Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(18): e37390, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39309837

RESUMO

This study investigates the influence of cobalt (Co) alloying addition and heat treatment temperature on the phase transformation behaviour controlling the superelasticity and shape memory effect (SME) of Nickel-Titanium (Ni-Ti) alloys, commonly known as nitinol. The microstructural evolution upon heat treatment conducted at a temperature ranging from 440 to 560 °C was thoroughly analyzed via Differential Scanning Calorimetry (DSC), X-ray Diffraction (XRD), and Scanning Electron Microscopy/Energy Dispersive Spectroscopy (SEM/EDS). Increase in heat treatment temperatures from 470 °C up to 530 °C led to the dissolution of particles present in as-received (cold-worked) condition. It was determined that Co addition into the Ni-Ti alloy system resulted in a change in the nucleation and growth kinetics of Ti-rich precipitates, leading to the formation of larger and fewer particles during processing. Both binary and ternary alloys showed a decrease in austenite finish temperature (Af) with increasing heat treatment temperatures, however, the rate of decrease was found to be higher for Co containing ternary alloys. This is linked with faster structural relaxation when Co is present and evidenced by lattice size variation during heat treatment. It is highlighted that heat treatment methodology needs to be tailored to the specific alloy composition for controlling superelasticity and SME via alloy design.

2.
Materials (Basel) ; 17(12)2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38930202

RESUMO

In industrial production, the deformation inhomogeneity after metal forging affects the mechanical properties of various parts of the forgings. The question of whether the organization and mechanical properties of ß-titanium alloy can be improved by controlling the amount of forging deformation needs to be answered. Therefore, in this paper, a new sub-stable ß-Ti alloy TB 18 (Ti-5.3Cr-4.9Mo4.9V-4.3Al-0.9Nb-0.3Fe) was subjected to three different levels of deformation, as well as solid solution-aging treatments, and the variation rules of microstructure and mechanical properties were investigated. During the solid solution process, the texture evolution pattern of the TB18 alloy at low deformation (20-40%) is mainly rotational cubic texture deviated into α-fiber texture; at high deformation (60%), the main components of the deformed texture are α-fiber texture with a specific orientation of (114)<113-3>. After subsequent static recrystallization, the α-fiber texture is deviated to an α*-fiber texture, while the specific orientation (114)<113-3> can still be inherited as a major component of the recrystallized texture. The plasticity of the alloy in the normal direction (ND) after the solid solution is influenced by the existence of the <110>//ND texture, and the plasticity of the alloy in the ND direction after aging is determined by a combination of the volume fraction of the <110>//ND texture in the matrix phase and the volume fraction of [112-0]α//ND in the α phase. The results show that it is feasible to change the characteristics of the recrystallization texture of TB18 by controlling the deformation level of hot forging, thus realizing the modulation of the mechanical properties.

3.
ACS Biomater Sci Eng ; 10(6): 3528-3547, 2024 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-38722763

RESUMO

Over the past few years, significant research and development in the manufacturing industry related to the medical field has been done. The aim has been to improve existing biomaterials and bioimplants by exploring new methods and strategies. Beta titanium alloys, known for their exceptional strength-to-modulus ratio, corrosion resistance, biocompatibility, and ease of shaping, are expected to play a crucial role in manufacturing the next generation of biomedical equipment. To meet the specific requirements of human bone, researchers have employed key techniques like compositional design and thermomechanical processing routes to advance biomaterial development. These materials find extensive applications in orthopedic, orthodontic, and cardiovascular biomedical implants. Several studies have shown that precise material composition, with appropriate heat treatment and suitable mechanical approaches, can yield the desired mechanical properties for bone implants. In this review article, we explore the evolution of alloys at different stages, with a particular focus on their preparation for use in biomedical implants. The primary focus is on designing low-modulus ß Ti alloy compositions and employing processing techniques to achieve high strength while maintaining a low young modulus suitable for biomedical applications.


Assuntos
Ligas , Materiais Biocompatíveis , Titânio , Ligas/química , Materiais Biocompatíveis/química , Teste de Materiais , Próteses e Implantes , Titânio/química
4.
Biomater Adv ; 158: 213774, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38237321

RESUMO

Ni-free Ti-based Shape Memory Alloys composed of non-toxic elements have been studied as promising candidates for biomedical applications. However, high tool wear makes them complex to manufacture with conventional techniques. In this way, Additive Manufacturing technologies allow to fabricate complex three-dimensional structures overcoming their poor workability. Control of composition, porosity, microstructure, texture and processing are the key challenges for developing Ni-free Ti-based Shape Memory Alloys. This article reviews various studies conducted on the Additive Manufacturing of Ni-free Ti-based shape memory alloys, including their processing, microstructures and properties.


Assuntos
Níquel , Ligas de Memória da Forma , Titânio , Comércio , Porosidade
5.
Acta Biomater ; 175: 411-421, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38135205

RESUMO

Due to their outstanding elastic limit, biocompatible Ti-based bulk metallic glasses (BMGs) are candidate materials to decrease the size of medical implants and therefore reduce their invasiveness. However, the practical use of classical Ti-BMGs in medical applications is in part hindered by their high copper content: more effort is thus required to design low-copper Ti-BMGs. In this work, in line with current rise in AI-driven tools, machine learning (ML) approaches, a neural-network ML model is used to explore the glass-forming ability (GFA) of unreported low-copper compositions within the biocompatible Ti-Zr-Cu-Pd system. Two types of models are trained and compared: one based on the alloy composition only, and a second based on various features derived from the alloying elements. Contrary to expectation, the predictive power of both models in evaluating GFA is similar. The compositional space identified by ML as promising is experimentally assessed, finding unfortunately low GFA. These results indicate that the ML approach may be premature for specific composition tuning of amorphous metallic materials. We emphasise that the development of ML tools in GFA prediction requires an improvement of the dataset, in terms of homogeneity, size and GFA descriptors, which must be supported by increased reporting of high-quality experimental GFA measurements, both positive and negative. STATEMENT OF SIGNIFICANCE: Biocompatible Ti-based bulk metallic glasses (BMGs) are candidate materials for use in the next generation of minimally invasive dental implants where improved mechanical properties, such as high strength are required. Despite promising in vitro/vivo evaluations, implementation of alloys for practical applications is partly hindered by the presence of copper as the main alloying element. Recent studies have presented AI-guided and machine learning strategies as appealing approaches to understand and describe the glass forming ability (GFA) of BMG-forming compositions. In this work, we employ and evaluate the capacity of a machine-learning model to explore low-copper compositional spaces in the biocompatible Ti-Zr-Cu-Pd system. Our results highlight the limits of such a computational approach and suggest improvements for future designing routes.


Assuntos
Cobre , Titânio , Vidro , Ligas , Próteses e Implantes , Materiais Biocompatíveis
6.
ACS Biomater Sci Eng ; 9(12): 6935-6946, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37941371

RESUMO

ß-Type Ti alloys have been widely investigated as implant materials owing to their excellent mechanical properties, corrosion resistance, and biocompatibility. In the present work, the effects of Zr on the microstructure, mechanical properties, and corrosion behaviors of Ti-Zr-Mo-Mn alloys were systematically studied. With the increase of Zr content, the phase composition gradually changed from intragranular-α + ß of (TZ)5:1MM alloy to grain-boundary-α + ß of (TZ)2:1MM alloy and finally transferred to a single ß phase structure of (TZ)1:1MM alloy. The (TZ)1:1MM alloy exhibited a good mechanical combination with a yield strength of 750.8 MPa, an elastic modulus of 61.3 GPa, and a tensile ductility of 14.6%. Moreover, the addition of Zr can effectively stabilize the passivation film and reduce the sensitivity of microgalvanic corrosion in simulated body fluid, leading to enhanced corrosion resistance in the TZMM alloys. X-ray photoelectron spectroscopy analysis together with the ion-sputtering technique revealed that the passivation films formed on TZMM alloys possessed a bilayered structure (outer Ti+Zr mixed-oxide layer and inner Zr-oxide-rich layer), in which the inner Zr oxide layer plays an important role in the corrosion resistance of the TZMM alloys. In vitro biocompatibility evaluations demonstrated that the TZMM alloys can support cell adhesion and proliferation with high biocompatibility comparable to that of CP-Ti, while in vivo biocompatibility evaluations validated the bone osteointegration ability of TZMM alloys after long-term implantation. The above results indicate that novel TZMM alloys are promising candidates for implant material.


Assuntos
Materiais Biocompatíveis , Titânio , Teste de Materiais , Corrosão , Ligas/química , Óxidos
7.
Materials (Basel) ; 16(21)2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37959643

RESUMO

ß-Ti alloys have long been investigated and applied in the biomedical field due to their exceptional mechanical properties, ductility, and corrosion resistance. Metastable ß-Ti alloys have garnered interest in the realm of biomaterials owing to their notably low elastic modulus. Nevertheless, the inherent correlation between a low elastic modulus and relatively reduced strength persists, even in the case of metastable ß-Ti alloys. Enhancing the strength of alloys contributes to improving their fatigue resistance, thereby preventing an implant material from failure in clinical usage. Recently, a series of biomedical high-entropy and medium-entropy alloys, composed of biocompatible elements such as Ti, Zr, Nb, Ta, and Mo, have been developed. Leveraging the contributions of the four core effects of high-entropy alloys, both biomedical high-entropy and medium-entropy alloys exhibit excellent mechanical strength, corrosion resistance, and biocompatibility, albeit accompanied by an elevated elastic modulus. To satisfy the demands of biomedical implants, researchers have sought to synthesize the strengths of high-entropy alloys and metastable ß-Ti alloys, culminating in the development of metastable high-entropy/medium-entropy alloys that manifest both high strength and a low elastic modulus. Consequently, the design principles for new-generation biomedical medium-entropy alloys and conventional metastable ß-Ti alloys can be converged. This review focuses on the design from ß-Ti alloys to the novel metastable medium-entropy alloys for biomedical applications.

8.
Materials (Basel) ; 16(17)2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37687762

RESUMO

The accurate prediction of alloying effects on the martensitic transition temperature (Ms) is still a big challenge. To investigate the composition-dependent lattice deformation strain and the Ms upon the ß to α″ phase transition, we calculate the total energies and transformation strains for two selected Ti-Nb-Al and Ti-Nb-Ta ternaries employing a first-principles method. The adopted approach accurately estimates the alloying effect on lattice strain and the Ms by comparing it with the available measurements. The largest elongation and the largest compression due to the lattice strain occur along ±[011]ß and ±[100]ß, respectively. As compared to the overestimation of the Ms from existing empirical relationships, an improved Ms estimation can be realized using our proposed empirical relation by associating the measured Ms with the energy difference between the ß and α″ phases. There is a satisfactory agreement between the predicted and measured Ms, implying that the proposed empirical relation could accurately describe the coupling alloying effect on Ms. Both Al and Ta strongly decrease the Ms, which is in line with the available observations. A correlation between the Ms and elastic modulus, C44, is found, implying that elastic moduli may be regarded as a prefactor of composition-dependent Ms. This work sheds deep light on precisely and directly predicting the Ms of Ti-containing alloys from the first-principles method.

9.
Materials (Basel) ; 16(13)2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37444840

RESUMO

The phase stability, mechanical properties, and functional properties of Ti-5.5Al-11.8[Mo]eq alloys are focused on in this study by substituting 3d transition metal elements (V, Cr, Co, and Ni) for Mo as ß-stabilizers to achieve similar ß phase stability and room temperature (RT) superelasticity. The ternary alloy systems with the equivalent chemical compositions of Ti-5.5Al-17.7V, Ti-5.5Al-9.5Cr, Ti-5.5Al-7.0Co, and Ti-5.5Al-9.5Ni (mass%) alloys were selected as the target materials based on the Mo equivalent formula, which has been applied for the Ti-5.5Al-11.8Mo alloy in the literature. The fundamental mechanical properties and functionalities of the selected alloys were examined. The ß phase was stabilized at RT in all alloys except for the Ti-Al-V alloy. Among all alloys, the Ti-Al-Ni alloy exhibited superelasticity in the cyclic loading-unloading tensile tests at RT. As a result, similar to the Ti-5.5Al-11.8Mo mother alloy, by utilizing the Mo equivalent formula to substitute 3d transition metal elements for Mo, a RT superelasticity was successfully imposed.

10.
J Mech Behav Biomed Mater ; 140: 105728, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36827933

RESUMO

This work aims to investigate the structural, mechanical and electronic properties of four novel ß-type (100-x)(Ti-45Nb)-xGa alloys (x = 2, 4, 6, 8 wt%) for implant applications by means of experimental and theoretical (ab initio) methods. All alloys retain the bcc ß phase in the solution-treated and quenched state while the lattice parameter decreases with increase in Ga content. This is due to its smaller atomic radius compared to Ti and Nb, in line with the present density functional theory (DFT) calculations. Tensile and microhardness tests indicate a clear strengthening effect with increasing Ga content, with yield strengths in the range 551 ÷ 681 MPa and microhardness in the range 174 ÷ 232 HV0.1, mainly attributed to grain refinement and solid solution strengthening. Ga also positively affects ductility, with a maximum value of tensile strain at fracture of 32%. Non-destructive ultrasonic measurements and DFT calculations reveal that the bulk modulus is unaffected by the Ga presence. This phenomenon might be due to the fact that Ga introduced bonding and anti-bonding electron low energy states which balance the average bond strength among the atoms in the metallic matrix. Nevertheless, the introduction of new Ga-Ti super sp-like bonding orbitals along the [110] and [-110] directions in the Ga neighborhood could explain the increase of the Young's modulus upon Ga addition (73 ÷ 82.5 GPa) that was found experimentally in the present work. Hence, Ga addition to Ti-45Nb leads to a suitable balance between increased strength and low Young's modulus.


Assuntos
Ligas , Titânio , Ligas/química , Titânio/química , Módulo de Elasticidade , Próteses e Implantes , Resistência à Tração
11.
Molecules ; 28(3)2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36770749

RESUMO

The hydrogen/deuterium sorption properties of Ni33Ti39Nb28 synthesized by the vacuum induction melting technique were measured between 400 and 495 °C for pressure lower than 3 bar. The Sieverts law is valid up to H(D)/M < 0.2 in its ideal form; the absolute values of the hydrogenation/deuteration enthalpy are ΔH(H2) = 85 ± 5 kJ/mol and ΔH(D2) = 84 ± 4 kJ/mol. From the kinetics of absorption, the diffusion coefficient was derived, and an Arrhenius dependence from the temperature was obtained, with Ea,d = 12 ± 1 kJ/mol for both hydrogen isotopes. The values of the alloy permeability, obtained by combining the solubility and the diffusion coefficient, were of the order of 10-9 mol m-1 s-1 Pa-0.5, a value which is one order of magnitude lower than that of Ni41Ti42Nb17, until now the best Ni-Ti-Nb alloy for hydrogen purification. In view of the simplicity of the technique here proposed to calculate the permeability, this method could be used for the preliminary screening of new alloys.

12.
Waste Manag ; 157: 36-46, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36521299

RESUMO

The industrial wastes diamond wire saw silicon powder (DWSSP) and Ti-bearing blast furnace slag (TBFS) are important Si and Ti secondary resources, respectively. During the industrial application of recycling DWSSP and TBFS via reduction smelting, the refractories can dissolve into the molten slag, which can change the composition of the slag and influence the extraction of Si and Ti. Unfortunately, few studies on the reduction smelting of DWSSP and TBFS related to refractories have been reported, making such studies urgently needed. Therefore, the main purpose of this work was to reveal the dissolution mechanism of refractories (alumina and magnesia bricks) and the effect of refractory dissolution on Si-Ti alloy preparation. The results show that during the reduction smelting, the dissolution of alumina and magnesia bricks changed from direct dissolution into the molten slag to indirect dissolution, and the amount of magnesia bricks dissolved was less than that of aluminum bricks. Al3+ (aluminum brick) entering the slag could replace Si4+ in [SinO2n] to form [AlxSin-xO2n]x-, increasing the viscosity of the slag. The O2- (magnesia brick) entering the slag could dissociate [AlxSin-xO2n]x-, decreasing the viscosity of the slag. Therefore, compared with alumina bricks, magnesia bricks can promote slag-alloy separation and improve the extraction ratios of Ti and Si. In the case of magnesia bricks, the maximum reduction ratio of TiO2 was 98.4 %, and the maximum extraction ratio of Si was 95.8 %. This work provides essential experimental data for the Si-Ti alloys prepared via recycling DWSSP and TBFS.


Assuntos
Silício , Titânio , Pós , Óxido de Magnésio , Alumínio , Diamante , Ligas , Óxido de Alumínio
13.
ACS Appl Mater Interfaces ; 14(42): 48091-48105, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36222465

RESUMO

Due to their excellent biocompatibility, outstanding mechanical properties, high strength-to-weight ratio, and good corrosion resistance, titanium (Ti) alloys are extensively used as implant materials in artificial joints. However, Ti alloys suffer from poor wear resistance, resulting in a considerably short lifetime. In this study, we demonstrate that the chemical self-assembly of novel two-dimensional (2D) diamond nanosheet coatings on Ti alloys combined with natural silk fibroin used as a novel lubricating fluid synergistically results in excellent friction and wear performance. Linear-reciprocating sliding tests verify that the coefficient of friction and the wear rate of the diamond nanosheet coating under silk fibroin lubrication are reduced by 54 and 98%, respectively, compared to those of the uncoated Ti alloy under water lubrication. The lubricating mechanism of the newly designed system was revealed by a detailed analysis of the involved microstructural and chemical changes. The outstanding tribological behavior was attributed to the establishment of artificial joint lubrication induced by the cross binding between the diamond nanosheets and silk fibroin. Additionally, excellent biocompatibility of the lubricating system was verified by cell viability, which altogether paves the way for the application of diamond coatings in artificial Ti joint implants.


Assuntos
Fibroínas , Fibroínas/química , Diamante , Titânio/química , Teste de Materiais , Ligas/química , Corrosão , Água , Propriedades de Superfície
14.
Saudi Dent J ; 34(5): 335-345, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35814840

RESUMO

Objective: A critical analysis of the existing literature to answer "What is the influence of electrical charge of titanium alloys in the electrical interaction with osteoblastic cells for osseointegration?". Design: This systematic review followed PRISMA. The personalized search strategy was applied in PubMed, Science Direct, Embase, and Scopus databases, furthermore, in the grey literature in the Google Scholar and ProQuest. The selection process was carried out in two stages independently by two reviewers according to the eligibility criteria. The risk of bias was also analyzed. Results: When applying the search strategy, 306 articles were found, after removing duplicates 277 were analyzed by title and abstract, of which 33 were selected for full reading, of which 10 met the eligibility criteria. And one was included from the additional literature search. Of these, all had a low risk of bias. Conclusions: 1. The phenomenon of osseointegration is complex and, independent of the superficial electrical charge of the implant, it may occur. To understand osseointegration, attention must be paid to the synergistic action of the electrical potential; chemical composition, intrinsic to the alloy and from surface treatment; and topography, which will determine the speed of adhesion, proliferation, and osteoblast differentiation. 2. The presence of Ca2+ deposited on the surface acts as a driving force for biomineralization that induces osteoblastic attraction and differentiation; 3. For a better understanding of the current literature, more studies are needed to describe the osteogenic regulation process through protein mediation; 4. Topography and chemical composition act as decisive parameters for cell viability independent of the attractive electrical charge.

15.
Materials (Basel) ; 15(12)2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35744127

RESUMO

In this study, high strain rate tension tests are conducted to determine and compare the dynamic mechanical behaviors and deformation mechanisms of different phase composition α-ß metastable ß-Ti alloys using a split Hopkinson tension bar. Two typical bimodal equiaxed αp + ß and lamellar αs + ß Ti-45551 alloy microstructures are formed through different hot working and thermal processing for investigating the effect of phase composition or microstructure on mechanical properties and strain rate sensitivity. It is demonstrated that dislocation nucleation and motion in the α/ß phase and dislocation tangle or pile up at the α/ß interface are typical deformation modes in both of the typical dual-phase Ti alloys at quasi-static loading conditions. Under dynamic loading, both the strength and ductility show a clearly positive strain rate dependence, which is directly related to dislocation activation in the α + ß Ti-45551 alloy. Based on microstructure characterizations, it is shown that deformation twinning starts to become a major deformation mechanism in equiaxed αp + ß microstructures under dynamic loading conditions. However, deformation twins are not favored in the lamellar αs + ß Ti-45551 alloy due to its nano phase size. Finally, the mechanical behaviors and strain rate sensitivity are strongly dependent on the phase composition of metastable ß-Ti alloys.

16.
Materials (Basel) ; 15(12)2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35744194

RESUMO

This paper discusses the features of ω-phase formation and its thermal stability depending on the phase composition, alloying element and the grain size of the initial microstructure of Ti-Nb and Ti-Mo alloys subjected to high-pressure torsion (HPT) deformation. In the case of two-phase Ti-3wt.% Nb and Ti-20wt.% Nb alloys with different volume fractions of α- and ß-phases, a complete ß→ω phase transformation and partial α→ω transformation were found. The dependence of the α→ω transformation on the concentration of the alloying element was determined: the greater content of Nb in the α-phase, the lower the amount of ω-phase that was formed from it. In the case of single-phase Ti-Mo alloys, it was found that the amount of ω-phase formed from the coarse-grained ß-phase of the Ti-18wt.% Mo alloy was less than the amount of the ω-phase formed from the fine α'-martensite of the Ti-2wt.% Mo alloy. This was despite the fact that the ω-phase is easier to form from the ß-phase than from the α- or α'-phase. It is possible that the grain size of the microstructure also affected the phase transformation, namely, the fine martensitic plates more easily gain deformation and overcome the critical shear stresses necessary for the phase transformation. It was also found that the thermal stability of the ω-phase in the Ti-Nb and Ti-Mo alloys increased with the increasing concentration of Nb or Mo.

17.
Gels ; 8(5)2022 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-35621621

RESUMO

Metallic materials such as stainless steel (SS), titanium (Ti), magnesium (Mg) alloys, and cobalt-chromium (Co-Cr) alloys are widely used as biomaterials for implant applications. Metallic implants sometimes fail in surgeries due to inadequate biocompatibility, faster degradation rate (Mg-based alloys), inflammatory response, infections, inertness (SS, Ti, and Co-Cr alloys), lower corrosion resistance, elastic modulus mismatch, excessive wear, and shielding stress. Therefore, to address this problem, it is necessary to develop a method to improve the biofunctionalization of metallic implant surfaces by changing the materials' surface and morphology without altering the mechanical properties of metallic implants. Among various methods, surface modification on metallic surfaces by applying coatings is an effective way to improve implant material performance. In this review, we discuss the recent developments in ceramics, polymers, and metallic materials used for implant applications. Their biocompatibility is also discussed. The recent trends in coatings for biomedical implants, applications, and their future directions were also discussed in detail.

18.
Materials (Basel) ; 15(10)2022 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-35629559

RESUMO

The aim of the present study is to investigate the role of Ti on corrosion and the wear properties of Mg-5Sn-xTi (x = 0, 0.15, 0.75, 1.5 wt.%) alloys. The samples were fabricated by conventional casting followed by hot extrusion, and the studies were examined by means of a pin-on-disc tribometer at various loads of 6, 10, and 20 N with constant sliding velocities of 0.04 m/s at ambient temperature. The corrosion performance, using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS), was studied in a basic solution containing 3.5 wt.% NaCl. The observation indicated a drop in the wear rate with an increase in Ti, while the average coefficient of friction was raised in higher Ti contents compared to the base material. The sample with 0.75 wt.% Ti exhibited superior wear properties at 6 and 10 N of normal force, while the sample with 0.15 wt.% Ti presented better wear resistance for 20 N. Electrochemical test observations demonstrated that the Ti deteriorated the corrosion features of the Mg-5Sn alloy, owing to the galvanic effects of Ti. The Mg-5Sn alloy exhibited excellent corrosion behavior (corrosion potential (Ecorr) = -1.45V and current density (Icorr) = 43.92 A/cm2). The results indicated the significant role of Ti content in modulating wear and corrosion resistance of the Mg-5Sn alloy.

19.
ACS Biomater Sci Eng ; 8(5): 1816-1828, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35452579

RESUMO

A novel multifunctional material was developed by hard TiN particle reinforcement addition to a ß-type Ti40Nb alloy, followed by surface functionalization, yielding the formation of a nanotubular layer. Corrosion and tribocorrosion behaviors were investigated in a phosphate-buffered saline solution at body temperature. The results revealed that the Ti40Nb-TiN composites presented similar ipass and E(i=0) values together with relatively similar Rox and Cox. However, its tribocorrosion resistance drastically improved (wear volume is almost 15 times lower than an unreinforced alloy) as a consequence of the load-carrying effect given by the reinforcement phases. The corrosion and tribocorrosion behaviors were further improved through surface functionalization as observed by significantly lower ipass and higher Rox values and almost undetectable wear volume loss from tribocorrosion tests due to the formation of a well-adhered anatase-rutile TiO2-based nanotubular layer.


Assuntos
Titânio , Ligas , Corrosão
20.
Materials (Basel) ; 15(5)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35268983

RESUMO

Ti is widely used as a material for orthopedic implants. As rapid and effective osseointegration is a key factor for the successful application of implants, biologically inert Ti materials start to show inherent limitations, such as poor surface cell adhesion, bioactivity, and bone-growth-inducing capabilities. Surface modification can be an efficient and effective approach to addressing the biocompatibility, mechanical, and functionality issues of the various Ti implant materials. In this study, we have overviewed more than 140 papers to summarize the recent progress in the surface modification of Ti implants by physical and/or chemical modification approaches, aiming at optimizing their wear resistance, biocompatibility, and antimicrobial properties. As an advanced manufacturing technology for Ti and Ti alloys, additive manufacturing was particularly addressed in this review. We also provide an outlook for future research directions in this field as a contribution to the development of advanced Ti implants for biomedical applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA