Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Microsc Microanal ; 30(2): 382-391, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38442192

RESUMO

The microstructure of the thyroid gland of the one-humped camel (Camelus dromedarius) was described using morphometric, histological, immunohistochemical staining, and ultrastructural standard techniques. The follicular secretory units of the thyroid glands displayed comparable and variable sizes where the large follicles were situated at the peripheral margins; however, the small ones were located in the central region. Semisquamous epithelium (low cuboidal) lined the large thyroid follicles, while high cuboidal (columnar) epithelium lined the small ones. Our electron microscopic findings revealed that the low-sized cuboidal follicular cells lack organelles and are hypoactive. The high cuboidal follicular cells are active cells and rich in cellular organelles such as cisternae of rough endoplasmic reticulum, mitochondria, colloid droplets, scrolled Golgi apparatus, and secretory vesicles. A few degenerate follicular cells appeared on rare occasions. The parafollicular cells appeared with a more prominent and conspicuous nucleus than the follicular cells. The follicular cells were classified as active, inactive, or degenerated using transmission electron microscopy. The follicular and parafollicular cells showed calcitonin-positive immunoreactivity. Overall, the presented results showed particular convergences of the morphostructural aspects of the thyroid gland of C. dromedarius to that of other mammals with some distinctive features to cope with their physiology and harsh niche.


Assuntos
Camelus , Glândula Tireoide , Animais , Glândula Tireoide/ultraestrutura , Glândula Tireoide/citologia , Microscopia Eletrônica de Transmissão , Imuno-Histoquímica , Feminino , Masculino
2.
Environ Sci Technol ; 58(1): 99-109, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38117130

RESUMO

Identifying endocrine disrupting chemicals in order to limit their usage is a priority and required according to the European Regulation. There are no Organization for Economic Co-operation and Development (OECD) test guidelines based on fish available for the detection of Thyroid axis Active Chemicals (TACs). This study aimed to fill this gap by developing an assay at eleuthero-embryonic life stages in a novel medaka (Oryzias latipes) transgenic line. This transgenic line expresses green fluorescent protein (GFP) in thyrocytes, under the control of the medaka thyroglobulin gene promoter. The fluorescence expressed in the thyrocytes is inversely proportional to the thyroid axis activity. When exposed for 72 h to activators (triiodothyronine (T3) and thyroxine (T4)) or inhibitors (6-N-propylthiouracil (PTU), Tetrabromobisphenol A (TBBPA)) of the thyroid axis, the thyrocytes can change their size and express lower or higher levels of fluorescence, respectively. This reflects the regulation of thyroglobulin by the negative feedback loop of the Hypothalamic-Pituitary-Thyroid axis. T3, T4, PTU, and TBBPA induced fluorescence changes with the lowest observable effect concentrations (LOECs) of 5 µg/L, 1 µg/L, 8 mg/L, and 5 mg/L, respectively. This promising tool could be used as a rapid screening assay and also to help decipher the mechanisms by which TACs can disrupt the thyroid axis in medaka.


Assuntos
Oryzias , Glândula Tireoide , Animais , Glândula Tireoide/fisiologia , Oryzias/fisiologia , Tireoglobulina/metabolismo , Tireoglobulina/farmacologia , Tri-Iodotironina/metabolismo , Tri-Iodotironina/farmacologia
3.
Front Physiol ; 14: 1237159, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37637141

RESUMO

Harness® is a commercial herbicide that contains acetochlor at a concentration of 84% as an active ingredient. Ubiquitous, persistent, and substantial uses of Harness® in agricultural processes have resulted in the pollution of nearby water sources, posing a threat to various aquatic biotas, including fish. The effects of Harness® toxicity on fish health are little known. So, this study aimed to describe the impact of herbicide Harness® on the oxidative stress and reproductive and thyroid performance of male and female tilapia (Oreochromis niloticus) and also investigate the prospective role of the natural antioxidant lycopene supplementation in dismissing the adverse properties of Harness®. Antioxidant enzyme (catalase, superoxide dismutase, and total antioxidant capacity) and hormone measurements (T, E2, T3, and T4) were carried out, and gonadal and thyroid follicle histological sections were examined as a method to investigate the effects of Harness® toxicity on fish. Male and female tilapia were exposed to 10 µmol/L and 100 µmol/L of Harness® and treated with 10 mg lycopene/kg for 15 days of exposure. Our results demonstrated that the antioxidant enzyme activity was altered by Harness exposure and serum T for both males and females dropped; also, female E2 levels decreased, but male E2 increased. Exposure to higher dose of Harness® induced elevation in both T3 and T4 levels, although the low exposure dose stimulated T4 levels. Harness® exposure prompted histological variations and degenerative changes in testicular, ovarian, and thyroid follicle tissues. Lycopene supplement administration diminished oxidative stress induced by Harness®, alleviating its endocrine disparaging effects by neutralizing T3, T4, T, and E2 and ameliorating the histological structure of gonadal and thyroid tissues. In conclusion, lycopene supplementation was preformed to normalize the alterations and oxidative damage caused by Harness® in Nile tilapia, suggesting that lycopene-supplemented diet functioned as potent antioxidants and had the ability to alleviate oxidative stress and thyroid and reproductive toxicity caused by herbicide Harness®. Moreover, it is crucial to take appropriate care when consuming herbicides to defend the aquatic environment.

4.
Front Pharmacol ; 14: 1076254, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36843954

RESUMO

All cosmetic ingredients registered in Europe must be evaluated for their safety using non-animal methods. Microphysiological systems (MPS) offer a more complex higher tier model to evaluate chemicals. Having established a skin and liver HUMIMIC Chip2 model demonstrating how dosing scenarios impact the kinetics of chemicals, we investigated whether thyroid follicles could be incorporated to evaluate the potential of topically applied chemicals to cause endocrine disruption. This combination of models in the HUMIMIC Chip3 is new; therefore, we describe here how it was optimized using two chemicals known to inhibit thyroid production, daidzein and genistein. The MPS was comprised of Phenion® Full Thickness skin, liver spheroids and thyroid follicles co-cultured in the TissUse HUMIMIC Chip3. Endocrine disruption effects were determined according to changes in thyroid hormones, thyroxine (T4) and 3,3',5-triiodothyronine (T3). A main part of the Chip3 model optimization was the replacement of freshly isolated thyroid follicles with thyrocyte-derived follicles. These were used in static incubations to demonstrate the inhibition of T4 and T3 production by genistein and daidzein over 4 days. Daidzein exhibited a lower inhibitory activity than genistein and both inhibitory activities were decreased after a 24 h preincubation with liver spheroids, indicating metabolism was via detoxification pathways. The skin-liver-thyroid Chip3 model was used to determine a consumer-relevant exposure to daidzein present in a body lotion based on thyroid effects. A "safe dose" of 0.235 µg/cm2 i.e., 0.047% applied in 0.5 mg/cm2 of body lotion was the highest concentration of daidzein which does not result in changes in T3 and T4 levels. This concentration correlated well with the value considered safe by regulators. In conclusion, the Chip3 model enabled the incorporation of the relevant exposure route (dermal), metabolism in the skin and liver, and the bioactivity endpoint (assessment of hormonal balance i.e., thyroid effects) into a single model. These conditions are closer to those in vivo than 2D cell/tissue assays lacking metabolic function. Importantly, it also allowed the assessment of repeated doses of chemical and a direct comparison of systemic and tissue concentrations with toxicodynamic effects over time, which is more realistic and relevant for safety assessment.

5.
Adv Healthc Mater ; 12(8): e2201555, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36546709

RESUMO

Thyroid is a glandular tissue in the human body in which the function can be severely affected by endocrine disrupting chemicals (EDCs). Current in vitro assays to test endocrine disruption by chemical compounds are largely based on 2D thyroid cell cultures, which often fail to precisely evaluate the safety of these compounds. New and more advanced 3D cell culture systems are urgently needed to better recapitulate the thyroid follicular architecture and functions and help to improve the predictive power of such assays. Herein, the development of a thyroid organoid-on-a-chip (OoC) device using polymeric membranous carriers is described. Mouse embryonic stem cell derived thyroid follicles are incorporated in a microfluidic chip for a 4 day experiment at a flow rate of 12 µL min-1 . A reversible seal provides a leak-tight sealing while enabling quick and easy loading/unloading of thyroid follicles. The OoC model shows a high degree of functionality, where organoids retain expression of key thyroid genes and a typical follicular structure. Finally, transcriptional changes following benzo[k]fluoranthene exposure in the OoC device demonstrate activation of the xenobiotic aryl hydrocarbon receptor pathway. Altogether, this OoC system is a physiologically relevant thyroid model, which will represent a valuable tool to test potential EDCs.


Assuntos
Organoides , Glândula Tireoide , Animais , Humanos , Camundongos , Técnicas de Cultura de Células , Dispositivos Lab-On-A-Chip
6.
Front Endocrinol (Lausanne) ; 13: 850231, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35721760

RESUMO

Triclosan (TCS) is an antimicrobial chemical widely used in personal care products. Most of the TCS component is discharged and enters the aquatic ecosystem after usage. TCS has a similar structure as thyroid hormones that are synthesized by thyroid follicular epithelial cells, thus TCS has a potential endocrine disrupting effect. It is still not clear how the different levels of the environmental TCS would affect early development in vivo. This study examines the effects of TCS on thyroid hormone secretion and the early development of zebrafish. The fertilized zebrafish eggs were exposed to TCS at 0 (control), 3, 30, 100, 300, and 900 ng/mL, and the hatching rate and the larvae mortality were inspected within the first 14 days. The total triiodothyronine (TT3), total thyroxine (TT4), free triiodothyronine (FT3), and free thyroxine (FT4) were measured at 7, 14, and 120 days post-fertilization (dpf). The histopathological examinations of thyroid follicles were conducted at 120 dpf. TCS exposure at 30-300 ng/mL reduced the hatching rate of larvae to 34.5% to 28.2 % in the first 48 hours and 93.8 .7 % to 86.8 % at 72 h. Extremely high TCS exposure (900 ng/mL) strongly inhibited the hatching rate, and all the larvae died within 1 day. Exposure to TCS from 3 to 300 ng/mL reduced the thyroid hormones production. The mean TT3 and FT3 levels of zebrafish decreased in 300 ng/mL TCS at 14 dpf (300 ng/mL TCS vs. control : TT3 , 0.19 ± 0.08 vs. 0.39 ± 0.06; FT3, 19.21 ± 3.13 vs. 28.53 ± 1.98 pg/mg), and the FT4 decreased at 120 dpf ( 0.09 ± 0.04 vs. 0.20 ± 0.14 pg/mg). At 120 dpf , in the 300 ng/mL TCS exposure group, the nuclear area and the height of thyroid follicular epithelial cells became greater, and the follicle cell layer got thicker. This happened along with follicle hyperplasia, nuclear hypertrophy, and angiogenesis in the thyroid. Our study demonstrated that early life exposure to high TCS levels reduces the rate and speed of embryos hatching, and induces the histopathological change of thyroid follicle, and decreases the TT3, FT3, and FT4 production in zebrafish.


Assuntos
Triclosan , Animais , Ecossistema , Larva , Glândula Tireoide , Hormônios Tireóideos/farmacologia , Tiroxina/farmacologia , Tri-Iodotironina , Peixe-Zebra
7.
Cureus ; 13(8): e17360, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34567900

RESUMO

Struma ovarii is a very rare tumour of the ovary, which is usually benign. It is a solid cystic swelling of the ovary, which is characterised by the presence of histologically detectable thyroid tissue. Confirmatory diagnosis is usually on histopathology after resection of the tumour. It is difficult to identify struma ovarii with radiological investigations alone as it may mimic malignancy. In this case report, we present the case of a 48-year-old woman who had a total abdominal hysterectomy for an incidental finding of right adnexal mass on ultrasound scan following a 10-day history of loose stools and pain in the abdomen. It was ultimately found to be a follicular variant of papillary carcinoma in struma ovarii after a pathological examination.

8.
Endocr Connect ; 10(5): 570-578, 2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-33909590

RESUMO

BACKGROUND: Long-term maintenance of functional activity of thyroid cells is an essential requirement for basic in vitro studies on the physiology and pathology of the thyroid. An important prerequisite of thyrocytes' functional activity in vivo and in vitro is their follicle organization. AIM: This study aimed at developing a method of cultivation of functionally active rat thyroid follicles in Matrigel under three-dimensional conditions. METHODS: Undamaged rat thyroid follicles were isolated by enzymatic digestion with collagenase/dispase, then embedded into Matrigel, and cultivated for 2 weeks. Thyroglobulin, thyroxine and zonula occludens-1 (ZO-1) localization were revealed by immunofluorescence analysis. Iodide organification was tested by protein-bound 125I (PBI) measurement. RESULTS: Integrity of the follicles was preserved during the whole period of cultivation and was confirmed by 3D reconstruction of ZO-1 localization. Thyroglobulin was detected in the thyrocyte cytoplasm, as well as in the intrafollicular lumen. Thyroxine was observed predominantly at the apical side of thyrocytes. Also, generated cultures were characterized by a high level of iodide organification: PB125I represented 39% of the total radioactivity in the Matrigel drop embedding the follicles; at the same time, methimazole almost totally inhibited this process (0.2% of total radioactivity). CONCLUSION: The method of rat thyrocyte cultivation in Matrigel, as described here allows to maintain the structural integrity and the functional activity of thyroid follicles in vitro and could be used for wide ranges of basic and applied researches in thyroidology.

9.
Rev. cuba. invest. bioméd ; 39(3): e640, jul.-set. 2020. tab, graf
Artigo em Espanhol | LILACS, CUMED | ID: biblio-1138936

RESUMO

Introducción: La microscopía holográfica digital ha permitido a la microscopía óptica hacer uso de herramientas numéricas y computacionales; y esto, a su vez, ha favorecido múltiples avances en el estudio de las células y los tejidos en diferentes campos de la medicina y otras ciencias afines. Objetivo: Describir las características histológicas y morfométricas de los folículos tiroideos humanos con la microscopía holográfica digital. Métodos: Se realizó, desde el punto de vista histomorfométrico, un estudio descriptivo y transversal de folículos tiroideos humanos utilizando una instalación de microscopía holográfica digital. Se empleó la técnica de inclusión en parafina y tinción de hematoxilina-eosina para el procesamiento de las muestras. Se realizaron de 10 a 12 capturas de hologramas por muestra y el método de doble propagación para la reconstrucción de los hologramas. Se calculó el área, el perímetro, el diámetro mayor y menor de los folículos y cavidades foliculares y se realizaron reconstrucciones de imágenes holográficas en tres dimensiones. Se determinó como medida de tendencia central la media aritmética y como medida de dispersión la desviación típica o estándar. Resultados: Parámetros foliculares: área (5140,31 ± 1126,71 µm2); perímetro (2961,54 ± 71,2 µm); diámetro mayor:(921,17 ± 24,34 µm); diámetro menor: (746,67 ± 18,08 µm); altura del epitelio (7,92 ± 0,96). Cavidades foliculares: área (3686,18 ±1023,52 µm2); diámetro mayor: (698,86 ± 19,55 µm) y diámetro menor: (581,15 ± 13,82 µm). Conclusiones: Existen parámetros foliculares, determinados mediante la microscopía holográfica digital, no reportados por la literatura consultada, que resultan de interés en el estudio histológico de los folículos tiroideos humanos(AU)


Introduction: Digital holographic microscopy has made it possible to incorporate the use of numerical and computer tools into optical microscopy. This in turn has led to great progress in the study of cells and tissues in several fields of medicine and related sciences. Objective: Describe the histological and morphometric characteristics of human thyroid follicles using digital holographic microscopy. Methods: A descriptive cross-sectional histomorphometric study was conducted of human thyroid follicles using a digital holographic microscopy facility. Sample processing was based on inclusion technique by paraffin and hematoxylin-eosin staining. Ten to twelve holographic captures were made per sample, and the double propagation method was used for holographic reconstruction. Estimation was carried out of the area, perimeter, and greatest and smallest diameter of follicles and follicular cavities, and tri-dimensional reconstructions were made of holographic images. Arithmetic mean was determined as the measure of central tendency, and typical or standard deviation as the measure of dispersion. Results: Follicular parameters: area (5 140.31 ± 1 126.71 µm2); perimeter (2 961.54 ± 71.2 µm); greatest diameter (921.17 ± 24.34 µm); smallest diameter (746.67 ± 18.08 µm); epithelial height (7.92 ± 0.96). Follicular cavities: area (3 686.18 ± 1 023.52 µm2); greatest diameter (698.86 ± 19.55 µm); smallest diameter (581.15 ± 13.82 µm). Conclusions: A number of follicular parameters determined by digital holographic microscopy have not been reported by the literature consulted, and they are of interest to the histological study of human thyroid follicles(AU)


Assuntos
Humanos , Computadores , Holografia/métodos , Hematoxilina/uso terapêutico , Glândula Tireoide/fisiologia , Amarelo de Eosina-(YS)
10.
Endocr J ; 67(2): 231-240, 2020 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-31748432

RESUMO

Exposure to ionized radiation in childhood has been recognized as a risk factor for the development of thyroid cancer and possibly for other thyroid disorders. However, the effects of neonatal radiation exposure on thyroid morphology and functions have never been explored despite its potential importance. One-week-old male Wistar rats were subjected to cervical X-irradiation at 6 and 12 Gy. Animals were examined at the ages of 2, 8 and 18 weeks old. For comparison, 8-week-old rats were cervically X-irradiated at the same doses. Thyroid histology was examined by computer-assisted microscopy to measure areas of colloid and epithelium of thyroid follicles as well as epithelial heights. In rats that received cervical X-irradiation at 1 week old, the colloid size of thyroid follicles decreased at the age of 8 weeks old in a radiation-dose dependent manner. This morphological change was persistently found at 18 weeks old. There were no significant differences in serum total T3 or T4 levels among the groups. Serum TSH levels increased significantly in 8-week-old rats neonatally X-irradiated. Thyroglobulin (Tg) mRNA and protein expressions were significantly decreased in the neonatally-irradiated group while thyroid peroxidase mRNA express increased at 18 weeks old. None of these changes were observed in the rats X-irradiated at 8 weeks old. In conclusion, our results clearly demonstrated that neonatal rat thyroid was sensitive to ionized radiation, developing specific morphological changes characterized by smaller thyroid follicles along with changes in serum TSH levels and Tg expressions in the thyroid tissue.


Assuntos
Iodeto Peroxidase/efeitos da radiação , Tireoglobulina/efeitos da radiação , Glândula Tireoide/efeitos da radiação , Tireotropina/efeitos da radiação , Tiroxina/efeitos da radiação , Tri-Iodotironina/efeitos da radiação , Raios X , Fatores Etários , Animais , Animais Recém-Nascidos , Western Blotting , Relação Dose-Resposta à Radiação , Iodeto Peroxidase/genética , Iodeto Peroxidase/metabolismo , Masculino , Pescoço , RNA Mensageiro/metabolismo , RNA Mensageiro/efeitos da radiação , Doses de Radiação , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tireoglobulina/genética , Tireoglobulina/metabolismo , Glândula Tireoide/metabolismo , Glândula Tireoide/patologia , Tireotropina/metabolismo , Tiroxina/metabolismo , Tri-Iodotironina/metabolismo
11.
J Mol Endocrinol ; 63(4): 261-271, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31525728

RESUMO

The follicles are the minimal functional unit of the thyroid; the morphology and the function of each follicle can vary significantly. However, the reasons for the apparent follicular heterogeneity are poorly understood. Some tissue-resident regulatory T cells (Tregs) have a special phenotype that expresses unique molecules related to local tissue and regulates the tissue functions. The aim of this study was to identify the phenotype of thyroid Tregs and the roles of thyroid Tregs in thyroid physiological regulation. Thyroid tissue and peripheral blood samples were obtained from patients with benign thyroid nodules. Microarray-based gene expression, flow cytometry, immunofluorescence microscopy, and functional analysis of thyroid Tregs were performed. Here, we demonstrated that human thyroid Tregs expressed high level of thyroglobulin (Tg), both gene and protein. The immunofluorescence microscopy of thyroid section showed that the FOXP3+Tg+ cells concentrated in some of the thyroid follicles, at the side of the thyroid follicle. The peripheral blood Tregs expressed minimal levels of Tg, and low levels of Tg could effectively induce peripheral blood Tregs to express Tg, which was independent of thyrotropin simulation. Furthermore, the Tg secreted freely from thyroid Tregs that negatively regulated some thyroid-related genes expression. Our results revealed that the thyroid Tregs was a distinct population of Tregs, which expressed high level of Tg. The thyroid Tregs regulate thyroid function by Tg that is paracrine from the cells.


Assuntos
Expressão Gênica , Linfócitos T Reguladores/metabolismo , Tireoglobulina/genética , Glândula Tireoide/metabolismo , Adulto , Idoso , Animais , Citometria de Fluxo , Imunofluorescência , Perfilação da Expressão Gênica , Humanos , Imunomodulação , Masculino , Pessoa de Meia-Idade , Linfócitos T Reguladores/imunologia , Tireoglobulina/metabolismo , Testes de Função Tireóidea , Glândula Tireoide/imunologia , Glândula Tireoide/patologia , Nódulo da Glândula Tireoide/diagnóstico por imagem , Nódulo da Glândula Tireoide/genética , Nódulo da Glândula Tireoide/metabolismo , Nódulo da Glândula Tireoide/patologia , Adulto Jovem
12.
Adv Exp Med Biol ; 1169: 81-93, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31487020

RESUMO

Identification of thyroid stem cells in the past few years has made important contributions to our understanding of the cellular and molecular mechanisms that induce tissue regeneration and repair. Embryonic stem (ES) cells and induced-pluripotent stem cells have been used to establish reliable protocols to obtain mature thyrocytes and functional follicles for the treatment of thyroid diseases in mice. In addition, the discovery of resident thyroid progenitor cells, along with other sources of stem cells, has defined in detail the mechanisms responsible for tissue repair upon moderate or severe organ injury.In this chapter, we highlight in detail the current state of research on thyroid stem cells by focusing on (1) the description of the first experiments performed to obtain thyroid follicles from embryonic stem cells, (2) the identification of resident stem cells in the thyroid gland, and (3) the definition of the current translational in vivo and in vitro models used for thyroid tissue repair and regeneration.


Assuntos
Células-Tronco Embrionárias , Glândula Tireoide , Animais , Diferenciação Celular , Células-Tronco Embrionárias/citologia , Humanos , Camundongos , Pesquisa/tendências , Glândula Tireoide/citologia
13.
Expert Rev Clin Pharmacol ; 9(8): 1057-67, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27137849

RESUMO

INTRODUCTION: Hypothyroidism is currently a condition that can be treated, but not cured. Although levothyroxine reverses stigmata of hypothyroidism in most individuals, some patients feel dissatisfied with 'monotherapy', and this has stimulated interest in 'combination therapy' with both levothyroxine and liothyronine. AREAS COVERED: A search of PubMed was conducted using terms including hypothyroidism, treatment, benefits, risks, and safety. Based on the articles identified, the body of evidence regarding the efficacy of traditional levothyroxine is reviewed. Concerns with levothyroxine therapy including impaired quality of life in treated patients, thyroxine-predominant hormone ratios, and inadvertent iatrogenic thyroid disease are discussed. The trials of combination therapy performed since 1999 were reviewed. The heterogeneity of these trials, both in terms of design and results, is discussed. The potential for new trials to determine whether combination therapy can reverse the dissatisfaction associated with monotherapy, while avoiding non-physiologic hormone ratios, inadvertent thyrotoxicosis, and unacceptable side effects is discussed. Expert commentary: Research regarding which therapy fully reverses hypothyroidism at a tissue and cellular level is ongoing. The field would be advanced by the development of an extended release preparation of liothyronine. In the future regeneration of functional thyroid follicles from stem cells may offer hope for curing hypothyroidism.


Assuntos
Hipotireoidismo/tratamento farmacológico , Tiroxina/administração & dosagem , Tri-Iodotironina/administração & dosagem , Animais , Quimioterapia Combinada , Terapia de Reposição Hormonal/métodos , Humanos , Hipotireoidismo/fisiopatologia , Qualidade de Vida , Tiroxina/uso terapêutico , Tri-Iodotironina/uso terapêutico
14.
J Morphol ; 277(7): 853-65, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27027779

RESUMO

The morphological characteristics of the venous pole and pericardium of the heart were examined in three hagfish species, Myxine glutinosa, Eptatretus stoutii, and Eptatretus cirrhatus. In these species, the atrioventricular (AV) canal is long, funnel-shaped and contains small amounts of myocardium. The AV valve is formed by two pocket-like leaflets that lack a papillary system. The atrial wall is formed by interconnected muscle trabeculae and a well-defined collagenous system. The sinus venosus (SV) shows a collagenous wall and is connected to the left side of the atrium. An abrupt collagen-muscle boundary marks the SV-atrium transition. It is hypothesized that the SV is not homologous to that of other vertebrates which could have important implications for understanding heart evolution. In M. glutinosa and E. stoutii, the pericardium is a closed bag that hangs from the tissues dorsal to the heart and encloses both the heart and the ventral aorta. In contrast, the pericardium is continuous with the loose periaortic tissue in E. cirrhatus. In all three species, the pericardium ends at the level of the SV excluding most of the atrium from the pericardial cavity. In M. glutinosa and E. stoutii, connective bridges extend between the base of the aorta and the ventricular wall. In E. cirrhatus, the connections between the periaortic tissue and the ventricle may carry blood vessels that reach the ventricular base. A further difference specific to E. cirrhatus is that the adipose tissue associated with the pericardium contains thyroid follicles. J. Morphol. 277:853-865, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Feiticeiras (Peixe)/anatomia & histologia , Pericárdio/anatomia & histologia , Animais , Aorta/anatomia & histologia , Átrios do Coração/anatomia & histologia , Ventrículos do Coração/anatomia & histologia , Veias/anatomia & histologia
15.
PeerJ ; 1: e20, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23638355

RESUMO

Copepods as feed promote better growth and development in marine fish larvae than rotifers. However, unlike rotifers, copepods contain several minerals such as iodine (I), at potentially toxic levels. Iodine is an essential trace element and both under and over supply of I can inhibit the production of the I containing thyroid hormones. It is unknown whether marine fish larvae require copepod levels of I or if mechanisms are present that prevent I toxicity. In this study, larval Atlantic cod (Gadus morhua) were fed rotifers enriched to intermediate (26 mg I kg(-1) dry weight; MI group) or copepod (129 mg I kg(-1) DW; HI group) I levels and compared to cod larvae fed control rotifers (0.6 mg I kg(-1) DW). Larval I concentrations were increased by 3 (MI) and 7 (HI) fold compared to controls during the rotifer feeding period. No differences in growth were observed, but the HI diet increased thyroid follicle colloid to epithelium ratios, and affected the essential element concentrations of larvae compared to the other groups. The thyroid follicle morphology in the HI larvae is typical of colloid goitre, a condition resulting from excessive I intake, even though whole body I levels were below those found previously in copepod fed cod larvae. This is the first observation of dietary induced I toxicity in fish, and suggests I toxicity may be determined to a greater extent by bioavailability and nutrient interactions than by total body I concentrations in fish larvae. Rotifers with 0.6 mg I kg(-1) DW appeared sufficient to prevent gross signs of I deficiency in cod larvae reared with continuous water exchange, while modelling of cod larvae versus rotifer I levels suggests that optimum I levels in rotifers for cod larvae is 3.5 mg I kg(-1) DW.

16.
Diagn Cytopathol ; 41(9): 812-6, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22144175

RESUMO

Primary strumal carcinoid tumor of the ovary (SCTO) is an extremely rare entity, though the survival rate is excellent if the disease is confined to one ovary. A case is presented here in which intraoperative squash smears in a 45-year-old woman with a left adnexal mass revealed dispersed or small clusters of neoplastic cells forming loosely cohesive gland-like structures with abundant cytoplasm. The nuclear chromatin was finely granular with a "salt and pepper" appearance and occasional tiny nucleoli. The position of the nucleus presented a vaguely plasmacytoid appearance. Small fragments of thyroidal colloid-like structures were also identified. A cytopathologic diagnosis of a SCTO was suggested. Further evaluation and immunohistochemical studies were conducted on formalin-fixed, paraffin-embedded material. Cords or nests of uniform cells with abundant cytoplasm, and eccentric nuclei with coarse chromatin and occasional colloidal tissue were identified on H&E sections. The tumor cells showed diffuse and strong cytoplasmic staining for chromogranin A, synaptophysin, CD56, and vimentin but were negative for calretinin, α-inhibin or CDX2. The proliferative index with MIB-1 was around 3%. Thyroidal colloid-like structures were immunoreactive for thyroglobulin and TTF-1 stains. The diagnosis of primary SCTO was confirmed based on cytopathologic, histopathological, and immunohistochemical results, and the location of the tumor. Awareness of the cytopathological findings of SCTO can assist in diagnosing this rare entity correctly.


Assuntos
Tumor Carcinoide/diagnóstico , Tumor Carcinoide/patologia , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/patologia , Ovário/patologia , Basófilos/patologia , Cromatina/metabolismo , Diagnóstico Diferencial , Feminino , Humanos , Imuno-Histoquímica , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA