Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 255
Filtrar
1.
Ageing Res Rev ; 99: 102357, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38830548

RESUMO

Neurodegenerative disorders (NDs) are expected to pose a significant challenge for both medicine and public health in the upcoming years due to global demographic changes. NDs are mainly represented by degeneration/loss of neurons, which is primarily accountable for severe mental illness. This neuronal degeneration leads to many neuropsychiatric problems and permanent disability in an individual. Moreover, the tight junction of the brain, blood-brain barrier (BBB)has a protective feature, functioning as a biological barrier that can prevent medicines, toxins, and foreign substances from entering the brain. However, delivering any medicinal agent to the brain in NDs (i.e., Multiple sclerosis, Alzheimer's, Parkinson's, etc.) is enormously challenging. There are many approved therapies to address NDs, but most of them only help treat the associated manifestations. The available therapies have failed to control the progression of NDs due to certain factors, i.e., BBB and drug-associated undesirable effects. NDs have extremely complex pathology, with many pathogenic mechanisms involved in the initiation and progression; thereby, a limited survival rate has been observed in ND patients. Hence, understanding the exact mechanism behind NDs is crucial to developing alternative approaches for improving ND patients' survival rates. Thus, the present review sheds light on different cellular mechanisms involved in NDs and novel therapeutic approaches with their clinical relevance, which will assist researchers in developing alternate strategies to address the limitations of conventional ND therapies. The current work offers the scope into the near future to improve the therapeutic approach of NDs.

2.
Front Physiol ; 15: 1346971, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38827992

RESUMO

The epidermis, the outermost layer of the skin, serves as a protective barrier against external factors. Epidermal differentiation, a tightly regulated process essential for epidermal homeostasis, epidermal barrier formation and skin integrity maintenance, is orchestrated by several players, including signaling molecules, calcium gradient and junctional complexes such as gap junctions (GJs). GJ proteins, known as connexins facilitate cell-to-cell communication between adjacent keratinocytes. Connexins can function as either hemichannels or GJs, depending on their interaction with other connexons from neighboring keratinocytes. These channels enable the transport of metabolites, cAMP, microRNAs, and ions, including Ca2+, across cell membranes. At least ten distinct connexins are expressed within the epidermis and mutations in at least five of them has been linked to various skin disorders. Connexin mutations may cause aberrant channel activity by altering their synthesis, their gating properties, their intracellular trafficking, and the assembly of hemichannels and GJ channels. In addition to mutations, connexin expression is dysregulated in other skin conditions including psoriasis, chronic wound and skin cancers, indicating the crucial role of connexins in skin homeostasis. Current treatment options for conditions with mutant or altered connexins are limited and primarily focus on symptom management. Several therapeutics, including non-peptide chemicals, antibodies, mimetic peptides and allele-specific small interfering RNAs are promising in treating connexin-related skin disorders. Since connexins play crucial roles in maintaining epidermal homeostasis as shown with linkage to a range of skin disorders and cancer, further investigations are warranted to decipher the molecular and cellular alterations within cells due to mutations or altered expression, leading to abnormal proliferation and differentiation. This would also help characterize the roles of each isoform in skin homeostasis, in addition to the development of innovative therapeutic interventions. This review highlights the critical functions of connexins in the epidermis and the association between connexins and skin disorders, and discusses potential therapeutic options.

3.
J Neurotrauma ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874230

RESUMO

Traumatic brain injury (TBI)-induced intracerebral hematoma is a major driver of secondary injury pathology such as neuroinflammation, cerebral edema, neurotoxicity and blood brain barrier (BBB) dysfunction, which contribute to neuronal loss, motor deficits and cognitive impairment. Cluster of differentiation 47 (CD47) is an anti-phagocytic cell surface protein inhibiting hematoma clearance. This study was designed to evaluate the safety and efficacy of blockade of CD47 via intravenous administration of anti-CD47 antibodies in the presence of traumatic intracerebral hemorrhage (tICH). The PK profile of anti-CD47 antibody elicited that antibody concentration decayed over 7 days post-administration. Blood tests and necropsy analysis indicated no severe adverse events following treatment. Cerebral hemoglobin levels were significantly increased after injury, however, anti-CD47 antibody administration at 0.1 mg/kg resulted in a significant reduction in cerebral hemoglobin levels at 72 hours post-administration, indicating augmentation of hematoma clearance. Immunohistochemistry assessment of GFAP and IBA1 demonstrated a significant reduction of GFAP levels in the lesion core and peri-lesional area. Based on these analyses, the optimal dose was identified as 0.1 mg/kg. Lesion volume showed a reduction following treatment. Rotarod testing revealed significant motor deficits in all injured groups but no significant therapeutic benefits. Spatial learning performance revealed significant deficits in all injured groups which was significantly improved by the last testing day. Anti-CD47 antibody treated rats showed significantly improved attention deficits, but not retention scores. These results provide preliminary evidence that blockade of CD47 using intravenous administration of anit-CD47 antibodies may serve as a potential therapeutic for TBI with intracerebral hemorrhage. Keywords: Hematoma clearance, cognitive function, penetrating traumatic brain injury, intracerebral hematoma, anti-CD47 antibodies .

4.
Virulence ; 15(1): 2359483, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38868991

RESUMO

The pervasive presence of Staphylococcus epidermidis and other coagulase-negative staphylococci on the skin and mucous membranes has long underpinned a casual disregard for the infection risk that these organisms pose to vulnerable patients in healthcare settings. Prior to the recognition of biofilm as an important virulence determinant in S. epidermidis, isolation of this microorganism in diagnostic specimens was often overlooked as clinically insignificant with potential delays in diagnosis and onset of appropriate treatment, contributing to the establishment of chronic infection and increased morbidity or mortality. While impressive progress has been made in our understanding of biofilm mechanisms in this important opportunistic pathogen, research into other virulence determinants has lagged S. aureus. In this review, the broader virulence potential of S. epidermidis including biofilm, toxins, proteases, immune evasion strategies and antibiotic resistance mechanisms is surveyed, together with current and future approaches for improved therapeutic interventions.


Assuntos
Biofilmes , Infecções Estafilocócicas , Staphylococcus epidermidis , Fatores de Virulência , Staphylococcus epidermidis/patogenicidade , Staphylococcus epidermidis/genética , Humanos , Infecções Estafilocócicas/microbiologia , Virulência , Biofilmes/crescimento & desenvolvimento , Fatores de Virulência/genética , Animais , Infecções Oportunistas/microbiologia , Evasão da Resposta Imune , Antibacterianos/farmacologia
5.
Sensors (Basel) ; 24(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732975

RESUMO

Glioblastoma, an aggressive primary brain tumor, poses a significant challenge owing to its dynamic and intricate tumor microenvironment. This review investigates the innovative integration of biosensor-enhanced organ-on-a-chip (OOC) models as a novel strategy for an in-depth exploration of glioblastoma tumor microenvironment dynamics. In recent years, the transformative approach of incorporating biosensors into OOC platforms has enabled real-time monitoring and analysis of cellular behaviors within a controlled microenvironment. Conventional in vitro and in vivo models exhibit inherent limitations in accurately replicating the complex nature of glioblastoma progression. This review addresses the existing research gap by pioneering the integration of biosensor-enhanced OOC models, providing a comprehensive platform for investigating glioblastoma tumor microenvironment dynamics. The applications of this combined approach in studying glioblastoma dynamics are critically scrutinized, emphasizing its potential to bridge the gap between simplistic models and the intricate in vivo conditions. Furthermore, the article discusses the implications of biosensor-enhanced OOC models in elucidating the dynamic features of the tumor microenvironment, encompassing cell migration, proliferation, and interactions. By furnishing real-time insights, these models significantly contribute to unraveling the complex biology of glioblastoma, thereby influencing the development of more accurate diagnostic and therapeutic strategies.


Assuntos
Técnicas Biossensoriais , Glioblastoma , Dispositivos Lab-On-A-Chip , Microambiente Tumoral , Glioblastoma/patologia , Humanos , Técnicas Biossensoriais/métodos , Neoplasias Encefálicas/patologia , Movimento Celular , Proliferação de Células , Sistemas Microfisiológicos
6.
Ann Med ; 56(1): 2337871, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38738394

RESUMO

Tendons are fibroblastic structures that link muscle and bone. There are two kinds of tendon injuries, including acute and chronic. Each form of injury or deterioration can result in significant pain and loss of tendon function. The recovery of tendon damage is a complex and time-consuming recovery process. Depending on the anatomical location of the tendon tissue, the clinical outcomes are not the same. The healing of the wound process is divided into three stages that overlap: inflammation, proliferation, and tissue remodeling. Furthermore, the curing tendon has a high re-tear rate. Faced with the challenges, tendon injury management is still a clinical issue that must be resolved as soon as possible. Several newer directions and breakthroughs in tendon recovery have emerged in recent years. This article describes tendon injury and summarizes recent advances in tendon recovery, along with stem cell therapy, gene therapy, Platelet-rich plasma remedy, growth factors, drug treatment, and tissue engineering. Despite the recent fast-growing research in tendon recovery treatment, still, none of them translated to the clinical setting. This review provides a detailed overview of tendon injuries and potential preclinical approaches for treating tendon injuries.


Assuntos
Terapia Genética , Traumatismos dos Tendões , Engenharia Tecidual , Cicatrização , Traumatismos dos Tendões/terapia , Traumatismos dos Tendões/fisiopatologia , Humanos , Cicatrização/fisiologia , Animais , Engenharia Tecidual/métodos , Terapia Genética/métodos , Plasma Rico em Plaquetas , Tendões , Transplante de Células-Tronco/métodos , Peptídeos e Proteínas de Sinalização Intercelular/uso terapêutico , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo
7.
Curr Neuropharmacol ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38808717

RESUMO

Chronic pain represents a prevalent and costly medical challenge globally. Nicotinic acetylcholine receptors (nAChRs), one type of ligand-gated ion channels found extensively in both the central and peripheral nervous systems, have emerged as promising therapeutic targets for chronic pain. Although there are currently no FDA-approved analgesics specifically targeting nAChRs, accumulating preclinical and clinical evidence suggest that selective ligands for alpha 7 (α7) nAChRs show potential for treating chronic pain, boasting a reduced incidence of side effects compared with other nicotinic receptor types. The recent structural resolution of human α7 nAChRs has confirmed their negative association with heightened pain, providing a valuable foundation for the development of targeted medications. This review presents a comprehensive overview, encompassing insights into the roles of α7 nAChRs derived from structural and functional studies, recent advancements in pharmacology, and investigations into their involvement in the pathophysiology of chronic pain. Moreover, the review addresses the variability in analgesic effects based on the type of receptor agonist and highlights the current research limitations. As such, this review offers potential therapeutic approaches for the development of innovative strategies for chronic pain management.

8.
Arch Pharm Res ; 2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38764004

RESUMO

Huntington's disease (HD) is a paradigm of a genetic neurodegenerative disorder characterized by the expansion of CAG repeats in the HTT gene. This extensive review investigates the molecular complexities of HD by highlighting the pathogenic mechanisms initiated by the mutant huntingtin protein. Adverse outcomes of HD include mitochondrial dysfunction, compromised protein clearance, and disruption of intracellular signaling, consequently contributing to the gradual deterioration of neurons. Numerous therapeutic strategies, particularly precision medicine, are currently used for HD management. Antisense oligonucleotides, such as Tominersen, play a leading role in targeting and modulating the expression of mutant huntingtin. Despite the promise of these therapies, challenges persist, particularly in improving delivery systems and the necessity for long-term safety assessments. Considering the future landscape, the review delineates promising directions for HD research and treatment. Innovations such as Clustered regularly interspaced short palindromic repeats associated system therapies (CRISPR)-based genome editing and emerging neuroprotective approaches present unprecedented opportunities for intervention. Collaborative interdisciplinary endeavors and a more insightful understanding of HD pathogenesis are on the verge of reshaping the therapeutic landscape. As we navigate the intricate landscape of HD, this review serves as a guide for unraveling the intricacies of this disease and progressing toward transformative treatments.

9.
Hum Antibodies ; 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38758995

RESUMO

Following infection and vaccination against SARS-CoV-2, humoral components of the adaptive immune system play a key role in protecting the host. Specifically, B cells generate high-affinity antibodies against various antigens of the virus. In this review, we discuss the mechanisms of immunity initiation through both natural infection and vaccination, shedding light on the activation of B cell subsets in response to SARS-CoV-2 infection and vaccination. The innate immune system serves as the initial line of primary and nonspecific defence against viruses. However, within several days following infection or a vaccine dose, a virus-specific immune response is initiated, primarily by B cells that produce antibodies. These antibodies contribute to the resolution of the disease. Subsequently, these B cells transition into memory B cells, which play a crucial role in providing long-term immunity against the virus. CD4+ T helper cells initiate a cascade, leading to B cell somatic hypermutation, germinal center memory B cells, and the production of neutralizing antibodies. B-cell dysfunction can worsen disease severity and reduce vaccine efficacy. Notably, individuals with B cell immunodeficiency show lower IL-6 production. Furthermore, this review delves into several aspects of immune responses, such as hybrid immunity, which has shown promise in boosting broad-spectrum protection. Cross-reactive immunity is under scrutiny as well, as pre-existing antibodies can offer protection against the disease. We also decipher breakthrough infection mechanisms, especially with the novel variants of the virus. Finally, we discuss some potential therapeutic solutions regarding B cells including convalescent plasma therapy, B-1 cells, B regulatory cell (Breg) modulation, and the use of neutralizing monoclonal antibodies in combating the infection. Ongoing research is crucial to grasp population immunity trends and assess the potential need for booster doses in maintaining effective immune responses against potential viral threats.

10.
Curr Med Chem ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38629360

RESUMO

Pleural mesothelioma is a rare neoplastic disease with aggressive features. Patient survival is poor due to the lack of early symptoms and the absence of effective therapeutic strategies. The development of pleural mesothelioma is mainly associated with asbestos exposure and related chronic inflammation. From a molecular-based perspective, this disease is a heterogeneous tumor lacking actionable alterations. The median overall survival of patients affected by this tumor does not exceed 16 months from diagnosis. Molecular and biochemical approaches have shown that this disease is characterized by resistance to drug-induced apoptosis associated with the activation of cell survival pathways and expression of anti-apoptotic proteins. Thus, there is an urgent need to develop efficient and safe therapeutic strategies. Here, we review the pharmacological options available for the treatment of this disease with specific reference to the antitumor agents used in systemic therapies. In addition, novel pharmacological approaches, such as drug delivery tools, to improve pleural mesothelioma treatment are discussed.

11.
Curr Alzheimer Res ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38623984

RESUMO

Microtubule-Associated Protein Tau (also known as tau) has been shown to accumulate into paired helical filaments and neurofibrillary tangles, which are known hallmarks of Alzheimer's disease (AD) pathology. Decades of research have shown that tau protein undergoes extensive post-translational modifications (PTMs), which can alter the protein's structure, function, and dynamics and impact the various properties such as solubility, aggregation, localization, and homeostasis. There is a vast amount of information describing the impact and role of different PTMs in AD pathology and neuroprotection. However, the complex interplay between these PTMs remains elusive. Therefore, in this review, we aim to comprehend the key post-translational modifications occurring in tau and summarize potential connections to clarify their impact on the physiology and pathophysiology of tau. Further, we describe how different computational modeling methods have helped in understanding the impact of PTMs on the structure and functions of the tau protein. Finally, we highlight the tau PTM-related therapeutics strategies that are explored for the development of AD therapy.

12.
Cureus ; 16(3): e56440, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38638710

RESUMO

Background and objective Cardiovascular diseases (CVDs) constitute a significant global health challenge, causing millions of deaths annually and straining healthcare systems worldwide. This study aimed to investigate and elucidate gender-specific factors, risks, and therapeutic approaches related to cardiovascular health in women within the context of contemporary medicine. Methodology We conducted a prospective observational study spanning one year (November 2022 to October 2023) at the Peshawar Medical Complex Hospital, to meticulously explore the field of women's cardiovascular health. With a diverse cohort of 435 women (age range: 18-55 years), representing various socioeconomic backgrounds and geographic locations, our study aimed to elicit comprehensive insights. Through structured interviews covering reproductive history, lifestyle, and psychosocial aspects, coupled with clinical assessments, we gathered multifaceted data. Statistical analysis was done using SPSS Statistics version 23.0 (IBM Corp., Armonk, NY). By employing descriptive and t-tests for quantitative analysis and by thematically analyzing qualitative insights, our approach ultimately sought to provide a nuanced understanding of gender-specific factors impacting women's cardiovascular health. Results The study, involving 435 women, revealed various prevalent cardiovascular risk factors. Notable findings include a high incidence of a family history of CVD (n=213, 48.96%, p=0.013), hypertension (n=207, 47.58%), hypercholesterolemia (n=114, 26.21%), elevated triglycerides (n=162, 37.24%), and diabetes (n=64, 14.71%). Physical inactivity was also significantly more common (53.56%, p=0.004) compared to those engaging in regular activity. Women-specific risk factors comprised miscarriage (n=191, 43.91%). Therapeutic preferences varied, with a majority opting for lifestyle modifications (n=263, 60.39%) and pharmacological interventions (n=331, 76.33%). Conclusions This study provides a comprehensive understanding of prevalent cardiovascular risk factors, distinctive women-specific contributors, and diverse therapeutic preferences, highlighting the importance of personalized and targeted interventions to optimize women's cardiovascular health outcomes in contemporary medicine.

13.
Clin Exp Nephrol ; 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678166

RESUMO

Cisplatin (CP) is a chemotherapy drug widely prescribed to treat various neoplasms. Although fundamental for the therapeutic action of the drug, its cytotoxic mechanisms trigger adverse effects in several tissues, such as the kidney, liver, and heart, which limit its clinical use. In this sense, studies point to an essential role of damage to nuclear and mitochondrial DNA associated with oxidative stress, inflammation, and apoptosis in the pathophysiology of tissue injuries. Due to the limitation of effective preventive and therapeutic measures against CP-induced toxicity, new strategies with potential cytoprotective effects have been studied. Therefore, this article is timely in reviewing the characteristics and main molecular mechanisms common to renal, hepatic, and cardiac toxicity previously described, in addition to addressing the main validated strategies for the current management of these adverse events in clinical practice. We also handle the main promising antioxidant substances recently presented in the literature to encourage the development of new research that consolidates their potential preventive and therapeutic effects against CP-induced cytotoxicity.

14.
Pharmaceutics ; 16(4)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38675104

RESUMO

Neurological disorders are the second cause of death and the leading cause of disability worldwide. Unfortunately, no cure exists for these disorders, but the actual therapies are only able to ameliorate people's quality of life. Thus, there is an urgent need to test potential therapeutic approaches. Brain organoids are a possible valuable tool in the study of the brain, due to their ability to reproduce different brain regions and maturation stages; they can be used also as a tool for disease modelling and target identification of neurological disorders. Recently, brain organoids have been used in drug-screening processes, even if there are several limitations to overcome. This review focuses on the description of brain organoid development and drug-screening processes, discussing the advantages, challenges, and limitations of the use of organoids in modeling neurological diseases. We also highlighted the potential of testing novel therapeutic approaches. Finally, we examine the challenges and future directions to improve the drug-screening process.

15.
Inflammopharmacology ; 32(3): 1721-1742, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38615278

RESUMO

Inflammatory bowel disease (IBD) poses a significant challenge in modern medicine, with conventional treatments limited by efficacy and associated side effects, necessitating innovative therapeutic approaches. Mesenchymal stem cells (MSC) have emerged as promising candidates for IBD treatment due to their immunomodulatory properties and regenerative potential. This thesis aims to explore and compare various sources of MSC and evaluate their efficacy in treating IBD. This study comprehensively analyses MSC derived from multiple sources, including bone marrow, adipose tissue, umbilical cord, and other potential reservoirs. Core elements of this investigation include assessing differences in cell acquisition, immunomodulatory effects, and differentiation capabilities among these MSC sources, as well as comparing their clinical trial outcomes in IBD patients to their therapeutic efficacy in animal models. Through meticulous evaluation and comparative analysis, this thesis aims to elucidate disparities in the efficacy of different MSC sources for IBD treatment, thereby identifying the most promising therapeutic applications. The findings of this study are intended to advance our understanding of MSC biology and offer valuable insights for selecting the most effective MSC sources for personalized IBD therapy. Ultimately, this research endeavor will optimise therapeutic strategies for managing inflammatory bowel disease through the utilization of MSC.


Assuntos
Doenças Inflamatórias Intestinais , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Humanos , Doenças Inflamatórias Intestinais/terapia , Transplante de Células-Tronco Mesenquimais/métodos , Animais , Diferenciação Celular/fisiologia , Tecido Adiposo/citologia
16.
Gene ; 919: 148501, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38670395

RESUMO

HOX genes constitute a family of evolutionarily conserved transcription factors that play pivotal roles in embryonic development, tissue patterning, and cell differentiation. These genes are essential for the precise spatial and temporal control of body axis formation in vertebrates. In addition to their developmental functions, HOX genes have garnered significant attention for their involvement in various diseases, including cancer. Deregulation of HOX gene expression has been observed in numerous malignancies, where they can influence tumorigenesis, progression, and therapeutic responses. This review provides an overview of the diverse roles of HOX genes in development, disease, and potential therapeutic targets, highlighting their significance in understanding biological processes and their potential clinical implications.


Assuntos
Genes Homeobox , Neoplasias , Humanos , Neoplasias/genética , Neoplasias/terapia , Neoplasias/patologia , Animais , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Carcinogênese/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo
17.
Audiol Res ; 14(2): 254-263, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38525684

RESUMO

Usher syndrome (US) is a clinically and genetically heterogeneous disorder that involves three main features: sensorineural hearing loss, retinitis pigmentosa (RP), and vestibular impairment. With a prevalence of 4-17/100,000, it is the most common cause of deaf-blindness worldwide. Genetic research has provided crucial insights into the complexity of US. Among nine confirmed causative genes, MYO7A and USH2A are major players in US types 1 and 2, respectively, whereas CRLN1 is the sole confirmed gene associated with type 3. Variants in these genes also contribute to isolated forms of hearing loss and RP, indicating intersecting molecular pathways. While hearing loss can be adequately managed with hearing aids or cochlear implants (CIs), approved RP treatment modalities are lacking. Gene replacement and editing, antisense oligonucleotides, and small-molecule drugs hold promise for halting RP progression and restoring vision, enhancing patients' quality of life. Massively parallel sequencing has identified gene variants (e.g., in PCDH15) that influence CI results. Accordingly, preoperative genetic examination appears valuable for predicting CI success. To explore genetic mutations in CI recipients and establish correlations between implant outcomes and involved genes, we comprehensively reviewed the literature to gather data covering a broad spectrum of CI outcomes across all known US-causative genes. Implant outcomes were categorized as excellent or very good, good, poor or fair, and very poor. Our review of 95 cochlear-implant patients with US, along with their CI outcomes, revealed the importance of presurgical genetic testing to elucidate potential challenges and provide tailored counseling to improve auditory outcomes. The multifaceted nature of US demands a comprehensive understanding and innovative interventions. Genetic insights drive therapeutic advancements, offering potential remedies for the retinal component of US. The synergy between genetics and therapeutics holds promise for individuals with US and may enhance their sensory experiences through customized interventions.

18.
Molecules ; 29(5)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38474636

RESUMO

Aptamers developed using in vitro Systematic Evolution of Ligands by Exponential Enrichment (SELEX) technology are single-stranded nucleic acids 10-100 nucleotides in length. Their targets, often with specificity and high affinity, range from ions and small molecules to proteins and other biological molecules as well as larger systems, including cells, tissues, and animals. Aptamers often rival conventional antibodies with improved performance, due to aptamers' unique biophysical and biochemical properties, including small size, synthetic accessibility, facile modification, low production cost, and low immunogenicity. Therefore, there is sustained interest in engineering and adapting aptamers for many applications, including diagnostics and therapeutics. Recently, aptamers have shown promise as early diagnostic biomarkers and in precision medicine for neurodegenerative and neurological diseases. Here, we critically review neuro-targeting aptamers and their potential applications in neuroscience research, neuro-diagnostics, and neuro-medicine. We also discuss challenges that must be overcome, including delivery across the blood-brain barrier, increased affinity, and improved in vivo stability and in vivo pharmacokinetic properties.


Assuntos
Aptâmeros de Nucleotídeos , Neurociências , Animais , Aptâmeros de Nucleotídeos/química , Técnica de Seleção de Aptâmeros , Anticorpos , Ligantes
19.
Endocr Rev ; 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38488566

RESUMO

Research on lean, energy-deficient athletic and military cohorts has broadened the concept of the Female Athlete Triad into the Relative Energy Deficiency in Sport (REDs) syndrome. REDs represents a spectrum of abnormalities induced by low energy availability (LEA), which serves as the underlying cause of all symptoms described within the REDs concept, affecting exercising populations of either biological sex. Both short- and long-term LEA, in conjunction with other moderating factors, may produce a multitude of maladaptive changes that impair various physiological systems and adversely affect health, well-being, and sport performance. Consequently, the comprehensive definition of REDs encompasses a broad spectrum of physiological sequelae and adverse clinical outcomes related to LEA, such as neuroendocrine, bone, immune, and hematological effects, ultimately resulting in compromised health and performance. In this review, we discuss the pathophysiology of REDs and associated disorders. We briefly examine current treatment recommendations for REDs, primarily focusing on non-pharmacological, behavioral, and lifestyle modifications that target its underlying cause - energy deficit. We also discuss treatment approaches aimed at managing symptoms, such as menstrual dysfunction and bone stress injuries, and explore potential novel treatments that target the underlying physiology, emphasizing the roles of leptin and the activin-follistatin-inhibin axis, the roles of which remain to be fully elucidated, in the pathophysiology and management of REDs. In the near future, novel therapies leveraging our emerging understanding of molecules and physiological axes underlying energy availability or lack thereof may restore LEA-related abnormalities, thus preventing and/or treating REDs-related health complications, such as stress fractures, and improving performance.

20.
Front Pharmacol ; 15: 1355242, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38523646

RESUMO

Glioblastoma (GB) is an intrusive and recurrent primary brain tumor with low survivability. The heterogeneity of the tumor microenvironment plays a crucial role in the stemness and proliferation of GB. The tumor microenvironment induces tumor heterogeneity of cancer cells by facilitating clonal evolution and promoting multidrug resistance, leading to cancer cell progression and metastasis. It also plays an important role in angiogenesis to nourish the hypoxic tumor environment. There is a strong interaction of neoplastic cells with their surrounding microenvironment that comprise several immune and non-immune cellular components. The tumor microenvironment is a complex network of immune components like microglia, macrophages, T cells, B cells, natural killer (NK) cells, dendritic cells and myeloid-derived suppressor cells, and non-immune components such as extracellular matrix, endothelial cells, astrocytes and neurons. The prognosis of GB is thus challenging, making it a difficult target for therapeutic interventions. The current therapeutic approaches target these regulators of tumor micro-environment through both generalized and personalized approaches. The review provides a summary of important milestones in GB research, factors regulating tumor microenvironment and promoting angiogenesis and potential therapeutic agents widely used for the treatment of GB patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...