechanisms, clinical challenges, and therapeutic interventions of TGCTs, and role of nanoparticles in the treatment of TGCTs.


Assuntos
MicroRNAs , Neoplasias Embrionárias de Células Germinativas , Neoplasias Testiculares , Masculino , Adolescente , Humanos , MicroRNAs/genética , MicroRNAs/uso terapêutico , Neoplasias Embrionárias de Células Germinativas/genética , Neoplasias Testiculares/genética , Neoplasias Testiculares/patologia , Transdução de Sinais/genética
5.
Pathol Res Pract ; 248: 154612, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37327566

RESUMO

Testicular cancer (TC) is one of the most frequently incident solid tumors in males. A growing prevalence has been documented in developed countries. Although recent advances have made TC an exceedingly treatable cancer, numerous zones in TC care still have divisive treatment decisions. In addition to physical examination and imaging techniques, conventional serum tumor markers have been traditionally used for the diagnosis of testicular germ cell tumors (TGCT). Unlike other genital and urinary tract tumors, recent research methods have not been broadly used in TGCTs. Even though several challenges in TC care must be addressed, a dedicated group of biomarkers could be particularly beneficial to help classify patient risk, detect relapse early, guide surgery decisions, and tailor follow-up. Existing tumor markers (Alpha-fetoprotein, human chorionic gonadotrophin, and lactate dehydrogenase) have limited accuracy and sensitivity when used as diagnostic, prognostic, or predictive markers. At present, microRNAs (miRNA or miR) play a crucial role in the process of several malignancies. The miRNAs exhibit pronounced potential as novel biomarkers since they reveal high stability in body fluids, are easily detected, and are relatively inexpensive in quantitative assays. In this review, we aimed to shed light on the recent novelties in developing microRNAs as diagnostic and prognostic markers in TC and discuss their clinical applications in TC management.


Assuntos
MicroRNAs , Neoplasias Embrionárias de Células Germinativas , Neoplasias Testiculares , Masculino , Humanos , MicroRNAs/genética , Neoplasias Testiculares/diagnóstico , Neoplasias Testiculares/genética , Neoplasias Testiculares/patologia , Neoplasias Embrionárias de Células Germinativas/diagnóstico , Neoplasias Embrionárias de Células Germinativas/genética , Biomarcadores Tumorais/genética , Resistência a Medicamentos
6.
J Cancer Res Clin Oncol ; 148(3): 609-631, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34837545

RESUMO

INTRODUCTION: Melanoma-associated antigen A2 (MAGE-A2) is a member of the cancer-testis antigen family differentially overexpressed in a variety of malignancies and is associated with tumor development. However, clinical significance and prognostic value of MAGE-A2 in different histological subtypes of testicular germ cell tumors (TGCTs) have not been explored. MATERIALS AND METHODS: Here, we aimed to investigate the clinical significance and prognostic impact of MAGE-A2 expression in TGCTs compared to benign tumors as well as adjacent normal tissues and then between seminomas and non-seminomas groups using immunohistochemistry on tissue microarrays. RESULTS: The results indicated a statistically significant difference between overexpression of MAGE-A2 and histological subtypes of TGCTs. A statistically significant association was found between a high level of nuclear expression of MAGE-A2 protein and advanced pT stage (P = 0.022), vascular invasion (P = 0.037), as well as involvement of rete testis (P = 0.022) in embryonal carcinomas. Increased nuclear expression of MAGE-A2 was observed to be associated with more aggressive behaviors and tumor progression rather than cytoplasmic expression in these cases. Further, high level nuclear expression of MAGE-A2 had shorter disease-specific survival (DSS) or progression-free survival (PFS) compared to patients with moderate and low expression of MAGE-A2, however, without a statistically significant association. CONCLUSION: Our results confirm that increased nuclear expression of MAGE-A2 has a clinical significance in embryonal carcinomas and is associated with progression of disease. Moreover, MAGE-A2 may act as a potential predictive biomarker for the prognosis in embryonal carcinomas if follow-up period becomes longer. Further investigations for the biological function of MAGE-A2 are required in future studies.


Assuntos
Antígenos de Neoplasias/metabolismo , Biomarcadores Tumorais/metabolismo , Carcinoma Embrionário/patologia , Neoplasias Embrionárias de Células Germinativas/patologia , Seminoma/patologia , Neoplasias Testiculares/patologia , Adolescente , Adulto , Idoso , Carcinoma Embrionário/metabolismo , Carcinoma Embrionário/cirurgia , Estudos de Casos e Controles , Criança , Pré-Escolar , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica , Neoplasias Embrionárias de Células Germinativas/metabolismo , Neoplasias Embrionárias de Células Germinativas/cirurgia , Prognóstico , Estudos Retrospectivos , Seminoma/metabolismo , Seminoma/cirurgia , Taxa de Sobrevida , Neoplasias Testiculares/metabolismo , Neoplasias Testiculares/cirurgia , Adulto Jovem
7.
Life (Basel) ; 11(7)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209730

RESUMO

Several studies have demonstrated that the p75NTR low-affinity receptor of Nerve Growth Factor (NGF), is produced in abnormally large amounts in several human cancer types. However, the role of p75NTR varies substantially depending on cell context, so that a dual role of this receptor protein in tumor cell survival and invasion, as well as cell death, has been supported in recent studies. Herein we explored for the first time the expression of p75NTR in human specimens (nr = 40) from testicular germ cell tumors (TGCTs), mostly seminomas. Nuclear overexpression of p75NTR was detected by immunohistochemistry in seminoma tissue as compared to normal tissue, whereas neither NGF nor its high-affinity TrkA receptor was detected. An increased nuclear staining of phospho-JNK, belonging to the p75NTR signaling pathway and its pro-apoptotic target gene, p53, was concomitantly observed. Interestingly, our analysis revealed that decreased expression frequency of p75NTR, p-JNK and p53 was related to staging progression, thus suggesting that p75NTR may represent a specific marker for seminoma and staging in TGCTs.

8.
PeerJ ; 8: e9358, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32612888

RESUMO

BACKGROUND: SPANX family members are thought to play an important role in cancer progression. The SPANXN2 is a gene expressed mainly in normal testis, but its role in testicular germ cell tumors (TGCTs) has yet to be investigated. TGCT is one of the most common solid tumors in young men and is associated with poor prognosis; however, effective prognostic indicators remain elusive. Therefore, we investigated the role of SPANXN2 in TGCT development. METHODS: SPANXN2 expression levels were validated by quantitative real-time polymerase chain reaction (qRT-PCR) analyses of 14 TGCT samples and five adjacent normal tissue samples. SPANXN2 was transiently overexpressed in TGCT cells to study the consequences for cell function. The effects of SPANXN2 on cell migration were evaluated in transwell and wound healing assays. The effects on cloning ability were evaluated in colony formation assays. MTT assays and cell cycle analysis were used to detect the effects of SPANXN2 on cell proliferation. The expression levels of EMT- and AKT-related proteins in cells overexpressing SPANXN2 were analyzed by Western blotting. RESULTS: Compared with adjacent normal tissues, the Gene Expression Profiling Interactive Analysis database showed SPANXN2 expression was downregulated in TGCTs which was consistent with the qRT-PCR analysis. SPANXN2 overexpression reduced cell migration and colony formation capability and downregulated expression of EMT- and AKT-related proteins, Vimentin, Snail, AKT, and p-AKT. CONCLUSION: Our results suggest that SPANXN2 regulates TGCT cell migration via EMT- and AKT-related proteins although its role in the occurrence and development of TGCT remains to be fully elucidated.

9.
J Cancer Res Clin Oncol ; 146(11): 2753-2775, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32681293

RESUMO

INTRODUCTION: hTERT (human telomerase reverse transcriptase) is a catalytic subunit of the enzyme telomerase and has a role in cell proliferation, cellular senescence, and human aging. MATERIALS AND METHODS: The purpose of this study was to evaluate the expression and significance of hTERT protein expression as a prognostic marker in different histological subtypes of testicular germ cell tumors (TGCTs), including 46 embryonal carcinomas, 46 yolk sac tumors, 38 teratomas, 84 seminomas as well as two main subtypes of seminomas and non-seminomas using tissue microarray (TMA) technique. RESULTS: The results showed that there is a statistically significance difference between the expression of hTERT and various histological subtypes of TGCTs (P < 0.001). In embryonal carcinoma, low level expression of hTERT protein was significantly associated with advanced pT stage (P = 0.023) as well as tunica vaginalis invasion (P = 0.043). Moreover, low level expression of hTERT protein was found to be a significant predictor of worse DSS (log rank: P = 0.011) and PFS (log rank: P = 0.011) in the univariate analysis. Additionally, significant differences were observed (P =0.021, P =0.018) with 5-year survival rates for DSS and PFS of 66% and 70% for moderate as compared to 97% and 97% for high hTERT protein expression, respectively. CONCLUSION: We showed that hTERT protein expression was associated with more aggressive tumor behavior in embryonal carcinoma patients. Also, hTERT may be a novel worse prognostic indicator of DSS or PFS, if the patients are followed up for more time periods.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma Embrionário/enzimologia , Telomerase/metabolismo , Neoplasias Testiculares/enzimologia , Adolescente , Adulto , Biomarcadores Tumorais/análise , Carcinoma Embrionário/mortalidade , Carcinoma Embrionário/patologia , Progressão da Doença , Humanos , Masculino , Pessoa de Meia-Idade , Intervalo Livre de Progressão , Telomerase/análise , Neoplasias Testiculares/mortalidade , Neoplasias Testiculares/patologia , Adulto Jovem
10.
Artigo em Inglês | MEDLINE | ID: mdl-31244770

RESUMO

Human primordial germ cells (PGCs) have been described in the yolk sac wall around the beginning of the third week. From week 4 to 5, they migrate under control of SCF/c-KIT signaling pathway to the genital ridge, where they become gonocytes. PGCs and gonocytes express classic pluripotency markers, such as KIT, NANOG, and OCT3/4 that, during spermatogonia differentiation, are gradually suppressed, and substituted by the expression of some germ cell specific genes, such as VASA, SOX17, and TSPY. These genes, during normal development of germ cells, are tightly regulated by epigenetic modification, in terms of microRNA expression and DNA methylation. In adolescents and young adults, testicular germ cell tumors (TGCT) have a common precursor, the germ cell neoplasia in situ (GCNIS); the hypothesis of their origin from PGCs or gonocytes, whose maturation is altered, is widely accepted. The origin of TGCT, probably starting at early stages of embryogenesis, seems to be a part of the Testicular Dysgenesis Syndrome (TDS) where some early PGC/gonocytes, for still unclear reasons, are blocked in their differentiation, retaining their early marker profile. In this paper, current knowledge on the combination of epidemiological and genomic factors, involved in the development of testicular germ cell tumors, is reviewed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA