Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 213
Filtrar
1.
Expert Rev Proteomics ; : 1-14, 2024 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-39317941

RESUMO

INTRODUCTION: A comprehensive and global knowledge of protein target engagement is of vital importance for mechanistic studies and in drug development. Since its initial introduction, the cellular thermal shift assay (CETSA) has proven to be a reliable and flexible technique that can be widely applied to multiple contexts and has profound applications in facilitating the identification and assessment of protein target engagement. AREAS COVERED: This review introduces the principle of CETSA, elaborates on western blot-based CETSA and MS-based thermal proteome profiling (TPP) as well as the major applications and prospects of these approaches. EXPERT OPINION: CETSA primarily evaluates a given ligand binding to a particular target protein in cells and tissues with the protein thermal stabilities analyzed by western blot. When coupling mass spectrometry with CETSA, thermal proteome profiling allows simultaneous proteome-wide experiment that greatly increased the efficiency of target engagement evaluation, and serves as a promising strategy to identify protein targets and off-targets as well as protein-protein interactions to uncover the biological effects. The CETSA approaches have broad applications and potentials in drug development and clinical research.

2.
Life Sci ; 356: 123031, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39226989

RESUMO

AIMS: Nonalcoholic steatohepatitis (NASH) is the severe subtype of nonalcoholic fatty diseases (NAFLD) with few options for treatment. Patients with NASH exhibit partial responses to the current therapeutics and adverse effects. Identification of the binding proteins for the drugs is essential to understanding the mechanism and adverse effects of the drugs and fuels the discovery of potent and safe drugs. This paper aims to critically discuss recent advances in covalent and noncovalent approaches for identifying binding proteins that mediate NASH progression, along with an in-depth analysis of the mechanisms by which these targets regulate NASH. MATERIALS AND METHODS: A literature search was conducted to identify the relevant studies in the database of PubMed and the American Chemical Society. The search covered articles published from January 1990 to July 2024, using the search terms with keywords such as NASH, benzophenone, diazirine, photo-affinity labeling, thermal protein profiling, CETSA, target identification. KEY FINDINGS: The covalent approaches utilize drugs modified with diazirine and benzophenone to covalently crosslink with the target proteins, which facilitates the purification and identification of target proteins. In addition, they map the binding sites in the target proteins. By contrast, noncovalent approaches identify the binding targets of unmodified drugs in the intact cell proteome. The advantages and limitations of both approaches have been compared, along with a comprehensive analysis of recent innovations that further enhance the efficiency and specificity. SIGNIFICANCE: The analyses of the applicability of these approaches provide novel tools to delineate NASH pathogenesis and promote drug discovery.


Assuntos
Descoberta de Drogas , Fígado Gorduroso , Proteínas , Quimera de Direcionamento de Proteólise , Bibliotecas de Moléculas Pequenas , Fígado Gorduroso/metabolismo , Ligação Proteica , Domínios Proteicos , Quimera de Direcionamento de Proteólise/química , Quimera de Direcionamento de Proteólise/metabolismo , Proteínas/química , Proteínas/metabolismo , Proteólise , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/metabolismo , Humanos , Animais , Linhagem Celular Tumoral
3.
J Mol Biol ; 436(17): 168519, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39237200

RESUMO

Here we present TPPU_DSF (https://maciasnmr.net/tppu_dsf/). This is a free and open-source web application that opens, converts, fits, and calculates the thermodynamic parameters of protein unfolding from standard differential scanning fluorimetry (DSF) data in an automated manner. The software has several applications. In the context of screening compound libraries for protein binders, obtaining thermodynamic parameters provides a more robust approach to detecting hits than the changes in the melting temperature (Tm) alone, thereby helping to increase the number of positive hits in screening campaigns. Moreover, changes in ΔGuo indicate protein response to binding at lower compound concentrations than those in the Tm, thereby reducing the costs associated with the amounts of protein and compounds required for the assays. Also, by adding thermodynamic information to the Tm comparison, the software can contribute to the optimization of protein constructs and buffer conditions, a common practice before structural and functional projects.


Assuntos
Software , Termodinâmica , Proteínas/química , Internet , Desdobramento de Proteína , Fluorometria/métodos , Ligação Proteica
4.
Bio Protoc ; 14(15): e5047, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39131191

RESUMO

The cellular thermal shift assay (CETSA) and isothermal dose-response fingerprint assay (ITDRF CETSA) have been introduced as powerful tools for investigating target engagement by measuring ligand-triggered thermodynamic stabilization of cellular target proteins. Yet, these techniques have rarely been used to evaluate the thermal stability of RNA-binding proteins (RBPs) when exposed to ligands. Here, we present an adjusted approach using CETSA and ITDRFCETSA to determine the interaction between enasidenib and RBM45. Our assay is sensitive and time-efficient and can potentially be adapted for studying the interactions of RBM45 protein with other potential candidates. Key features • This protocol builds upon the method developed by Molina et al. and extends its application to new protein classes, such as RBPs.

5.
Se Pu ; 42(7): 702-710, 2024 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-38966978

RESUMO

Organic acid metabolites exhibit acidic properties. These metabolites serve as intermediates in major carbon metabolic pathways and are involved in several biochemical pathways, including the tricarboxylic acid (TCA) cycle and glycolysis. They also regulate cellular activity and play crucial roles in epigenetics, tumorigenesis, and cellular signal transduction. Knowledge of the binding proteins of organic acid metabolites is crucial for understanding their biological functions. However, identifying the binding proteins of these metabolites has long been a challenging task owing to the transient and weak nature of their interactions. Moreover, traditional methods are unsuitable for the structural modification of the ligands of organic acid metabolites because these metabolites have simple and similar structures. Even minor structural modifications can significantly affect protein interactions. Thermal proteome profiling (TPP) provides a promising avenue for identifying binding proteins without the need for structural modifications. This approach has been successfully applied to the identification of the binding proteins of several metabolites. In this study, we investigated the binding proteins of two TCA cycle intermediates, i.e., succinate and fumarate, and lactate, an end-product of glycolysis, using the matrix thermal shift assay (mTSA) technique. This technique involves combining single-temperature (52 ℃) TPP and dose-response curve analysis to identify ligand-binding proteins with high levels of confidence and determine the binding affinity between ligands and proteins. To this end, HeLa cells were lysed, followed by protein desalting to remove endogenous metabolites from the cell lysates. The desalted cell lysates were treated with fumarate or succinate at final concentrations of 0.004, 0.04, 0.4, and 2 mmol/L in the experimental groups or 2 mmol/L sodium chloride in the control group. Considering that the cellular concentration of lactate can be as high as 2-30 mmol/L, we then applied lactate at final concentrations of 0.2, 1, 5, 10, and 25 mmol/L in the experimental groups or 25 mmol/L sodium chloride in the control group. Using high-sensitivity mass spectrometry coupled with data-independent acquisition (DIA) quantification, we quantified 5870, 5744, and 5816 proteins in succinate, fumarate, and lactate mTSA experiments, respectively. By setting stringent cut-off values (i.e., significance of changes in protein thermal stability (p-value)<0.001 and quality of the dose-response curve fitting (square of Pearson's correlation coefficient, R2)>0.95), multiple binding proteins for these organic acid metabolites from background proteins were confidently determined. Several known binding proteins were identified, notably fumarate hydratase (FH) as a binding protein for fumarate, and α-ketoglutarate-dependent dioxygenase (FTO) as a binding protein for both fumarate and succinate. Additionally, the affinity data for the interactions between these metabolites and their binding proteins were obtained, which closely matched those reported in the literature. Interestingly, ornithine aminotransferase (OAT), which is involved in amino acid biosynthesis, and 3-mercaptopyruvate sulfurtransferase (MPST), which acts as an antioxidant in cells, were identified as lactate-binding proteins. Subsequently, an orthogonal assay technique developed in our laboratory, the solvent-induced precipitation (SIP) technique, was used to validate the mTSA results. SIP identified OAT as the top target candidate, validating the mTSA-based finding that OAT is a novel lactate-binding protein. Although MPST was not identified as a lactate-binding protein by SIP, statistical analysis of MPST in the mTSA experiments with 10 or 25 mmol/L lactate revealed that MPST is a lactate-binding protein with a high level of confidence. Peptide-level empirical Bayes t-tests combined with Fisher's exact test also supported the conclusion that MPST is a lactate-binding protein. Lactate is structurally similar to pyruvate, the known binding protein of MPST. Therefore, assuming that lactate could potentially occupy the binding site of pyruvate on MPST. Overall, the novel binding proteins identified for lactate suggest their potential involvement in amino acid synthesis and redox balance regulation.


Assuntos
Ciclo do Ácido Cítrico , Humanos , Células HeLa , Ácido Succínico/metabolismo , Ácido Succínico/química , Fumaratos/metabolismo , Fumaratos/química
6.
Protein Sci ; 33(6): e5022, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38747440

RESUMO

Differential scanning fluorimetry (DSF) is a method to determine the apparent melting temperature (Tma) of a purified protein. In DSF, the raw unfolding curves from which Tma is calculated vary widely in shape and complexity. However, the tools available for calculating Tma are only compatible with the simplest of DSF curves, hindering many otherwise straightforward applications of the technology. To overcome this limitation, we designed new mathematical models for Tma calculation that accommodate common forms of variation in DSF curves, including the number of transitions, the presence of high initial signal, and temperature-dependent signal decay. When tested these models against DSFbase, an open-source database of 6235 raw, real-life DSF curves, these models outperformed the existing standard approaches of sigmoid fitting and maximum of the first derivative. To make these models accessible, we created an open-source software and website, DSFworld (https://gestwickilab.shinyapps.io/dsfworld/). In addition to these improved fitting capabilities, DSFworld also includes features that overcome the practical limitations of many analysis workflows, including automatic reformatting of raw data exported from common qPCR instruments, labeling of data based on experimental variables, and flexible interactive plotting. We hope that DSFworld will enable more streamlined and accurate calculation of Tma values for DSF experiments.


Assuntos
Fluorometria , Software , Fluorometria/métodos , Temperatura de Transição , Proteínas/química
7.
Biochem Biophys Rep ; 38: 101718, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38708424

RESUMO

Chitin deacetylase (CDA) modifies chitin into chitosan by removing acetyl groups, but its inherent instability poses a challenge for successful crystallisation. Despite limited successes in crystallizing CDAs, prior attempts with recombinant chitin deacetylase (BaCDA) failed due to poor stability. To address this, we propose an enzyme buffer formulation as a cost-effective strategy to enhance stability, prolong shelf life, and increase the likelihood of crystallisation. Utilizing the high-throughput screening technique FTSA, we developed a screening method correlating BaCDA stability with its activity. The optimised formulation comprises 50 mM Tris-HCl buffer pH 7, 1 M NaCl, 20 % glycerol, and 1 mM Mg2+ as excipients. This formulation significantly improves BaCDA's thermostability (140.47 % increase) and enzyme activity (2.9-fold enhancement). BaCDA remains stable in the formulated buffer at -20 °C and -80 °C for 30 days and at 4 °C for 15 days. The current study has designed a high-throughput screening method approach to assess the stability of CDA enzyme formulations. The results of this study could contribute to the exploration of formulation elements that enhance the structural stability of CDA, thereby facilitating investigations into the enzyme's structure-function relationships.

8.
J Inorg Biochem ; 256: 112547, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38581802

RESUMO

Transition metal ions are structural and catalytic cofactors of many proteins including human carbonic anhydrase (CA), a Zn-dependent hydrolase. Sulfonamide inhibitors of CA recognize and form a coordination bond with the Zn ion located in the active site of the enzyme. The Zn ion may be removed or substituted with other metal ions. Such CA protein retains the structure and could serve as a tool to study metal ion role in the recognition and binding affinity of inhibitor molecules. We measured the affinities of selected divalent transition metal ions, including Mn, Fe, Co, Ni, Cu, Cd, Hg, and Zn to metal-free CA isozymes CA I, CA II, and CAIX by fluorescence-based thermal shift assay, prepared metal-substituted CAs, and determined binding of diverse sulfonamide compounds. Sulfonamide inhibitor binding to metal substituted CA followed a U-shape pH dependence. The binding was dissected to contributing binding-linked reactions and the intrinsic binding reaction affinity was calculated. This value is independent of pH and protonation reactions that occur simultaneously upon binding native CA and as demonstrated here, to metal substituted CA. Sulfonamide inhibitor binding to cancer-associated isozyme CAIX diminished in the order: Zn > Co > Hg > Cu > Cd > Mn > Ni. Energetic contribution of the inhibitor-metal coordination bond was determined for all above metals. The understanding of the principles of metal influence on ligand affinity and selectivity should help design new drugs targeting metalloenzymes.


Assuntos
Anidrase Carbônica IX , Inibidores da Anidrase Carbônica , Sulfonamidas , Sulfonamidas/química , Inibidores da Anidrase Carbônica/química , Humanos , Anidrase Carbônica IX/metabolismo , Anidrase Carbônica IX/antagonistas & inibidores , Anidrase Carbônica IX/química , Ligação Proteica , Antígenos de Neoplasias/metabolismo , Antígenos de Neoplasias/química , Concentração de Íons de Hidrogênio
9.
Methods Mol Biol ; 2797: 125-143, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38570457

RESUMO

Various biochemical methods have been introduced to detect and characterize KRAS activity and interactions, from which the vast majority is based on luminescence detection in its varying forms. Among these methods, thermal stability assays, using luminophore-conjugated proteins or external environment sensing dyes, are widely used. In this chapter, we describe methods enabling KRAS stability monitoring in vitro, with an emphasis on ligand-induced stability. This chapter focuses mainly on luminescence-based techniques utilizing external dye molecules and fluorescence detection.


Assuntos
Luminescência , Proteínas Proto-Oncogênicas p21(ras) , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas/química , Medições Luminescentes , Corantes Fluorescentes/química
10.
Brief Bioinform ; 25(3)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38557673

RESUMO

IMPRINTS-CETSA (Integrated Modulation of Protein Interaction States-Cellular Thermal Shift Assay) provides a highly resolved means to systematically study the interactions of proteins with other cellular components, including metabolites, nucleic acids and other proteins, at the proteome level, but no freely available and user-friendly data analysis software has been reported. Here, we report IMPRINTS.CETSA, an R package that provides the basic data processing framework for robust analysis of the IMPRINTS-CETSA data format, from preprocessing and normalization to visualization. We also report an accompanying R package, IMPRINTS.CETSA.app, which offers a user-friendly Shiny interface for analysis and interpretation of IMPRINTS-CETSA results, with seamless features such as functional enrichment and mapping to other databases at a single site. For the hit generation part, the diverse behaviors of protein modulations have been typically segregated with a two-measure scoring method, i.e. the abundance and thermal stability changes. We present a new algorithm to classify modulated proteins in IMPRINTS-CETSA experiments by a robust single-measure scoring. In this way, both the numerical changes and the statistical significances of the IMPRINTS information can be visualized on a single plot. The IMPRINTS.CETSA and IMPRINTS.CETSA.app R packages are freely available on GitHub at https://github.com/nkdailingyun/IMPRINTS.CETSA and https://github.com/mgerault/IMPRINTS.CETSA.app, respectively. IMPRINTS.CETSA.app is also available as an executable program at https://zenodo.org/records/10636134.


Assuntos
Aplicativos Móveis , Software , Proteoma , Algoritmos , Projetos de Pesquisa
11.
Saudi Pharm J ; 32(4): 101986, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38487020

RESUMO

Concerns about the social and economic collapse, high mortality rates, and stress on the healthcare system are developing due to the coronavirus onslaught in the form of various species and their variants. In the recent past, infections brought on by coronaviruses severe acute respiratory syndrome coronaviruses (SARS-CoV and SARS-CoV-2) as well as middle east respiratory syndrome coronavirus (MERS-CoV) have been reported. There is a severe lack of medications to treat various coronavirus types including MERS-CoV which is hazard to public health due to its ability for pandemic spread by human-to-human transmission. Here, we utilized sinapic acid (SA) against papain-like protease (PLpro), a crucial enzyme involved in MERS-CoV replication, because phytomedicine derived from nature has less well-known negative effects. The thermal shift assay (TSA) was used in the current study to determine whether the drug interact with the recombinant MERS-CoV PLpro. Also, inhibition assay was conducted as the hydrolysis of fluorogenic peptide from the Z-RLRGG-AMC-peptide bond in the presence of SA to determine the level of inhibition of the MERS-CoV PLpro. To study the structural binding efficiency Autodock Vina was used to dock SA to the MERS-CoV PLpro and results were analyzed using PyMOL and Maestro Schrödinger programs. Our results show a convincing interaction between SA and the MERS protease, as SA reduced MERS-CoV PLpro in a dose-dependent way IC50 values of 68.58 µM (of SA). The TSA showed SA raised temperature of melting to 54.61 °C near IC50 and at approximately 2X IC50 concentration (111.5 µM) the Tm for SA + MERS-CoV PLpro was 59.72 °C. SA was docked to MERS-CoV PLpro to identify the binding site. SA bound to the blocking loop (BL2) region of MERS-CoV PLpro interacts with F268, E272, V275, and P249 residues of MERS-CoV PLpro. The effectiveness of protease inhibitors against MERS-CoV has been established and SA is already known for broad range biological activity including antiviral properties; it can be a suitable candidate for anti-MERS-CoV treatment.

12.
Int J Mol Sci ; 25(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38339045

RESUMO

Proteins are large biomolecules with a specific structure that is composed of one or more long amino acid chains. Correct protein structures are directly linked to their correct function, and many environmental factors can have either positive or negative effects on this structure. Thus, there is a clear need for methods enabling the study of proteins, their correct folding, and components affecting protein stability. There is a significant number of label-free methods to study protein stability. In this review, we provide a general overview of these methods, but the main focus is on fluorescence-based low-instrument and -expertise-demand techniques. Different aspects related to thermal shift assays (TSAs), also called differential scanning fluorimetry (DSF) or ThermoFluor, are introduced and compared to isothermal chemical denaturation (ICD). Finally, we discuss the challenges and comparative aspects related to these methods, as well as future opportunities and assay development directions.


Assuntos
Aminoácidos , Proteínas , Estabilidade Proteica , Proteínas/química , Fluorometria/métodos , Bioensaio , Desnaturação Proteica
13.
Eur J Med Chem ; 267: 116203, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38342014

RESUMO

BACKGROUND: Quercetin is widely distributed in nature and abundant in the human diet, which exhibits diverse biological activities and potential medical benefits. However, there remains a lack of comprehensive understanding about its cellular targets, impeding its in-depth mechanistic studies and clinical applications. PURPOSE: This study aimed to profile protein targets of quercetin at the proteome level. METHODS: A label-free CETSA-MS proteomics technique was employed for target enrichment and identification. The R package Inflect was used for melting curve fitting and target selection. D3Pocket and LiBiSco tools were used for binding pocket prediction and binding pocket analysis. Western blotting, molecular docking, site-directed mutagenesis and pull-down assays were used for target verification and validation. RESULTS: We curated a library of direct binding targets of quercetin in cells. This library comprises 37 proteins that show increased thermal stability upon quercetin binding and 33 proteins that display decreased thermal stability. Through Western blotting, molecular docking, site-directed mutagenesis and pull-down assays, we validated CBR1 and GSK3A from the stabilized protein group and MAPK1 from the destabilized group as direct binding targets of quercetin. Moreover, we characterized the shared chemical properties of the binding pockets of quercetin with targets. CONCLUSION: Our findings deepen our understanding of the proteins pivotal to the bioactivity of quercetin and lay the groundwork for further exploration into its mechanisms of action and potential clinical applications.


Assuntos
Proteoma , Quercetina , Humanos , Quercetina/farmacologia , Quercetina/química , Simulação de Acoplamento Molecular , Proteoma/metabolismo , Espectrometria de Massas
14.
Biochim Biophys Acta Gen Subj ; 1868(2): 130526, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38049040

RESUMO

INTRODUCTION: The study of protein stability is crucial to biochemistry and relies on different methodologies. Recently, the Cellular Thermal Shift Assay has been introduced to study protein stability in whole cells. METHODS: We report a novel application of CeTSA named ReBaTSA. This Recombinant Bacterial TSA was performed using clear extracts from bacteria expressing a recombinant protein, incubated at different temperatures, centrifuged and analyzed via SDS-PAGE. RESULTS AND CONCLUSIONS: We demonstrated the feasibility and reliability of this simplified approach. We validated the method using the protein phosphomannomutase-2 and its common mutants, which were compared in the presence or the absence of a known ligand.


Assuntos
Lisados Bacterianos , Proteínas Mutantes , Reprodutibilidade dos Testes , Estabilidade Proteica , Proteínas Recombinantes/genética
15.
Int J Biol Macromol ; 255: 128025, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37979739

RESUMO

In the present study, we characterized Bakuchiol (Bak) as a new potent quorum sensing (QS) inhibitor against Pseudomonas aeruginosa biofilm formation. Upon extensive in vitro investigations, Bak was found to suppress the P. aeruginosa biofilm formation (75.5 % inhibition) and its associated virulence factor e.g., pyocyanin and rhamnolipids (% of inhibition = 71.5 % and 66.9 %, respectively). Upon LuxR-type receptors assay, Bak was found to selectively inhibit P. aeruginosa's LasR in a dose-dependent manner. Further in-depth molecular investigations (e.g., sedimentation velocity and thermal shift assays) revealed that Bak destabilized LasR upon binding and disrupted its functioning quaternary structure (i.e., the functioning dimeric form). The subsequent modeling and molecular dynamics (MD) simulations explained in more molecular detail how Bak interacts with LasR and how it can induce its dimeric form disruption. In conclusion, our study identified Bak as a potent and specific LasR antagonist that should be widely used as a chemical probe of QS in P. aeruginosa, offering new insights into LasR antagonism processes. The new findings shed light on the cryptic world of LuxR-type QS in this important opportunistic pathogen.


Assuntos
Pseudomonas aeruginosa , Percepção de Quorum , Biofilmes , Pseudomonas/metabolismo , Proteínas de Bactérias/metabolismo , Fatores de Transcrição , Transativadores/metabolismo , Antibacterianos/farmacologia
16.
Chembiochem ; 25(2): e202300459, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-37872746

RESUMO

Measurements of membrane protein thermostability reflect ligand binding. Current thermostability assays often require protein purification or rely on pre-existing radiolabelled or fluorescent ligands, limiting their application to established targets. Alternative methods, such as fluorescence-detection size exclusion chromatography thermal shift, detect protein aggregation but are not amenable to high-throughput screening. Here, we present a ThermoBRET method to quantify the relative thermostability of G protein coupled receptors (GPCRs), using cannabinoid receptors (CB1 and CB2 ) and the ß2 -adrenoceptor (ß2 AR) as model systems. ThermoBRET reports receptor unfolding, does not need labelled ligands and can be used with non-purified proteins. It uses Bioluminescence Resonance Energy Transfer (BRET) between Nanoluciferase (Nluc) and a thiol-reactive fluorescent dye that binds cysteines exposed by unfolding. We demonstrate that the melting point (Tm ) of Nluc-fused GPCRs can be determined in non-purified detergent solubilised membrane preparations or solubilised whole cells, revealing differences in thermostability for different solubilising conditions and in the presence of stabilising ligands. We extended the range of the assay by developing the thermostable tsNLuc by incorporating mutations from the fragments of split-Nluc (Tm of 87 °C versus 59 °C). ThermoBRET allows the determination of GPCR thermostability, which is useful for protein purification optimisation and drug discovery screening.


Assuntos
Proteínas de Transporte , Receptores Acoplados a Proteínas G , Ligantes , Ligação Proteica , Proteínas de Membrana/química
17.
Acta Pharmaceutica Sinica ; (12): 25-34, 2024.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1005435

RESUMO

Understanding the research methods for drug protein targets is crucial for the development of new drugs, clinical applications of drugs, drug mechanisms, and the pathogenesis of diseases. Cellular thermal shift assay (CETSA), a target research method without modification, has been widely used since its development. Now, there are various CETSA-based technology combinations, such as mass spectrometry-based cellular thermal shift assay (MS-CETSA), isothermal dose response-cellular thermal shift assay (ITDR-CETSA), amplified luminescent proximity homogeneous assay-cellular thermal shift assay (Alpha-CETSA), etc., which combine their respective advantages and further expand the application scope of CETSA. These technologies are suitable for the entire drug development chain, from drug screening to monitoring the target binding and off-target toxicity of drugs in patients. Based on the author's research experience, this paper reviews the principles of CETSA and related binding technologies, their application in target discovery, and the progress of data processing and analysis in recent years, aiming to provide reference and reference for the further application of CETSA.

18.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1039632

RESUMO

ObjectiveTo investigate the mechanism of action and main active components of Xiaoyaosan in the treatment of diabetic mellitus-induced erectile dysfunction (DMED). MethodStreptozotocin (STZ) was used to induce a diabetic rat model. The therapeutic efficacy of Xiaoyaosan was evaluated by measuring intracavernous pressure/mean arterial pressure (ICP/MAP) and using Masson's trichrome staining. The main active components, key targets, and potential signaling pathways of Xiaoyaosan for the treatment of DMED were predicted by network pharmacology and molecular docking. The predicted results were then validated by in vitro and in vivo experiments. ResultThe ICP/MAP measurements and Masson's staining results showed that compared with the results in the control group, the erectile function of rats in the model group was significantly reduced (P<0.01), and the ratio of smooth muscle/collagen fibers was significantly reduced (P<0.01). After treatment with Xiaoyaosan, compared with the results in the model group, the ICP/MAP value of the diabetic rats was significantly elevated (P<0.01), and the ratio of smooth muscle/collagen fibers was significantly higher (P<0.01). The results of network pharmacology showed that Xiaoyaosan acted on key targets such as albumin (ALB), protein kinase B1 (Akt1), interleukin-6 (IL-6), and tumor necrosis factor (TNF) through its main active components, including quercetin, kaempferol, β-sitosterol, and stigmasterol. These components were involved in the regulation of the advanced glycation end-products/receptor for advanced glycation end-products (AGE/RAGE) signaling pathway and the phosphoinositide 3-kinases(PI3K)/Akt signaling pathway in diabetic complications. The results of molecular docking showed that the key components of Xiaoyaosan had good binding capabilities with core targets, with β-sitosterol showing the strongest binding affinity with ALB. In vivo experiments demonstrated that Xiaoyaosan could significantly increase the protein and mRNA expression of ALB and Akt1 in serum, and inhibit the expression of IL-6 and TNF-α. It also significantly upregulated the expression of protein and mRNA of phosphorylation(p)-PI3K and p-Akt, and inhibited the RAGE expression. The results of cellular thermal shift assay (CETSA) showed that β-sitosterol could significantly inhibit the degradation of ALB protein. ConclusionXiaoyaosan may restore erectile function in diabetic rats by modulating targets such as ALB, Akt1, IL-6, and TNF, and through the RAGE/PI3K/Akt signaling pathway, and its main active component is likely β-sitosterol.

19.
J Biol Chem ; 300(1): 105586, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38141766

RESUMO

About 247 million cases of malaria occurred in 2021 with Plasmodium falciparum accounting for the majority of 619,000 deaths. In the absence of a widely available vaccine, chemotherapy remains crucial to prevent, treat, and contain the disease. The efficacy of several drugs currently used in the clinic is likely to suffer from the emergence of resistant parasites. A global effort to identify lead compounds led to several initiatives such as the Medicine for Malaria Ventures (MMV), a repository of compounds showing promising efficacy in killing the parasite in cell-based assays. Here, we used mass spectrometry coupled with cellular thermal shift assay to identify putative protein targets of MMV000848, a compound with an in vitro EC50 of 0.5 µM against the parasite. Thermal shift assays showed a strong increase of P. falciparum purine nucleoside phosphorylase (PfPNP) melting temperature by up to 15 °C upon incubation with MMV000848. Binding and enzymatic assays returned a KD of 1.52 ± 0.495 µM and an IC50 value of 21.5 ± 2.36 µM. The inhibition is competitive with respect to the substrate, as confirmed by a cocrystal structure of PfPNP bound with MMV000848 at the active site, determined at 1.85 Å resolution. In contrast to transition states inhibitors, MMV000848 specifically inhibits the parasite enzyme but not the human ortholog. An isobologram analysis shows subadditivity with immucillin H and with quinine respectively, suggesting overlapping modes of action between these compounds. These results point to PfPNP as a promising antimalarial target and suggest avenues to improve inhibitor potency.


Assuntos
Antimaláricos , Plasmodium falciparum , Purina-Núcleosídeo Fosforilase , Antimaláricos/química , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/enzimologia , Purina-Núcleosídeo Fosforilase/química , Quinina/química , Espectrometria de Massas , Ligação Proteica
20.
J Transl Med ; 21(1): 880, 2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-38049841

RESUMO

BACKGROUND: Osteoarthritis is a degenerative joint disease. Cartilage degeneration is the earliest and most important pathological change in osteoarthritis, and persistent inflammation is one of the driving factors of cartilage degeneration. Cucurbitacin E, an isolated compound in the Cucurbitacin family, has been shown to have anti-inflammatory effects, but its role and mechanism in osteoarthritic chondrocytes are unclear. METHODS: For in vitro experiments, human chondrocytes were stimulated with IL-1ß, and the expression of inflammatory genes was measured by Western blotting and qPCR. The expression of extracellular matrix proteins was evaluated by immunofluorescence staining, Western blotting and saffron staining. Differences in gene expression between cartilage from osteoarthritis patients and normal cartilage were analysed by bioinformatics methods, and the relationship between Cucurbitacin E and its target was analysed by a cellular thermal shift assay, molecular docking analysis and molecular dynamics simulation. For in vivo experiments, knee osteoarthritis was induced by DMM in C57BL/6 mouse knee joints, and the effect of Cucurbitacin E on knee joint degeneration was evaluated. RESULTS: The in vitro experiments confirmed that Cucurbitacin E effectively inhibited the production of the inflammatory cytokine interleukin-1ß(IL-1ß) and cyclooxygenase-2 (COX-2) by IL-1ß-stimulated chondrocytes and alleviates extracellular matrix degradation. The in vivo experiments demonstrated that Cucurbitacin E had a protective effect on the knee cartilage of C57BL/6 mice with medial meniscal instability in the osteoarthritis model. Mechanistically, bioinformatic analysis of the GSE114007 and GSE117999 datasets showed that the PI3K/AKT pathway was highly activated in osteoarthritis. Immunohistochemical analysis of PI3K/Akt signalling pathway proteins in pathological slices of human cartilage showed that the level of p-PI3K in patients with osteoarthritis was higher than that in the normal group. PI3K/Akt were upregulated in IL-1ß-stimulated chondrocytes, and Cucurbitacin E intervention reversed this phenomenon. The cellular thermal shift assay, molecular docking analysis and molecular dynamics experiment showed that Cucurbitacin E had a strong binding affinity for the inhibitory target PI3K. SC79 activated Akt phosphorylation and reversed the effect of Cucurbitacin E on IL-1ß-induced chondrocyte degeneration, demonstrating that Cucurbitacin E inhibits IL-1ß-induced chondrocyte inflammation and degeneration by inhibiting the PI3K/AKT pathway. CONCLUSION: Cucurbitacin E inhibits the activation of the PI3K/AKT pathway, thereby alleviating the progression of OA. In summary, we believe that Cucurbitacin E is a potential drug for the treatment of OA.


Assuntos
Condrócitos , Osteoartrite do Joelho , Camundongos , Animais , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Interleucina-1beta/metabolismo , Simulação de Acoplamento Molecular , Camundongos Endogâmicos C57BL , Inflamação/patologia , Meniscos Tibiais , Osteoartrite do Joelho/patologia , NF-kappa B/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA